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The results are presented of far-infrared-absorption measurements of potassium iodide single crystals
containing rubidium iodide in concentrations up to 10 mole %. At very low impurity concentrations a gap
mode is found in the phonon gap of KI. When the concentration of Rbl is raised, the gap mode becomes a
very strong band and a spectrum emerges in the acoustic-phonon region. Comparison of theory with
experiment is achieved by calculating a simulated absorption spectrum. Use is made of the phonon eigendata
of the host crystal and of a model for the impurity in its surroundings which includes the elastic relaxation
of the lattice around the impurity. The absorption coefficient is expressed in terms of
displacement-displacement Green’s functions, and the Green’s functions are developed in a Taylor series in
the impurity concentration. The evaluation of the first- and second-order coefficients of the series through a
diagram technique is discussed. The experimentally determined acoustic spectrum of the KI:RblI crystals
agrees very well with the simulated spectra involving first- and second-order terms.

1. INTRODUCTION

Much attention has been paid in the past decades
to crystalline systems containing impurities. In
the experimental field infrared spectrpscopy has
played a major role. The measured phenomena
fall into three groups: (a) local and gap modes of
isolated impurities which are found with a large
number of impurities mainly in alkali halides,'™
(b) induced infrared activity of the phonon spectrum
of the host by impurities,® and (c) spectra of crys-
tals containing a considerable amount of impuri-
ties or mixed crystals.%™®

On the theoretical side, progress has been made
by using powerful mathematical tools. Any model
calculation tends to become lengthy and intricate
because the impure system lacks the translational.
symmetry of the pure crystal. Local and gap
modes can be dealt with by perturbation theory
using a harmonic approximation. To describe the
induced intensities in resonance modes, especially
those below 20 cm™, it is necessary to take into
account the anharmonicity of the lattice vibrations !
In calculations on crystals with high concentrations
of impurities, perturbation theory with a pure crys-
tal as the zeroth-order problem fails because the
perturbation series diverges. A better approach
might be to start from experimental results ob-
tained with systems with low impurity concentra-
tions, give a sound theoretical description of these
results, and then repeat the experiments while in-
creasing the concentration of impurities in the
system. The transition from the detailed impurity
spectrum to the broad mixed-crystal features can
then be studied. In the theory the quantities of
interest may be developed as a power series of
the impurity concentration, which means physical-
ly that we assume these quantities to be built up
from contributions of single impurities, impurity
pairs, triplets etc.

|

In accordance with this approach we studied the
far-infrared spectrum of potassium iodide con-
taining rubidium impurities. The experimental
results can be compared with absorption spectrum
simulations calculated with an appropriate model
for the impurities in the host crystal.

II. EXPERIMENTAL

The infrared absorption spectra of KI single
crystals with varying Rb* impurity concentration
were measured in the wave-number range 15-100
cm™. Use was made of a Beckmann-RIIC FS 720
interferometer; the Fourier transforms of the
interferograms were obtained using a method out-
lined by Cooley and Tukey.!!

The crystals were grown from the melt by the
Kryopoulos technique. As a seed crystal we used
a small part of the crystal containing the next lower
amount of Rb. The concentration of Rb" ions in
the samples was measured by flame photometric
analysis. Samples could be prepared without dif-
ficulty with Rb* concentrations up to 10 mole%.
All measurements were made in a liquid-helium
cryostat. A conduction variable-temperature
cryostat was used to investigate the temperature
dependence of the spectra between 5 and 20 K.
Most measurements, however, were made on
samples held in an immersion cryostat at 4.2 K.

KI :Rb* samples containing less than 1-mole%
Rb" ions show a gap mode which appears to be a
doublet on improving the spectral resolution
(see Fig. 1). Comparison with the spectrum ob-
tained when KI is doped with 99%-pure ®Rb, also
shown in Fig. 1, makes it clear that a peak cen-
tered around 86.17+0. 05 cm™ must be assigned
to the ¥Rb" gap mode and one around 86.83+0.05
cm™ to the ®Rb* gap mode. The ratio between the
two surfaces is about 1:3, in good agreement with
the natural abundance, 28% ¥Rb and 72% ®Rb. A
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FIG. 1. Gap modes of KI:Rb*. The upper part of the
figure shows the absorption in the gap of KI doped with
8Rb isotope. The lower part shows the absorption of KI
doped with Rb isotopes in natural abundance (solid line).
The dotted curve is a copy of the upper part and the dash-
dot curve is obtained by subtraction.

previous assignment!? of this doublet as arising
from OH impurities must therefore be discarded.
The total integrated absorption coefficient appears
to be a linear function of the impurity concentra-
tion, approaching zero with vanishing concentra-
tion. These samples show no infrared absorption
below the gap of KI in the region between 15 and
70 cm™. Furthermore, no temperature effect on
the gap mode absorptions could be found between

5 and 20 K.

