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Three-Body Recombination of Ultracold Atoms to a Weakly Bounds Level
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2Russian Research Center Kurchatov Institute, Kurchatov Square, 123182 Moscow, Russia
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We discuss three-body recombination of ultracold atoms to a weakly bounds level. In this case,
characterized by large and positive scattering lengtha for pair interaction, we find a repulsive effective
potential for three-body collisions, which strongly reduces the recombination probability. In the zero
temperature limit we obtain a universal relation, independent of the detailed shape of the interaction
potential, for the (event) rate constant of three-body recombination:arec ­ 3.9h̄a4ym, wherem is the
atom mass. [S0031-9007(96)01315-4]

PACS numbers: 34.50.–s, 82.20.Pm
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Three-body recombination, the process in which t
atoms form a bound state and a third one carries a
the binding energy, is an important issue in the phys
of ultracold gases. This process represents the in
stage in the formation of clusters intermediate in s
between individual atoms and bulk matter. Three-bo
recombination limits achievable densities in high-fie
seeking spin-polarized atomic hydrogen [1,2] and
trapped alkali atom gases (see [3], and references the
and, hence, places limitations on the possibilities
observe Bose-Einstein condensation in these systems

Extensive theoretical studies of three-body recomb
tion in ultracold hydrogen [1,2] and alkalis [3] showe
that the rate constant of this process,arec, strongly de-
pends on the shape of the potential of interaction betw
atoms and on the energies of bound states in this po
tial. In alkalis the recombination is caused by elastic
teratomic interaction, and in the zero temperature li
arec varies approximately asa2 [3], wherea is the scat-
tering length for pair interaction.

All these studies, except one in spin-polarized hyd
gen (see [2]), rely on Jastrow-like approximations
the initial-state wave function of three colliding atom
Recent progress in the quantum three-body problem
the case where only zero orbital angular momenta
particle motion are important [4] opens a possibility f
rigorous calculations of three-body recombination in
tracold atomic gases. In this Letter we consider
extraordinary case of recombination (induced by ela
interaction between atoms) to a weakly bounds level.
The term “weakly bound” means that the sizel of the
diatomic molecule in this state is much larger than
characteristic radius of interactionRe (the phase shift for
s-wave scattering comes from distancesr & Re). In this
case the scattering length is positive and related to
binding energý 0 by (see, e.g., [5])

a ­ h̄y
p

m´0 , l ¿ Re (1)

(m is the atom mass), and elastic (s-wave) scattering in
pair collisions is resonantly enhanced at collision energ
E ø ´0. As we show, largea andl imply a rather large
0031-9007y96y77(14)y2921(4)$10.00
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recombination rate constantarec. At the same time, for
large positivea we find a repulsive effective potentia
for three-body collisions, which strongly reducesarec. In
the limit of ultralow initial energiesE ø ´0 we obtain a
universal relation independent of the detailed shape of
interaction potential:arec ­ 3.9h̄a4ym.

The dependencearec ~ a4 can be understood from
qualitative arguments. For atoms of equal mass the en
conservation law for the recombination process reads

3h̄2k2
fy4m ­ ´0 , (2)

wherekf , 1ya is the final-state momentum of the thir
atom relative to the center of mass of the molecu
Recombination to a weakly bounds level occurs in a
collision between two atoms, when a third atom is loca
inside a sphere of radiusl , a around the colliding pair.
For such locations of the third atom, characterized
a statistical weightw , nl3 (n is the gas density), this
atom and one of the colliding atoms form the weak
bound state with probability of order unity. The numb
of recombination events per unit time and unit volum
nrec ­ arecn3, can be estimated asn2sysnl3d, wheres ­
8pa2 is the cross section for pair collisions. One may p
velocity y , h̄kfym, which givesarec , 8p h̄a4ym.

One can also understand qualitatively the existence
a repulsive effective potential for three-body collisio
and the reduction ofarec. In the mean field picture the
interaction in a three-body system at (maximum of t
three) interparticle separationsr ¿ Re can be written as
4p h̄2npaym, wherenp , 1yr3 is the “particle density”
inside a sphere of radiusr. For a . 0 this interaction
is repulsive, which makes the statistical weightw smaller
than nl3 and decreases the numerical coefficient in
above estimate forarec. The tail of the three-body
effective potential atr ¿ a was found in [6]. Arguments
clearly showing the absence of any “kinematic” repulsi
independent of the value and sign ofa are given in [7].

