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PACS. 45.70.-n — Granular systems.
PACS. 45.70.Cc — Static sandpiles; granular compaction.
PACS. 46.65.+g — Random phenomena and media.

Abstract. — We study the response of a two-dimensional hexagonal packing of rigid, friction-
less spherical grains due to a vertically downward point force on a single grain at the top layer.
We use a statistical approach, where each configuration of the contact forces is equally likely.
We show that this problem is equivalent to a correlated g-model. We find that the response
displays two peaks which lie precisely on the downward lattice directions emanating from the
point of application of the force. With increasing depth, the magnitude of the peaks decreases,
and a central peak develops. On the bottom of the pile, only the middle peak persists. The
response of different system sizes exhibits self-similarity.

Force transmissions in (static) granular packings have attracted a lot of attention in recent
years [1-13]. Granular packings are assemblies of macroscopic particles that interact only via
mechanical repulsion effected through physical contacts. Experimental and numerical studies
of these systems have identified two main characteristics. First, large fluctuations are found to
occur in the magnitudes of inter-grain forces, implying that the probability distribution of the
force magnitudes is rather broad [4]. Secondly, the average propagation of forces —studied
via the response to a single external force— is strongly dependent on the underlying contact
geometry [3,11-13].

The available theoretical models capture either one or the other of these two aspects.
The scalar g-model [5] reproduces the observed force distribution reasonably well, but yields
diffusive propagation of forces, in conflict with experiments [11,12]. Continuum elastic and
elasto-plastic theories [6] predict responses in qualitative agreement with experiments [7—10],
but they provide a description only at the average macroscopic level. More ad hoc “stress-only”
models [2] include structural randomness, but its consequences on the distribution of forces are
unclear. In other words, an approach that produces both realistic fluctuations and propagation
of forces in granular materials from the same set of fundamental principles is still called for.

A simple conjecture, which could provide such a fundamental principle for all problems of
granular statics, has been put forward by Edwards years ago [14,15]. The idea is to consider
all “jammed” configurations equally probable. A priori, there is no justification for such an
ergodic hypothesis, but its application to models of jamming and compaction has been rather
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Fig. 1 — (a) The model: (N + 2) x p array of hexagonally close-packed rigid frictionless spherical
grains in two-dimensions (drawn for odd N). At the top, there is only a single vertically downward
point force applied on one particle. At the boundaries, little gray circles appear on interfaces where
the contact forces are non-zero. (b-c¢) Schematically shown forces on the j-th grain in the i-th layer:
(b) i < N, (c¢) i = (N + 1), the bottom reaction Wy is shifted upwards for clarity; FS%) >0 vm.

successful [16]. Its extension to the forces in granular packings is in principle straightfor-
ward: sets of forces belonging to all mechanically stable configurations have equal probability.
However, in an ensemble of stable granular packings, two levels of randomness are generally
present [2]. First, the force geometry clearly depends on the underlying geometrical contact
network, which is different in different packings. Secondly, randomness in the values of the
forces is present even in a fixed contact network, since the forces are not necessarily uniquely
determined from the contact network. Instead of considering both levels of randomness si-
multaneously, a natural first step is thus to obtain the averages for a fixed contact geometry,
and then possibly to average over the contact geometries.

While such a method has recently been shown to produce single inter-grain force probability
distributions in fixed geometry that compare well with experiments [17], in this letter we
demonstrate that it also leads to an average response function qualitatively in agreement with
experiments. More precisely, we determine the behaviour of the response of a two-dimensional
hexagonal packing of rigid, frictionless spherical grains placed between two vertical walls (see
fig. 1), due to a vertically downward force F' applied on a single grain at the top layer.
Experimentally [11,12], it was found that a force F' applied to the top of a hexagonal packing
of photo-elastic particles propagates mainly along the two downward lattice directions. We
define the response of the packing as [(W; ;) — (WZ((;))] /F, where W; ; and WZ-(,(])-) are the vertical
force transmitted by the (7, 7)-th grain to the layer below it, respectively with and without
the external force F', and the angular brackets denote averaging over all configurations of
mechanically stable contact forces with equal probability.

