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Abstract. – The Seebeck coefficient anomalies in the so-called Kondo-insulator compound
FeSi have been studied at liquid helium and intermediate temperatures. It is shown that the
most complete and consistent interpretation of the iron monosilicide magnetic, transport and
optical properties can be achieved in the framework of the Hubbard model. The estimation of
microscopic parameters provides additional arguments in favour of the spin polarons formation
and dramatic renormalization of the intragap electronic density in FeSi at low temperatures.

In spite of the growing interest in the cubic transition metal compound FeSi, the unusual
physical properties of this narrow-gap semiconductor have not yet received an adequate ex-
planation [1–9]. Different models have been used to interpret the low-temperature anomalies
of the electronic and magnetic properties of iron monosilicide (Kondo-insulator model [1–7],
d-p valence fluctuations [9] etc., see, e.g., [8]). However, most of them are inconsistent with
the results of band structure calculations [10–14] where a high electronic density of states is
found in the vicinity of an indirect gap (Eg ≈ 60meV) in this almost magnetic narrow-gap
semiconductor. According to [10–14] the FeSi Fermi level lies in the Fe 3d bands and the
density of states (DOS) on both sides of the gap is dominated by the Fe 3d states which are
only slightly (about 10%) hybridized with the Si 3p electrons.

In this letter we present experimental arguments and estimations in favour of the formation
of the spin-polaron Mott metallic state with strong Hubbard correlations in iron monosilicide
at low temperatures (T < 100K). In our opinion, this approach is very useful for understand-
ing the nature of the low-temperature anomalies [1–9] and a coherent ground state formation
in this unusual narrow-gap semiconductor.

(∗) Present address: 1 Physikalisches Institut, Universität Stuttgart, D-70550 Stuttgart, Germany.
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To test the effects of Hubbard correlations and spin-polaron states formation the “key
experiment” is the study of the Seebeck coefficient S(T ) [15, 16]. Thermopower of FeSi was
investigated earlier in [6, 7], where the S(T ) features have been recorded in the temperature
interval T < 200K and were attributed to the phonon drag effects. However, very low values
of charge carrier mobility (µn, µp < 10 cm2/V · s) deduced from transport measurements for
high-quality single crystals of FeSi [8] are in contradiction with the phonon drag interpretation
of the low-temperature S(T ) anomalies. Indeed, a strong electron-phonon scattering and spin
fluctuations should suppress the non-equilibrium effects in the phonon distribution function of
FeSi resulting in a significant slacking of phonon drag thermopower (see, e.g., [17]). A flat and
extended top of the low-temperature S(T ) maximum in FeSi, which is not typical for phonon
drag thermopower in metals and semiconductors, provides additional arguments against the
interpretation of the Seebeck coefficient behaviour proposed in [6, 7].

To clarify this point, the detailed measurements of Seebeck coefficient of FeSi single crystals
are presented in this letter together with the quantitative analysis of the experimental data
in combination with the previously reported results on magnetic, transport and optical prop-
erties and within the framework of the Hubbard model. The original technique of precision
thermopower measurements was described elsewhere [18]. The samples of iron monosilicide
are high-quality single crystals with a high resistivity ratio ρ(T → 0)/ρ(300K) ≈ 5 · 105–106

and a small amount of magnetic impurities [19]. The cubic crystal symmetry of FeSi, a dis-
torted rocksalt structure, was confirmed by X-ray diffraction. Electron-probe microanalysis
showed a stoichiometric and homogeneous single phase.

A typical experimental S(T ) curve obtained for one of the FeSi samples is given in fig. 1a.
The temperature range T > 100K corresponds to the intrinsic conduction region of this
narrow-gap semiconductor [8], so the temperature dependence of thermopower can be de-
scribed by the equation

S1(T ) =
kB

e

{
b− 1
b+ 1

Eg

2kBT
+A

}
, (1)

where b = µn/µp is the ratio of electron to hole mobility, kB is Boltzmann’s constant, e
the the charge of electron and A the kinetic coefficient [15–17]. The parameter b of eq. (1)
b = µn/µp ≈ 1.5 was evaluated from the experimental curve of fig. 1 (100K < T < 300K),
we also used the S(T ) results [6] for the interval 300–700 K and the value Eg ≈ 60meV [8].