KI:Rb' samples with higher impurity concen-
trations up to 10-mole % Rb" were investigated in
the same frequency region. Around 86 cm™ the
gap mode band becomes so strong that intensity
measurements become impossible. In the acoustic
region a broad absorption spectrum emerges, hav-
ing features in common with the phonon density of
states of KI. Such a spectrum is shown in Fig. 2.
A plot of the integrated absorption coefficient A
for this acoustic spectrum versus the mole fraction
of Rb® is given in Fig. 3. There is a slight but
significant deviation from linearity, enough to con-
clude that A is not a simple linear function of x,
nor is it a function in only one power of x.

III. THEORY

Linear response theory gives the relation be-
tween the dielectric susceptibility tensor and the
Fourier-transformed Green’s function!®™%;

Xaa(w)=(1/kT)GWB,M¢x’w)- (1)

Mg and M, denote components of the dipole mo-
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FIG. 2. Absorption spectrum of KI containing 1-mole%
Rb*. Sample thickness 0.52 cm, resolution 1.2 cm™

ment. The dipole moment can be developed in a
series of particle displacements or phonon dis-
placements. Since, furthermore, the absorption
coefficient is related to the susceptibility by

o(w)= (4mw/nc) x' (w),
one obtains

41w  NheZ,
nckT 2wpouV

o(w)= ImG(BroBro, @),  (2)
where e 5o is the effective charge of an ion in the
crystal when vibrating in the transverse-optic
mode, (L is the reduced mass of positive or nega-
tive ion, B is the displacement operator of the
phonon, and the other symbols have their usual
meaning.

In order to find the Green’s function it is neces-
sary to construct the Hamiltonian of the system in-
cluding the perturbation terms. We shall consider
only the perturbation terms arising from the intro-
duction of impurities and omit the contribution of
higher-order terms in the potential energy. This
contribution would have a negligible effect on the
Green’s function at low temperatures, and we will
compare theoretical results with low-temperature

|NTEGRATED INTENSITY (cm=2)

L ' L
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FIG. 3. Integrated infrared intensity (in units of cm™?)
of the activated acoustic spectrum vs the mole fraction
of Rb impurities.
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(4. 2 K) experiments only.
We will start by considering the effect of only one
impurity. This will introduce a different mass at
a lattice site with unit cell label I =s and atom
label =0, so we will find a kinetic-energy dif-
ference
h—2

1 1 o°
-5 (i) Dt @

coordinate transformation into ¢ space leads to
()= (—%—° - 1) 2 2 (@) w@s)
xT(dj,d7")P'@j) P@s;’), (4)
where
T(2j,4'")=20 wg(0]d7)w4(0[q'5")
:et(i'-i)-?-(s) . (5)

It is apparent that the perturbation contains two-
phonon momentum operators. Furthermore it is
clear that the perturbations caused by introducing
more impurities simply add, because each kinetic-
energy term contains one lattice site only.

The change in the potential energy upon introduc-
tion of impurities can likewise be expressed:

13 - -y s
V()= I 2 [w@))e@i]te
e <4
X D(@j,d'j")e
x BY3j)B@i'); (6)
B(qj)=b@{j)+b%(-qj) is the phonon displacement
operator and

D@Ej,§)=2 2 wak|§j)endTon
lRa 1°R'D

1@ -Q)+ T(s)

s+l s+l .
X A<I>a,,< : Bt )(M,Mk.) /2

Xe!tf"?(l'k‘)we(kl |aljl)’ (7)

which is independent of the impurity position s.
The contributions of more impurities add, pro-
vided that the subspaces of the impurities do not
overlap. When the impurities are neighbors or
next nearest neighbors the force constants will be
slightly affected. Nevertheless we will here as-
sume additivity of the perturbation terms.