A particular system that should exhibit three-bo
recombination to a weakly bounds level is a gas (or
a beam) of helium atoms. The He-He potential
interactionV srd has a well with a depth of 11 K. Ther
© 1996 The American Physical Society 2921
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FIG. 1 Three possible sets of coordinates for a three-b
system. The relative coordinates arex, between two particles
andy, between their center of mass and the third particle.

is only one bound state in this well, with orbital angu
momentumj ­ 0 and binding energý 0 ø 1.3 mK (see
[8], and references therein). The scattering lengtha ø
100 Å found for this potential satisfies criterion (1). Th
existence of theHe2 dimer, the world’s largest diatomi
molecule (l ø 50 Å), has been established experimenta
[9]. Another system which is likely to have three-bo
recombination to a weakly bounds level is spin-polarized
metastable triplet helium, a gas of helium atoms in
23S state with spins aligned. The interaction poten
[10] for a pair of spin-polarized Hes23Sd atoms supports
an s level with binding energý 0 ø 2 mK, which leads
to a , 100 Å and important consequences for the dec
kinetics of this system [11].

We confine ourselves to three-body recombination
identical atoms at collision energiesE ø ´0 to a weakly
bound moleculars level. In this case the recombinatio
rate constantarec can be found from the equation

nrec ­ arecn3 ­
2p

h̄

Z d3kf

s2pd3 jTif j2d

√
3h̄2k2

f

4m
2 ´0

!
n3

6
.

(3)

Here n3y6 stands for the number of triples in th
gas, Tif ­

R
ciṼc

s0dp
f d3xd3x0 is the T-matrix element

for three-body recombination, the coordinatessx, x0d are
specified in Fig. 1,ci is the true wave function of th
initial state of the triple, andc

s0d
f is the wave function of
2922
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free motion of the third atom relative to the center of ma
of the molecule formed in the recombination event. Bo
ci andc

s0d
f can be written as a sum of three componen

each expressed in terms of one of the three different
of coordinates (see Fig. 1):

ci ­ c̃sx, yd 1 c̃sx0, y 0d 1 c̃sx00, y 00d , (4)

c
s0d
f ­ s1y

p
3d ffsx, yd 1 fsx0, y 0d 1 fsx00, y 00dg ,

fsx, yd ; c0sxd exp
°
ikf ? y

¢
,

(5)

where c0 is the wave function of the weakly boun
molecular state. The interaction between colliding ato
is regarded as a sum of pair interactionsV srd. The
quantity Ṽ is the part of the interaction which is no
involved in constructing the wave function (5), i.e., if th
molecule is formed by atoms 1 and 2 [the first term
Eq. (5)], thenṼ ­ V sr1 2 r3d 1 V sr2 2 r3d, etc. Using
Eq. (5),

Tif ­ 2
p

3
Z

d3xd3x0c0sxd cos

µ
kf ? x

2

∂
3 V sx0d exps2ikf ? x0dci . (6)

The initial wave function of the triple is best repre
sented in hyperspherical coordinates. The hyperrad
defined asr ­ sx2y2 1 2y2y3d1y2, is invariant with re-
spect to the transformationsx, y ! x0, y0 ! x00, y00. The
hyperangles are defined asa ­ arctans

p
3xy2yd, and sim-

ilarly for a0 anda00. For E ø ´0 only zero orbital angu-
lar momenta of the particle motion are important, and
wave functionc̃ can be written as [4]

c̃ ­
X
l

Flsrd
p

6

Flsa, rd
sina cosa

. (7)

The functionsFlsa, rd are determined by the equation
2
≠2Flsa, rd

≠a2 1
2m
h̄2 V s

p
2 r sinadr2

√
Flsa, rd 1

4
p

3

Z py22jpy62aj

jpy32aj
da0Flsa0, rd

!
­ lsrdFlsa, rd , (8)
is
s of
with boundary conditionsFls0, rd ­ Flspy2, rd ­ 0
and normalization