On the other hand, the low-temperature contribution S2 in S(T ) (see fig. 1a) is determined
by intra-gap states and does not depend on the temperature S(T ) = S2 ≈ const ≈ 900µV/K
in the range 15K < T < 50K. At intermediate temperatures 60–120 K (fig. 1a) conductivity
σ(T ) and thermopower S(T ) can be described with the help of a simple model which takes
into account the sum of the contributions from both the charge carriers excited through the
indirect gap (σ1, S1) and from the intra-gap states (σ2, S2):

σ(T ) = σ1(T ) + σ2(T ) = σ01 exp[−Eg/2kBT ] + σ02 exp[−Eex/kBT ] , (2)

S(T ) =
σ1(T )S1(T ) + σ2(T )S2(T )

σ1(T ) + σ2(T )
. (3)

When eqs. (1)-(3) are applied to analyse the Seebeck coefficient behaviour, an exponen-
tial asymptotic curve is expected for the difference Sd(T ) = S(T ) − S1(T ) at intermediate
temperatures 60–120 K:

Sd(T ) = S(T )− S1(T ) ≈ σ01

σ02
exp

[
Eg/2− Eex

kBT

]
S2(T ) . (4)
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Fig. 1 – Temperature dependence of a) Seebeck coefficient S(T ), b) mobility difference RHσ = µn−µp

and c) magnetic susceptibility χ(T ) in FeSi.

Fig. 2 – Activation behaviour of a) parameter Sd(T ) = S(T )− S1(T ) (see text) and b) conductivity
σ = σ1 + σ2. The temperature intervals I and II correspond to intrinsic conduction (T ≥ T ∗ ≈ 70K)
and intra-gap states transport in FeSi.

The Sd(T ) parameter, as obtained from experimental results of fig. 1a, is shown in fig. 2 to-
gether with different conductivity contributions (σ1, σ2). An activation behaviour of the Sd(T )
with characteristic energy ESd ≈ 407K is clearly seen which is closely related to the indirect
gap value Eg/2 ≈ 30meV. This implies that the drastic changes of S(T ) in FeSi at interme-
diate temperatures are mainly determined by the temperature dependence of conductivity in
the intrinsic conduction range and are not connected with the phonon drag effects.

It is interesting to note the presence of the saturation of S(T ) ≈ S2(T ) ≈ const in
the temperature interval 15–50 K, where S2(T ) changes only slightly within the range 880–
920µV/K (fig. 1a). In such a situation, when the activation behaviour of the Hall coefficient
and conductivity in FeSi at low temperatures T < 70K is accompanied by thermopower
saturation S(T ) ≈ const, an adequate description of the Seebeck coefficient can be obtained
by using Heikes’s formula

S2(T ) = −kB

|e| ln
(
1− ν

ν

)
, (5)

where ν = N/NFe is the reduced carrier concentration in Hubbard bands. Equation (5)
corresponds to the thermopower behaviour in the regime of the strong on-site Coulomb (Hub-
bard) correlations [15, 16] and can be applied to estimate the charge carrier (hole) concen-
tration in the lower Hubbard band. Taking the value of FeSi volume density 6100 kg/m3

and S2(T ) = const ≈ +920µV/K we have NFe ≈ 2.2 · 1022 cm−3, ν ≈ 1.3 · 10−5 and
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Fig. 3 – a) Schematic DOS for the one-band Hubbard model with 2 ≤ U/D ≤ 3 at different tempera-
tures (taken from refs. [19–21]) and its corresponding optical spectra σ(ω) b) as calculated in [19] for
a metallic side of the Mott-Habbard transition U/D ≤ 3 and c) as deduced in [22] from reflectivity
measurements of FeSi at different temperatures.

