

UvA-DARE (Digital Academic Repository)

Crystallization on a sphere

Sloot, P.M.A.; ter Laak, A.; Pandolfi, P.; van Dantzig, R.; Frenkel, D.

Publication date 1993

Published in

The 4th international conference physics computing

Link to publication

Citation for published version (APA):

Sloot, P. M. A., ter Laak, A., Pandolfi, P., van Dantzig, R., & Frenkel, D. (1993). Crystallization on a sphere. In R. A. de Groot, & E. J. Nadrachal (Eds.), *The 4th international conference physics computing* (pp. 471-472). World Scientific.

General rights

It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations

If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

Download date: 10 Nov 2022

CRYSTALIZATION ON A SPHERE: PARALLEL SIMULATION ON A TRANSPUTER NETWORK

P.M.A. SLOOT *

Department for Mathematics and Computer Science, University of Amsterdam, Kruislaan 403 1098 SJ Amsterdam, The Netherlands

A. TER LAAK

Edinburgh Parallel Computing Center, Edinburgh EH9 3JZ, United Kingdom

P. PANDOLFI

Università "La Sapienza", Facoltà di Fisica, Rome, Italy

R. VAN DANTZIG

NIKHEF, PO Box 41882, 1009 DB Amsterdam, The Netherlands

Received (received date)
Revised (revised date)

First results are presented of a continuous optimization approach to find equilibrium configurations of $N (< 10^4)$ particles with Lennard-Jones interaction, moving on a sphere with variable radius. The results may help to understand the structure of spherical biomembrane vesicles showing "quantum" jumps in their size distribution.

1. Introduction

Experiments by Bont et al. have shown that sizes of in-vitro assembled spherical biomembrane vesicles tend to peak at values with ratio of adjacent terms $\sqrt{2}$. Two such interwoven geometric series were found. We present first calculations simulating a structural organization of particles on a sphere relevant for the size quantization phenomenon.

2. Vesicle Formation

When biomembrane material (lipid and protein) after fragmentation reconstitutes a bilayer, spherical vesicles are formed. We restrict ourselves to the lipid arrangement.

Thermodynamically, lipid molecules immersed in a water medium decrease the local entropy while the mean free energy is increased. A bilayer sheet forms spontaneously driven by co-operative molecular forces while minimizing the free energy. The lipids are densely packed and consequently ordered. Bilayer fragments tend to curve to decrease edge energy. Ultimately it closes forming a vesicle.

3. 2D Simulation model for vesicle structure

^{*}Author to whom all correspondence should be addressed. E-mail: peterslo@fwi.uva.nl

The above thermodynamic problem involves highly inelastic non-linear phenomena in three dimensions (3D). There is no realistic way to solve such a problem in closed form. The crux of our approach is the assumption that the densely packed glycerol headgroups of the inner lipidsublayer form a (quasi)crystalline shell, acting as 'backbone' determining the vesicle size. The simulation of the formation (energy minimization) of the backbone is a spherical 2D problem for particles with a short range attraction and inner repulsive core (Lennard Jones (LJ) interaction). The problem resembles spreading N points homogeneously over a spherical surface.

4. Computational Model

In optimization, when dealing with many local minima, a well established approximation technique is the Simulated Annealing (SA) method. We investigated both algorithmic and functional decomposition strategies. We implemented a systolic parallel Fast SA on a ring of Transputers.³ Further speed-up was achieved by decomposing the energy function calculation. A SA-step consists of perturbing the system and calculating the resulting energy difference (ΔE) , this takes 2N calculations. A master processor generates Markov chains and assigns ΔE -calculation jobs to processors in a slave farm. We arrive at a hybrid topology consisting of processors connected in a ring with farms of slaves attached to them.

5. Results

We performed a large number of SA experiments. Typical results are shown below. Energy minima are observed related to the symmetry of the spherical arrangements.

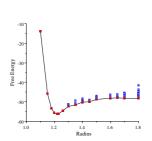


Fig. 1. Example of energy behavior as a function of radius for 20 LJ particles

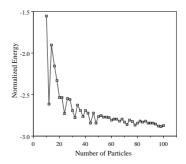


Fig. 2. Simulation of (truncated) LJ SA reveals energetic preferences

Extension to configurations with $N > 10^3$ and analysis of the crystallization patterns and their symmetries are planned for the near future.

References

- 1. W.S. Bont, J. Theor. Biol. 74 361 (1978) and Eur. J. Cell. Biol. 39 485 (1985).
- $2.\,$ R. van Dantzig, P.M.A. Sloot and W.S. Bont, to be published.
- A. ter Laak, L.O. Hertzberger and P.M.A. Sloot, in Transputer Systems Ongoing Research, ed. A.R. Allen (IOS Press, Amsterdam, 1992) p. 251.