

UvA-DARE (Digital Academic Repository)

The electronic structure of the conducting band of K3C60 studied by photoemission and electron energy-loss spectroscopy

Cummins, T.R.; Armbruster, J.F.; Golden, M.S.; Knupfer, M.; Romberg, H.A.; Sing, M.; Fink, J.

DOI 10.1016/0921-4534(94)92466-X

Publication date 1994

Published in Physica C

Link to publication

Citation for published version (APA):

Cummins, T. R., Armbruster, J. F., Golden, M. S., Knupfer, M., Romberg, H. A., Sing, M., & Fink, J. (1994). The electronic structure of the conducting band of K3C60 studied by photoemission and electron energy-loss spectroscopy. *Physica C*, *235-240*, 2491-2492. https://doi.org/10.1016/0921-4534(94)92466-X

General rights

It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations

If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

The electronic structure of the conduction band of K_3C_{60} studied by photoemission and electron energy-loss spectroscopy

T. R. Cummins^a, J. F. Armbruster^a, M. S. Golden^b, M. Knupfer^b, H. A. Romberg^a, M. Sing^a and J. Fink^b ^aKernforschungszentrum Karlsruhe, Institut für Nukleare Festkörperphysik, Postfach 3640, D-76021 Karlsruhe, Germany

^bInstitut für Festkörperforschung, IFW Dresden eV, Postfach 16, D-01171 Dresden, Germany

Temperature-dependent photoemission spectra of the conduction band of superconducting K_3C_{60} confirm an earlier observation of a continuous transfer of spectral weight from the Fermi level (E_f) to higher binding energies with increasing temperature. This suggests the occurrence of a metal to non-metal transition at elevated temperatures. Electron energy-loss spectroscopy (EELS) in transmission measurements of the conduction band plasmon of K_3C_{60} show negligible dispersion as a function of the momentum transfer (q), thus deviating from the behaviour expected for a simple metal and from some recent theoretical predictions.

1. Introduction

Previous photoemission spectroscopy (PES) and EELS studies of the A_3C_{60} fullerides (A=K, Rb) have provided valuable information on the normal state electronic structure of these new high temperature superconductors.¹ Here we further examine two points: the temperature dependence of the t_{1u} -derived conduction band (CB) spectral weight observed in PES and the *q*-dependence of the charge carrier excitation as seen by EELS in transmission.

2. Experimental

For PES, films of global stoichiometry $K_{2,2}C_{60}$ (~150Å thickness) were prepared in-situ on freshly evaporated gold substrates. The film composition was chosen to avoid possible premature formation of K_4C_{60} .² Photoemission experiments were conducted using He I radiation (21.22eV) with a 60meV. total energy resolution of The spectrometer, and the preparation of the freestanding films (thickness ~1000Å) for EELS in transmission experiments are described elsewhere.³ The energy resolution was set to 90meV and the momentum resolution to 0.04Å⁻¹.

3. Results and Discussion

The photoemission profiles of $K_{2,2}C_{60}$, within ~2eV of E_F , across the temperature range 15-425K are displayed in Fig. 1. In this energy region the spectral weight is due exclusively to K_3C_{60} as a consequence of phase separation in the K_xC_{60} system, and the negligible spectral contribution of

 α -C₆₀ in this energy window.^{1,4} As has been observed in previous studies,⁵ the width of the CBderived spectral weight is ~1.3eV which is significantly greater than predicted from LDA band structure calculations.⁶ The anomalous width and corresponding low density of states (DOS) at $E_{\rm F}$ arises because the ejected photoelectron couples to molecular phonon modes of the C_{60} balls and the collective excitation of the charge carriers, thus giving rise to satellites at ~0.25 and ~0.6eV binding energies (BE), which are seen in the low temperature spectra of Fig. 1. On increasing the temperature there occurs a spectral weight transfer from states at $E_{\rm F}$ to higher BE. Such a transfer of spectral weight has been previously observed in PES recorded at 425K of both Rb_3C_{60} and K_3C_{60} . The new results for K_3C_{60} in Fig. 1 demonstrate that the spectral weight transfer occurs continuously as a function of temperature. The observed shift of spectral weight cannot be due solely to a changing Fermi-Dirac distribution as a function of temperature and, since the changes are completely recyclable, they are not a result of temperaturedependent phase transitions. An alternative suggestion for the spectral weight transfer is of a temperature-dependent metal to non-metal (MN) transition. A MN transition could be driven by Anderson localisation induced by increased disorder at higher temperatures. No direct evidence for the non-metallicity of the A_3C_{60} phases at high temperatures exist, although in recent studies by Stepniak al.⁷ an increase was observed in the resistance of a Rb_{2.8}C₆₀ thin film for temperatures between ~330 and 350K. More measurements of physical properties as a function of temperature are greatly desired to resolve this question.