p ≈ 5.8 · 1017 cm−3. It is worth mentioning that these low ν values allow us to reduce
eq. (5) to a very simple relation S2(T ) ≈ kB

|e| ln ν which is consistent with the thermopower
expression for the spin polaron transport [15, 16]. According to [15] in the regime of strong
Hubbard correlations the charge carriers are spin polarons. For the case of almost magnetic
semiconductor FeSi, these heavy quasiparticles may be supposed to appear as a result of a
strong polarization of the Fe magnetic moments located in the nearest environment of the
charge carrier in the Hubbard band.

To clarify the origin of the spin polaron states, we shall rely upon the recent results of
DOS and optical conductivity σ(ω) calculations in the framework of the one-band Hubbard
model [20] (see also [21,22]). As was shown in [20] by the local impurity self-consistent approx-
imation in the limit of a large number of spatial dimensions, the metal-insulator transition
(MIT, Mott-Hubbard type) takes place at an intermediate value of the on-site Coulomb in-
teraction Uc ≈ 3D (D is the band half-width). Moreover, the metallic (U < Uc) side is
characterised by a DOS with a three-peak structure: the central feature at the Fermi energy
that narrows as one moves toward Uc from below, and two broader incoherent features that
develop at ±U/2, namely the lower and upper Hubbard bands (see fig. 3a). In fig. 3a the evo-
lution of the central peak ρ(ω) is sketched also as a function of T (see [22]): the width of this
resonance does not vary much, but ρ(0) decreases dramatically. When T = T ∗ ≈ δ (δ is the
width of the resonance) the peak has a vanishing weight instead of being broadened [21, 22].
Therefore, at temperatures around T ∗, the transition to the narrow-band transport repre-
senting a manybody quasi-particle resonance can be expected for U ≤ Uc instead of a Mott
transition to the dielectric state [20].
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In the framework of the approach developed in [20–22] it is natural to interpret the ac-
tivation behaviour of the Hall coefficient [8] and conductivity (fig. 2b) in FeSi at T < T ∗ in
combination with S(T ) = const (fig. 1a) in terms of the transport of charge carriers through
the polaronic states at EF [15, 16]. In these terms the potential of the spin-polaron states
Eex can be applied here to estimate the central resonance width δ ≈ Eex ≈ 6meV. The
renormalized density of states ρ(ω) (fig. 3) and optical conductivity σ(ω) (fig. 3b) also calcu-
lated in [20] for the one-band Hubbard model allow us to analyse the low-temperature optical
spectra σ(ω) measured for FeSi in a wide IR-range (fig. 3c) [23]. From the comparison of
the position and width of the σ(ω) maximum at ω = U/2 (see fig. 3b and c) it is easy to
extract the following parameters of the Hubbard model in FeSi: U ≈ 0.27 eV, 2D ≈ 0.21 eV,
Eg = U − 2D ≈ 60meV and U/D ≈ 2.6. It should be noted that the gap value Eg ≈ 60meV
and the magnitude of parameter U/D ≈ 2.6 are in a good agreement with both experimental
data for Eg and the theoretical values of parameters which determine the instability region of
this dielectric state in the Hubbard model [20–22].

The above-mentioned renormalization of the DOS and the transition to the narrow-band
transport can be formulated also in terms of a substantial increase of the effective mass of
charge carriers. The increase should be seen in galvanomagnetic and magnetic properties of
FeSi at low temperatures. We think that the drastic changes of the Hall mobility difference
µp − µn = RHσ (RH is the Hall coefficient) (fig. 1b, [8]) can be attributed to the formation of
these “heavy fermions” in the temperature range T ≤ T ∗ ≈ 70K in FeSi. Moreover, the mag-
netic susceptibility increase at the same temperatures T ≤ T ∗ (see fig. 1c) reflects apparently
the effects of the DOS renormalization at EF. Indeed, when analysing the low-temperature
magnetic susceptibility in FeSi as Pauli paramagnetic contribution from the charge carriers in
the narrow rectangular (for the approximation) conduction band of width δ at EF,