We can now proceed from the Hamiltonian to the
displacement-displacement Green’s function. We
develop the Green’s function as a series of the
impurity concentration®®
1 3%

xBpeeo (8)

x=0

G=g+ 86 X+ —3

_g 9x x=0 2 axz
where g is the Green’s function for the pure crys-
tal,

G

x

= lim N[G(1) - g], (9)

%x=0 N-
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8%G s
— =lim N°[G(2) - 2G(1)+G]. (10)
ax ¥=0 N-=»

To find the Green’s function in lowest order of
the concentration, we only need to take into account
the perturbation caused by one impurity. For the
contribution quadratic in the concentration we need
the result of a pair of impurities, and so on.

The general method to obtain the Green’s func-
tions using a diagram technique is well known. The
rules that apply for the calculations of the contribu-
tions from different diagrams in the case of an-
harmonic perturbations have to be slightly modified
when phonon momentum operators come into play.
Entering and leaving phonon lines represent
g(P@j)B"(@j’), w) and g(B({/) P'q’j’, w). A com-
plication arises when one wants to sum the con-
tributions from all different diagrams because the
diagrams can contain two perturbation terms in
any number and order. It is therefore important
that a phonon-momentum perturbation of the form
(4) can be replaced by

7 w? (M’ ) oy s e
T=e-r-—{—-1 W w( r;r\]=1/2
v \ i, Eaf aEm[ @j)w@i")

xT(dj,d’")B"@j)B@75") (11)

without changing the value of the disturbed Green’s

function. The complete perturbation can be writ-
ten in phonon displacement operators. For one
impurity,
H(1)=V(1)+T(1)

n -y ey gyl

= o 2 [0@i)w@ ;i
4N Qj qul
xZ(@j,qj")e' " TBYGG)B@i"),  (12)
- X,
Z@5,q5")=~ M'/Mo- 1) * 23 w, (0]7)
a
X, (0]q'")+ D@5, q5") - (13)

Z transformed into crystal space is the change in
the dynamical matrix upon introduction of an im-
purity at lattice site (0, 0). The contribution of all
scattering processes on one single impurity can
now be found by collecting the terms for each value
of n (Fig. 4) and summing the series thus obtained:

LN
77 \\\\
/ \
Y / \
// , /v N \\
Vs / / \ \\ \\
¢ / / \ \ \ .
a G (%l S N PN
1 2 3 n-1 n n+1

FIG. 4. Perturbation diagram with »+1 vertices.
The broken lines indicate that all the perturbation vertices
stem from one impurity only.
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G| __ 2kT [w(@)) w@")]*/2
Hlwo @ 7 [WF@7)- O [W@S) - 7]
x [z +¥2)"@j,d5"), (14)
where

> - n -
¥(aj, QJ')=Wg(q], W) Bgqe Oy50

and I is the unit matrix. Introduction of this re-
sult in Eq. (2) gives the contribution to the ab-
sorption coefficient.

This first-order effect gives us the local modes,
gap modes, and induced absorption in the low-con-
centration limit at all the frequencies for which
Z(I+¥%Z) ' has a pole. The same results have been
obtained before by simpler methods.

However, the second-order contributions can
now be found in a way analogous to the first-order
treatment. The perturbation can be written as

H@=g I T (o) @)™

Xz(aj, '&'j’) (ei(ﬁ'-a)"i'(s) +ei(ﬂ'-ﬂ)'¥(t))

xB'G7)B@'i") . (15)

The two impurities are at sites (s, 0) and (¢, 0).

The perturbation is the sum of two one-impurity
perturbations and diagrams will consist of vertices
from both impurities (Fig. 5). There are two in-
finite sets of contributions to G(2) - g which origi-
nate from one of the impurities only. One such set
is drawn as a sum of diagrams (Fig. 6), the values
of the sum being represented by the left-hand sym-
bol. Evidently this sum yields G(1) -g. Subtract-
ing all the contributions from only one impurity,
we obtain G(2)-2G(1) +g.

Now we have to add diagrams like Figs. 5(c) and
5(d), and these can be collected in the series of
Fig. 7. We can also make such a series starting
with the first vertex from the lower impurity.

This will yield the same result as the one drawn
in Fig. 7, and so we find that the contribution of
Fig. 7, when multiplied by N2, just equals

18%
2 ax%
x=0
? ?
" ' '
/’ [ / :
; \\ ! .
/ \ !

-
-
>~ - - - -

FIG. 5. Simplest two-impurity diagrams.
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FIG. 6. Infinite set of contributions originating from
one impurity only.