To start with, we describe a method for assigning the uniform probability measure on the
ensemble £ of stable repulsive contact forces pertaining to a fixed geometrical configuration
of P rigid, frictionless two-dimensional grains of arbitrary shapes and sizes (for a rigorous
geometrical description of a granular packing, see ref. [15]). The directions of the forces
are fixed at each of the ) contact points, and one can represent any force configuration
by a column vector F consisting of @ non-negative scalars {Fy} (with k =1,...,Q) as its
individual elements. These elements satisfy 3P Newton’s equations (3 equations per grain:
two for balancing forces in the x and y directions and one for balancing the torque), which
can be represented as A -F = F.,;. Here, A is a 3P x Q matrix, and F.,; is a 3P-dimensional
column vector representing the external forces. If we assume 3P < @ [18], then there is no
unique solution for F. Instead, there exists a whole set of solutions that can be constructed via
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the three following steps: 1) one first identifies an orthonormal basis {FW} (1 =1,...,dx =
Q — 3P) that spans the space of Ker(A); (2) one then determines a unique solution F(©) of
A-FO = F_,, by requiring F(©) . F) = 0 for | = 1,...,dg; and (3) one finally obtains all
solutions of A-F = Fout as F = F(O 4+ EZQZ_I?’P fi F®), where fi are real numbers. This implies
that £ is parametrized by the f;’s belonging to a set S obeying the non-negativity conditions
for all forces. The uniform measure on &£, which is usually compact [21], is thus equivalent to
the uniform measure du = [, dF; (A - F — Fepe) ©O(F) = [[,dfi on S.

In our model, the grains are spherical, so that the dimension of A reduces to 2P x Q. We
consider the force F' and the weights of the individual grains as the non-zero elements of F .,
while F is composed of all inter-particle and non-zero boundary forces. Simple counting then
shows that @ = 3Np + 5p + N + 2 (see fig. 1). The matrix A represents two equations per
particle (see fig. 1(b-c)) [18]

Féi’j) = Fz(i’j) +mg/V3 + {Ff’j) - F;i’j)],
FOD = FD 4 mg/y/3 - [Ff,ﬂ —F?Ei’j)],
Wiy = V3[R 4 FNTID] /24 mg,

N+1,5 N+1,5 N+1,5 N+1,5
RO _ gD [N ] g, )

i.e., 2(N +2)p equations all together, implying that dg = N+2+ (N +1)p. We choose Féi’l)’s
fori < (N+1) and F4(w)’s fori < N,1 < j < N to parameterize £. Once these forces are fixed,
all the others are uniquely determined by solving eq. (1) layer by layer from top down [22]. It is
easily seen that the number of these parameters is indeed d, as it should be. Clearly, in this

formulation, W; ; = \/§[F(m) —i—FQZ’J)]/Q—i—mg, and du = HNJrl dF?EM) Hgf\’ig))):(o’l) dF4i,’j) on

S for our model. Furthermore, with G; ; = F4(2 9 F?E 9 j.e., with [22]
R “uzau, ©)

Hg\;f ©0.1) dF(m) in dp can be replaced by H(z ]’f) (0.1) 4Gi;- In this form of dy, in order to

respect the non-negativity conditions for Fém )’s and Fé “)g one must satisfy
— [FQ(i’j) + mg/\/g} <G;; < Fl(i’j) +mg/V3, (3)

implying that the set S’ of allowed values of G; ;’s is compact. However, since the non-
negativity conditions for FS(i’j ) and Ff’j )
model is actually unbounded.

The remedy we use is to fix the Féi’l) values: indeed, as can be seen in eq. (1), the values
of the W; ; depend only the G ;’s so that in this model the precise values of F3(i’1) have no
physical meaning. Nevertheless, one has to be careful: notice that the G; ;’s are differences
of the physical contact forces and thus they are allowed to become negative in magnitude. In
fact, egs. (2) and (3) together imply that if F(Z V< 2[F + (i — 1)mg]/+/3, then the positivity
i,5)

s provide only lower bounds for Fg(i’l)’s, S in this

requirement of the F,”’ might further restrict the choice of G;; values within the bounds
of inequality (3). In this letter, we fix the magnitudes Féz’l) =2[F + (i — )mg]/V3 = F,
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so that all values of G; ; within the bounds of inequality (3) are allowed (details of the cases

Fél’l) < Fp appear elsewhere [23,24]). This arrangement reduces the uniform measure over £
to the uniform measure on S’, which is a (N + 1)p-dimensional polyhedron.