Rpy2
0 jFlsa, rdj2da ­ py4. The sum

in Eq. (7) is over all eigenvaluesl corresponding to three
free atoms at infinite interparticle separation. At ultralow
collision energies the lowest suchlsrd alone gives a
very good approximation, and we can confine ourselves
to this l. Then the functionFlsrd can be found from
the (hyper)radial equation in which the quantitylsrd
serves as an effective potential [4]. Under the condition
E ø ´0 at interparticle distances much smaller than their
de Broglie wavelength this equation reads

√
2

≠2

≠r2 2
5
r

≠

≠r
1

lsrd 2 4
r2

!
Flsrd ­ 0 . (9)

The function Flsrd should be finite for
r ! 0 and is normalized such thatFlsrd ! 1
for r ! `.

In our case the pair interaction potentialV srd supports
a weakly bounds level, and the scattering length
positive and much larger than the characteristic radiu
interactionRe for this potential. Forr ¿ Re the function
Flsa, rd takes the form (cf. [4])
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Flsa, rd ­

(
gsrda

£°p
2rya

¢
sinsp

p
ly2dx0s

p
2 rad 1 s8y

p
3dsinsp

p
ly6d

§
, a , Reyr ,

gsrd sin
£p

l sa 2 py2d
§
, a . Reyr ,

(10)
v

e

nd

oms

ld

m

kly
where gsrd ­ f1 1 sinsp
p

ldyp
p

lg21y2 and x0srd is
the solution of the Schrödinger equation for the relati
motion of a pair of particles,"

2
h̄2

m

√
≠2

≠r2
1

2
r

≠

≠r

!
1 V srd

#
x0srd ­ 0 , (11)

normalized such thatx0 ! 1 2 ayr as r ! `. Match-
ing the wave functions (10) ata ­ Reyr ø 1, to zero
order in Reyr we obtain the following relation forlsrd
at distancesr ¿ Re (cf. [4]):
p

2r

a
sin

µ
p

l
p

2

∂
1

8
p

3
sin

µ
p

l
p

6

∂
­

p
l cos

µ
p

l
p

2

∂
.

(12)

For r ¿ a this equation yieldslsrd ­ 4 1 48ay
p

2pr,
and thus the potential term in Eq. (9) varies asayr3.
Equation (12) is universal in the sense thatl depends
only on the ratiorya, but not on the detailed shap
of V srd. The same statement holds forFlsrd at dis-
tancesr ¿ Re.

For infinite separation between particles, i.e., forr !

` and all hyperangles larger thanReyr, we have
p

l ø 2
andFlsa, rd ø sin2a. Accordingly, from Eq. (7) with
Flsrd ! 1, eachc̃ in Eq. (4) becomes equal to

p
2y3,

and the initial wave functionci !
p

6.
The “effective potential”lsrd and the functionFlsrd

for three ground-state He atoms (a ø 100 Å) are pre-
sented in Figs. 2 and 3. The potentialV srd was taken
from [8]. For r * 100 Å our numerically calculated
lsrd coincides (within 10%) with that following from
Eq. (12), ensuring a universal dependence ofFl on rya.
As lsrd is repulsive,Fl is strongly attenuated atr & a
(see Fig. 3). This leads to a strong reduction ofci when
all three particles are within a sphere of radius,a.

We first consider the theoretical limit of weak binding
where the scattering lengtha and the binding energý0

FIG. 2. The effective potentiall as a function ofrya. The
solid curve is obtained from Eq. (8) using the ground state H
He potential (a ­ 100 Å), and the dashed from Eq. (12).
e

,

e-

are related by Eq. (1), the wave function of the bou
molecular state at distancesx ¿ Re is

c0sxd ­
1

p
2pa

1
x

exp

µ
2

x
a

∂
, (13)

and the final momentumkf ­ 2y
p

3a. From Eq. (13)
one can see that the distance between the two at
which will form the bound state should be of ordera.
To take away the binding energy the third atom shou
approach one of them to a distance of orderRe. The
main contribution to the integral in Eq. (6) comes fro
distancesx , a and x0 , Re ø a. Therefore we may
put r ø

p
2y3x, a ­ a00 ø py3, and a0 ø

p
3x0y2x.