χP(T ) = 1/2g2µ2
BN

∗(EF)
∫ δ/2

−δ/2

(
− ∂f

∂E

)
dE (6)

(g is the g-factor and µB is the Bohr magnetic moment), we have the following evaluation for
the amplification factor: χp(T = 4.2K)/χp(T = 100K) ≥ 100 (see fig. 1c). According to the
arguments of [24] the integral in eq. (6) gives an increase factor of about 4–5, so the real DOS
renormalization with temperature in FeSi can be estimated as N∗(EF, T = 4.2K)/N∗(EF, T =
100K) ≥ 20. This interpretation is also suitable to explain the so-called Curie-Weiss–like rise
at low temperatures in FeSi samples mentioned previously (see, e.g., [25]). It should be
noted that the independent conclusion about an essential DOS renormalization in FeSi in
the vicinity of indirect gap in the 3d-band was also deduced from tunnelling spectra [19] and
high-resolution angle-resolved photoemission data [26]. The resonance picture is in agreement
with the general classification schema of Kondo systems [27].

Within the framework of our approach it is possible to evaluate an effective mass m∗(T ≈
200K) of carriers in the FeSi Hubbard bands at temperatures above the MIT with the help
of relation m∗ = e〈τe-ph〉/µn,p (〈τe-ph〉 is the relaxation time). For the estimation of 〈τe-ph〉
the value of the polarised neutrons scattering linewidth Γ ≈ h̄/〈τe-ph〉 ≈ 3–4meV [28] can be
used giving 〈τe-ph〉 ≈ 1.7 · 10−13 s. The similar magnitude of 〈τe-ph〉 can be obtained from the
linewidth of optical phonons [23]. As a result, taking µn,p ≈ 4–6 cm2/V · s [8], one can find the
effective mass of charge carriers in the intrinsic conductivity region m∗(T ≈ 200K) ≈ 50m0.

For quantitative estimations of the radius of the short-distance spin polaronic states in the
FeSi cubic lattice, the effective mass and the activation energy of conductivity and the Hall
coefficient Eex ≈ δ ≈ 6meV can be inserted into the expression ap = h̄/

√
2Eexm∗(200K) that

gives ap ≈ 3.5 Å. On the other hand, the ap value in the vicinity of the Mott-Hubbard metal-
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insulator transition can be calculated by using the formula ap ≈ (2πU/2D)1/5 ≈ 1.75a ≈
4.8 Å [15] (the value of a = rFe-Fe ≈ 2.75 Å is equal to the shortest Fe-Fe distance in a cubic
crystalline structure of FeSi). Both independent evaluations of the localisation radius ap are
in good agreement, thus giving additional arguments in favour of the proposed interpretation.
To develop further the present approach, the magnetic phase transition in FeSi near Tc ≈ 8K,
which was detected earlier in [8], can be attributed to a magnetic ordering of the short-distance
spin polarons in the regime of a low charge carriers concentration (5.8 · 1017 cm−3). However,
full description of the nature of the FeSi ground state requires additional measurements of
quasioptical spectra in the far infra-red region (< 50 cm−1), in combination with precision
measurements of the magnetic properties of iron monosilicide single crystals at liquid-helium
temperatures.

In summary, we have found that the Seebeck coefficient anomalies in the so-called Kondo-
insulator compound FeSi at liquid-helium and intermediate temperatures can be attributed
to the transition from an intrinsic conduction behaviour to the regime of strong Hubbard
correlations in this unusual narrow-gap semiconductor. It has been shown that the most
complete and consistent interpretation of the iron monosilicide magnetic, transport and optical
properties can be given in the framework of the one-band Hubbard model.
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