To evaluate (Wi ;) = 5 [s Wi j [T dGr1, where N = [, T],; dGi ; is the normalization
constant, we define

Gy = {\/g(Gw' + F) 2+ mg/Q} /Wi, (4)

where ¢; ; is the fraction of W;; that the (i,j)-th particle transmits to the layer below it
toward the left, i.e., FEEZ’J) = 2¢; ;Wi ;/V/3 and Fﬁ(l’j) = 2(1—gq; j)W; j/v/3. Equation (4) then
reduces eq. (3) to 0 < ¢; ; < 1. Clearly, W, ; are the external forces applied on the top layer.
For i > 0, W; ; is a function of g for k < i, since

Wii=0—gqi—1,-1)Wic1 -1+ gi—1,; Wi—1,; +mg. (5)

It may seem from eq. (5) that in the hexagonal geometry of fig. 1, one simply recovers the
g-model [5]. There is however an important subtlety to take notice of. In the g-model, the
q’s corresponding to different grains are usually uncorrelated, while in our case, the uniform
measure on S’ implies, from eq. (4), that

1 aGi; = 2+92 I dai; Wi j(q) /3N +0w72 (6)

(2] (2]

Due to the presence of the Jacobian on the right-hand side of eq. (6), the uniform measure
on &’ translates to a non-uniform measure on the (N + 1)p-dimensional unit cube formed by
the accessible values of the ¢’s.

Notice an important artifact of this approach: the joint probability distribution H2 j Wi ;(q)
depends on the g; ; values over the whole system, thereby making g; ;’s correlated with each
other. In fact, the induced probability P(g; ;) for a single grain does not only depend on the
number of layers present above the grain, but also on the number of layers below it. It is
thus clear that the forces in this model do not propagate top down, as they do in hyperbolic
“stress-only” models [2].

For massless grains (m = 0), it is clear that i) for F = 0, Wi(;)) = 0V(s,7), ii) the (W; ;)
values scale linearly with F' (hence, we use F' = 1), and iii) (W, ;) = 0 outside the triangle
formed by the two downward lattice directions emanating from (i,7) = (0, jo), the point of
application of F. The (W, ;)’s, evaluated numerically via the Metropolis algorithm on these
q’s, appear in fig. 3 below.

Our simulation results for (W; ;) and the standard deviation §W; ; = |/(W2;) — (W ;)2

within the triangle are plotted in fig. 2, using the built-in cubic interpolation function of Math-
ematica. Outside the triangle, (W; ;) = 0 appears, on-line, in deep indigo; the largest (W; ;)
value within the triangle appears, on-line, in dark red; and any other non-zero (W; ;) value is
represented by a linear wavelength scale in between [25]. We find VN that a) the (W; ;) values
display two single-grain-diameter-wide symmetric peaks that lie precisely on the two downward
lattice directions emanating from jg, b) the magnitudes of these peaks decrease with depth,
and c) only a central maximum for (W ;) is seen at the very bottom layer (i = N +1). The
standard deviation §W;; has a similar shape to (W; ;), although the peaks are less pronounced.

We further define z = (j — jo)/(IN + 1) and (j — jo + 1/2)/(N + 1), respectively for
even and odd 4, and z = i/(N + 1) (see fig. 1) in order to put the vertices of the triangle
formed by the locations of non-zero (W; ;) values on (0,0), (—1/2,1) and (1/2,1) VN. The
excellent data collapse shown in fig. 3 indicates that the (WW; ;) values for |z| < z/2 scale
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Fig. 2 — Colour (on-line) plots for N = 35 and m = 0: (a) mean response; (b) the standard deviation
of the response.

with the inverse system size (fig. 3(a); we however show only three z values), while the
(W; ;) values for |z| = z/2 lie on the same curve for all system sizes (fig. 3(b)). The data
suggest that in the thermodynamic limit N — oo, the response field (W (x,z)) scales ~ 1/N
for |x| < z/2, but reaches a non-zero limiting value on |z| = z Vz < 1. We thus expect
limy oo (W (2, 2))||2|=2/2 > (W (2, 2))|12)<z/2 V2 < 1; or equivalently, a double-peaked response
field at all depths z < 1 for large N.