Then the initial wave function takes the form

ci ø s1y
p

3d x0sx0dF̃ls
p

2 xy
p

3 ad , (14)

with F̃lszd ­ zFlszdgszd sinf
p

lszd py2g and z ­ rya.
Putting kfx0 ø 0 and using

R
d3x0V sx0dx0sx0d ­

4p h̄2aym, from Eq. (6) we obtain Tif ­
48p3y2h̄2a5y2Gym, where

G ­
Z `

0
dz sinszy

p
2d exps2z

q
3y2dF̃lszd . (15)

The main contribution to this integral comes fromz , 1
sr , ad, wherel andFl (and, hence,̃Fl) are universal
functions of rya. ThereforeG is a universal number
independent of the potentialV srd. Direct calculation
yields G ­ 0.0364. With the aboveTif and G, from
Eq. (3) we arrive at the recombination rate constant

arec ­
512p2G2

p
3

h̄
m

a4 ø 3.9
h̄
m

a4. (16)

The dependencearec ~ a4, instead of arec ~ a2,
is a consequence of the recombination to a wea

FIG. 3. The wave functionFlsryad obtained from Eq. (9).
The solid curve corresponds tolsrd for the ground state He-
He potential, and the dashed curve tolsrd from Eq. (12).
2923
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bound s level and can be also obtained within t
Jastrow approximation for the initial wave functio
ciJ ­

p
6x0sxdx0sx0dx0sx00d. This approximation was

proved to be a good approach for atomic hydrogen
and was later used for alkali atoms [3]. In our ca
instead of Eq. (14), in the theoretical limitReya ! 0 we
obtainciJ ø

p
6x0sx0dx2

0 sxd and arrive at Eq. (16), with
4 orders of magnitude larger numerical coefficient. Su
a very large discrepancy occurs because both results
determined by distancesx , a, where in our (rigorous)
theory ci is strongly reduced by the repulsive effecti
potential (see above). In the Jastrow approximat
this reduction is not present. On the contrary,ciJ is
resonantly enhanced at distancesx , a. Thus for large
scattering lengtha ¿ Re the Jastrow approximation doe
not give a correct picture of three-body collisions a
is not adequate to describe recombination to a wea
bounds level.

It is worth emphasizing that the4 orders of magnitude
discrepancy between the Jastrow approximation and e
three-body result only takes place in the theoret
limit a ¿ Re discussed above. ForRe close to a
Eqs. (10) and (12) are no longer valid and one need
rigorous numerical solution of Eqs. (8) and (9), relyi
on the detailed shape of the potentialV srd. In this
case the reduction ofci by the repulsive effective
potential is significantly smaller. Furthermore, in t
Jastrow approximation the resonance enhancement ociJ

at distancesx , a is no longer present. Hence th
difference between the Jastrow approach and rigo
calculation should be much smaller.

The strong reduction ofarec due to the presence of
repulsive effective potential for three-body collisions c
be treated as “quantum suppression” of three-body rec
bination (see related discussions in [7,12]). Neverthel
arec remains finite in the zero temperature limit. In fa
due to large values ofa, it is rather large. It is also worth
noting that for large andnegativea the quantitylsrd
should have the form of a potential well, with a repulsi
core at smallr, and the picture of recombination coll
sions can be completely different.

In trapped gases the kinetic energy of the third at
acquired in the recombination process usually exceeds
trap barrier, and such atoms escape from the trap. T
the loss rate for atoms isÙn ­ 2Ln3, with L ­ 3arec.
For three-body recombination of ground-state He ato
Eq. (16) givesL ø 2 3 10227 cm6ys. As the He-He
interaction hasRe , 15Å ø a, this value ofL is a very
good approximation. More accurate calculation, us
2924
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lsrd and Flsrd determined for the He-He interactio
(solid curves in Figs. 2 and 3), gives a correction of 10
The sameL is obtained for three-body recombination o
spin-polarized Hes23Sd atoms. In this case the result i
less accurate, since the characteristic radius of interac
is somewhat larger (Re , 35 Å).

Qualitatively, the picture of an effective repulsion i
three-body collisions, implying a strong reduction in th
recombination rate constant, can be valid for systems w
positive scattering lengtha , Re. One can find such
systems among the ultracold alkali atom gases.
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