The contribution to G(TOTO, w) becomes

- %(SP‘S— SP'SPS+SP'SPSP'S~---) ,
Hwko = w°)

(16)
where S=Z(I+¥2)! is th_e_result of the summation
in Fig. 5, and P(h)=¥ ' ¢T® T (p)=T(f) - £(s).

Denoting the series in Eq. (16) by T(#), we can
find
T(h)= SP'S-SP'T(- 1) . (17)

From a purely mathematical point of view, we
have solved the problem. We have converted an
infinite series into an expression which can be
evaluated by matrix inversion, and this inversion
can be carried out in crystal space again. When
one wants to do the actual calculations, difficulties
arise because, first of all, the matrices involved
in the inversion are complicated, and numerical
evaluation will become lengthy, and secondly, the
symmetry of the problem is reduced to the point
group of the vector T(%) in the host crystal sur-
roundings. However, Eq. (16) must still be aver-
aged over all impurity pair configurations. All
configurations that are symmetrically equivalent
under the point-group elements of the host crystal
must have equal probability. Hence their contri-
butions have the same weight factor and can be
summed as

T°(h) = (d/ 2 T(Rh) (18)
where R denotes any point-symmetry element of
the host crystal, d the number of equivalent con-

figurations, and / the number of point-group ele-
ments. Applying (17) we obtain

+ + + etc.

FIG. 7. Collection of infinite sets.
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2> T(Rh) = s(Z) P'(Rh)) S-SL P(Rh) T(RR) , (19)
R R R

which to a first approximation reduces to
T°=48QS-SQT° ,

where
Q=(1/D2LP(RR) ,

and we can write
T°=d[I+5Q]"'SQS . (20)

This expression can be calculated with much
less trouble, especially since it has the symmetry
of the full point group of the host crystal. It must
be carried to crystal space, where

11 _ 1w (k13 j)ws (% | ¢j)
Q“"(k k'> 'ng wi(d7) - w?

Xeiq'[r(llz)-r(l'k')]?elu'r(ﬂh) . (21)

The second-order term of the optical absorption
coefficient can now be built up from contributions
of symmetrically inequivalent impurity configura-
tions. Addition of the first-order term obtained
from Eq. (14) gives the absorption coefficient,
which will be compared with experiment in the
next section. The second-order contribution has
a striking analogy with the first-order term. The
solutions of det [I+¥Z]=0 for the first order and
of det [I+SQ]=0 for the second-order govern the
contribution to the absorption coefficient. They
are in one-to-one correspondence with the eigen-
frequencies of the pure crystal. We expect, there-
fore, in both orders a reflection of the density of
states of the host crystal, though much more hid-
den for the second order due to the more compli-
cated weight factor.

RESULTS AND DISCUSSIONS

The Green’s functions involved in the calculation
have poles at the eigenfrequencies of the host lat-
tice, so they will be complex. The imaginary part
consists of the residues at these poles. The imagi-
nary part is a weighted density of states and can be
found as a histogram. The real part of the Green’s
function could be calculated by applying a Kramers-
Kronig transformation.!” We have chosen here a
method in which the frequency is given a finite
imaginary part A. This means that the residues
at the poles, which have a §-function shape are
represented by Lorentzians, the width of which is
determined by the value of A. Too small a value
of A will cause spurious fluctuations in the Green’s
functions, while large values will smooth out es-
sential details. We choose the optimum value for
the imaginary part of the frequency by comparing
the calculated density of states with several values
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of A, with the density of states obtained by making
a histogram using 48 009 024 eigenfrequencies in
the first Brillouin zone.!® The matrix inversions
involved in Eqgs. (14) and (20) were carried out by
the exchange step method. *°

We could now calculate the impurity induced ab-
sorption for finite impurity concentrations, and
compare the result with measured absorption spec-
tra.