We have not found a simple explanation for such scaling behaviour of (W (z, z)). It however
turns out that ezact analytical expressions can be obtained for all moments of W; ; V(3, j),
for any N. The detailed calculations appear in ref. [23].

In view of the self-similarity of (W (z,z)) that we observe for different system sizes in
figs. 3(b-c), it seems natural that we also study the same properties for m # 0. In this case,
(WZ((]))> # 0 and (W; ;) ¢ F. To minimize the effect of the boundaries in the regions around
j = Jjo, we have used p = 2N + 5. For m # 0, the relevant scale for the magnitude of F' is
obviously &« = F/mg. For o # 0, just like in the case of m = 0, we observe a double-peaked
response, and the peaks are still single-grain-diameter wide. Furthermore, for a given value of
N and increasing «, the magnitude of the response on x = z/2 decays more slowly, i.e. the
peaks penetrate the packing to progressively higher values of z. In order to avoid repetition,
we do not use colour figures (colours on-line) like fig. 3(a) to demonstrate this behaviour,

6 T T : ‘ ‘
@| , )7 ,
A g “N=34
4 1 N4, - N=49
ReY ] &y « N=99 1
E 5o, |
> 2 4 N ]
~—~~ a — 0.27 —
£ ] 01+ E

0 ] I ]

1 0
02" 02 0 02 04 0 1

Fig. 3 — Behaviour of (W (4, 7)) for m = 0 in reduced co-ordinates = and z: (a) scaling of (W (z, 2))
with system size for |z| < z/2 at two z values (for clarity, z = 0.8 and z = 0.6 have been shifted
upwards by one and two units, respectively); (b) data collapse for (W (x, 2))|z=»/2 at three N values.
See the text for further details.
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Fig. 4 — Scaling properties of (w(z, z)), analogous to figs. 3(b-c), for 3 = 100 and three N values (a.u.
= arbitrary units).

but the trend of the data clearly indicates that for fixed IV, one should recover the results
corresponding to m = 0 in the limit o — oo.

It is clear from the qualitative behaviour described in the above paragraph that in order
to obtain scaling with increasing N, one also needs to scale « in some way. To this end, we
define 8 = a/(N + 1) and keep [ constant for increasing N. The corresponding graphs are
shown in fig. 4 for § = 100. The fact that the self-similarity in fig. 4 for different system
sizes is not as striking as in figs. 3(b-c) suggests that there is more to the story of scaling
properties. It is likely that the full scaling properties can be unraveled only at much higher
values of N, but unfortunately, simulations with /N values significantly higher than 50 require
impractically long times.

In summary, we find that assigning equal probability to all mechanically stable force con-
figurations for rigid, frictionless spherical grains (with or without mass) in a two-dimensional
hexagonally close-packed geometry yields a double-peaked response. The peaks are single-
grain-diameter wide, they lie on the two downward lattice directions emanating from the point
of application of F. With increasing depth, the magnitude of the peaks decreases, and a third
peak starts to develop directly below the applied force. Near (and on) the bottom layer only
the middle peak persists; i.e., the response becomes single-peaked. As the number of layers is
increased, the transition from double to single peak takes place deeper in the packing. More-
over, for grains each with mass m, the peaks penetrate the packing deeper with larger F'. The
standard deviation of the response is similar in shape to the response, but the peaks are weaker.

We emphasize that the results presented here are obtained for the boundary condition
FB(Z’l) > Fy. The case F. éz’l) < Fp and other kinds of boundary conditions have been analyzed
elsewhere [23,24]. These results together indicate that the quantitative behaviour of the
response depends crucially on the side forces (i.e. boundary conditions) —this feature is
consistent with other theoretical approaches [7]. In particular, we note that the transition to
a single-peaked response does not take place for F3(z’1) sufficiently small.

We also note that the double-peaked structure of both the mean response and the stan-
dard deviation of the response is in qualitative agreement with experiments [11-13], but the
fluctuations observed in the model are much weaker than found in experiments [12]. Another
crucial difference between our and the experimental results is that in this model the peaks are
single-diameter wide, while in experiments the peaks widen with depth [12]. This difference
probably stems from the fact that in experiments the effect of inter-grain friction can never
be neglected. The presence of friction would also certainly make fluctuations in the response
O0W; ; stronger. A study of the effects of friction on the response along the lines of [26] is
therefore an important direction for future work.
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