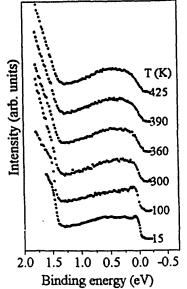


Figure 1. PES spectra of the conduction band of K_3C_{60} in the temperature range 15-425K.

Additional insight on the electronic structure of the conduction band of K_3C_{60} can be gained by EELS measurements of the valence band excitations. Here we report the loss function between 0 and 2eV as a function of q which is shown in Fig. 2. At low q, the features observed at ~0.6eV and ~1.2eV correspond to the charge carrier plasmon and interband transitions between the partially filled t_{1u} -derived band and the t_{1g} -derived bands, respectively. In keeping with earlier data on C_{60}/C_{70} mixtures,³ for increasing q up to 0.5Å⁻¹, there is negligible dispersion of the plasmon energy, although the intensity of both features decreases. For a simple free electron gas the conduction band plasmon energy increases quadratically with q, resulting in a shift of ~340 meV for changes of q to 0.4Å⁻¹. This behaviour is not seen in the q dependent data of K_3C_{60} in Fig. 2. Recently some theoretical work⁸ have predicted an unusual dependence of the plasmon energy as a function of q. In calculations based on the random-phase-approximation (RPA) a prediction is made for a negative plasmon dispersion law in K_3C_{60} . For q changes up to 0.5Å⁻¹ shown in Fig. 2, the magnitude of the predicted negative dispersion is ~150meV. The data presented in Fig. 2 demonstrate that this negative dispersion law appears not to hold.

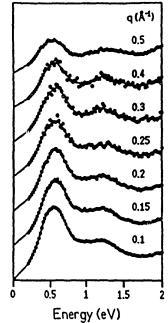


Figure 2. *q*-dependent EELS measurements of the loss function of K_3C_{60} .

4. Conclusions

The t_{1u} -derived spectral weight in photoemission of A_3C_{60} displays an anomalous temperature dependence with a spectral weight transfer to higher BE at high temperatures which suggests a temperature-dependent metal to non-metal transition, perhaps induced by disorder. Charge carrier plasmon dispersion in the *q*-dependent loss function of K_3C_{60} is less than 20meV for *q* values up to 0.5Å⁻¹, in contrast with that expected for a simple metal. This behaviour does not support a recent theoretical prediction of a negative plasmon dispersion law.

5. References

- ¹M. Merkel et al. Phys. Rev. B47 (1993) and references there-in
- ²P. J. Benning et al. Phys. Rev. **B48** (1993) 9086
- ³E. Sohmen, J. Fink and W. Krätschmer, *Europhys. Lett.* **17** (1992) 51, E. Sohmen and J. Fink, *Phys. Rev.* **B47** (1993) 14532
- ⁴J. H. Weaver *et al. J. Phys. Chem. Solids* **53** (1992) 1707
- 5. 11. Weaver et al. J. Phys. Chem. Solias 55 (1992) 1
- ⁵M. Knupfer et al. Phys. Rev. **B47** (1993) 11470
- ⁶ for example, S. Saito and A. Oshiyama, *Phys. Rev. Lett.* **66** (1991) 26327
- ⁷F. Stepniak et al. Phys. Rev. **B48** (1993) 1899
- ⁸V. V. Kresin and V. Z. Kresin, Phys. Rev. **B49** (1994) 2715