For the gap modes of low concentrations of Rb*
in KI where the integrated absorption coefficient
is a linear function of the impurity concentration
one needs only to consider the perturbation term
due to one impurity. Methods to be used in this
case and results for different impurities have been
given before.?*2! An important point is that as the
interparticle force constants are changed by the
introduction of an impurity the lattice must relax
around the impurity. The new interparticle dis-
tance then appears in the repulsive potentials. It
has been shown by Biuerle and Hiibner?® that this
effect may not only affect the force constants be-
tween the impurity and its nearest neighbors, but
also the force constants between the impurity and
the more outward shells of ions. Inclusion of the
lattice relaxation in an extended region around the
impurity increases the complexity of the model,
and the great number of adjustable parameters
makes it difficult to draw conclusions from a com-
parison with experimental observations. Fortu-
nately, a consideration of an extension of the lat-
tice relaxation beyond the nearest neighbors does
not seem necessary for the substitution of a Rb*
ion in the KI lattice. Assuming the central force
constant to be of Born-Mayer shape A =()/p?) e™’?,
we inserted for A and p the values as they are for
RbI. This should take into account the different
electronic structure around the defect. The in-
terionic distance between the impurity and its six
nearest neighbors was then introduced as the only
variable parameter. This model, which we be-
lieve to contain the essential features of an impur-
ity in a host lattice, can now readily be compared
with experiment. The gap mode frequencies for
the two isotopes ®*Rb and ®"Rb were calculated as
a function of the lattice relaxation; the result is
shown in Fig. 8. The two experimentally deter-
mined gap mode frequencies give exactly the same
lattice relaxation of 0.035 A. This check on con-
sistency is a very strong support of the method
used. In contradistinction to the intensity of the
gap modes, the intensity of the acoustic spectrum
of KI: Rb* is not a linear function of the impurity
concentration as appears from Fig. 3. In the
model calculations we therefore take into account
the contributions of single impurities and of im-
purity pairs. The second-order term is a sum of
contributions of all symmetrically inequivalent
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FIG. 8. Part of the calculated gap mode frequencies
of ¥Rb* (upper line) and ’Rb* (lower line) as a function of the
lattice relaxation. The horizontally dashed lines give the
experimentally formed values of the frequencies and the
vertically dashed line the matching relaxation.

two-impurity configurations. The magnitude of
these contributions rapidly diminishes with in-
creasing distance between the impurities. We
therefore restricted the calculations to contribu-
tions from pairs of impurities neighboring in [110]
directions and from pairs in [001] directions sepa-
rated by one anion.

The first-order term is of course non-negative
outside the TO frequency. However, the second-
order term gives rise to positive as well as nega-
tive contributions. A negative second-order con-
tribution means that intensity induced at a fre-
quency by the first-order perturbation term is re-
moved to another frequency by the second-order
perturbation. Such negative contributions do ex-
plain the decline of the integrated intensity of the
acoustic spectrum as a function of the Rb* concen-
tration (Fig. 3). We calculated the first-order
and second-order terms for several values of the
elastic relaxation around the impurity. Then the
contributions were added, choosing several values
for the impurity concentrations. Figure 9 gives
the result of the calculations in which we kept the

. _8 %Rb"*

2% VI “\\

Arbitrary units

10 20 30 40 50 60
Frequency (cm-"

FIG. 9. Acoustic spectrum simulation of KI: Rb* with-
out elastic relaxation for different concentrations.
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1 40
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Absorption coefficient (cm="1)

2 n

30 40 50 60
Frequency (cm=1)

FIG. 10. Acoustic spectrum simulation of KI:Rb* with
elastic relaxation fitting the gap modes (upper part) as
compared with the experimentally determined spectrum.

host lattice undistorted, showing the concentration
dependence of the simulated spectrum. With in-
creasing elastic relaxation the intensity tends to
shift to the high-frequency part of the spectrum.
The value of the elastic relaxation that results
from the gap mode calculation appears to give a
reasonable fit for the acoustic spectrum as well
(Fig. 10). Except for the details around 60 cm™,
the agreement between the measured and the cal-
culated spectrum is quite good.

This is a strong point in favor of the method
used and seems to justify the assumptions made
in this treatment. The main drawback of the
method is the development of the quantities of in-
terest in a Taylor series of the impurity concen-
tration. At a certain instant the series will di-
verge; the question is at what concentration this
will happen. In practice the limit will have to be
set at an even lower concentration since the calcu-
lation of third- and higher-order terms will be-
come too enormous a task. Although we neglected
anharmonicity in view of the fact that the gap
modes in the spectra are totally independent of the
temperature between 5 and 20 K, one could easily
include the anharmonic terms, which is a definite
advantage of the method.

From our results on the system KI: Rb" we see
that first- and second-order terms give a good de-
scription of the spectrum up to a concentration of a
about 10 mole%. This leads us to the conclusion
that the dielectric susceptibility of the mixed crys-
tal exhibits continuous and moderate changes with
increasing concentrations, and we infer that this
also holds for the eigenfrequencies and eigenvec-
tors. This result was to be expected for the eigen-
frequencies since their shifts have to obey Ray-
leigh’s theorem.
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