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ABSTRACT

Context. Space missions like CoRoT and Kepler have provided numerous new observations of stellar oscillations in a multitude of
stars by high precision photometry. The identification of the photometrically observed oscillations is, however, difficult and requires
detailed model calculations of pulsating stars.
Aims. This work compares the observed rich oscillation spectrum of the rapidly rotating B3 IV star HD 43317 with the first results
obtained by a new method to calculate unstable oscillation modes in rapidly rotating stars in order to see whether some of the observed
modes can be identified.
Methods. The new numerical method consists of two parts. We first search for modes resonant with a prescribed forcing symmetry
by moving through relevant regions of complex frequency space and monitoring any increase of the stellar response to the applied
forcing and zooming in onto the resonance. These resonant non-adiabatic 2D-solutions are then fed into a 2D relaxation code with
the same equations but without forcing terms. The complex oscillation frequency used in the forcing is now no longer prescribed, but
added as an extra unknown. The corresponding free oscillation mode is usually obtained after a few (<10) iterations with only minor
adjustment of the complex oscillation frequency. To compare with the observed light variations we calculate the “visibility” of the
found unstable oscillation modes, taking into account the cancellation of the various parts of the radiating oscillating stellar surface
as seen by the observer.
Results. The frequencies of unstable axisymmetric g-modes, which have the highest visibility, appear to nearly coincide with the
observed largest amplitude photometric variations of HD 43317, making an identification of the latter oscillations as m = 0 modes
plausible. The identification of m = 1 g-modes is less straightforward, while many of the unstable even m = 2 g-modes may
correspond to observed weaker photometric variations. Only one unstable r-mode has non-negligible visibility. The observationally
inferred almost equidistant period spacings of ten, respectively seven, oscillation frequencies for HD 43317 cannot be reproduced.

Key words. stars: rotation – stars: oscillations

1. Introduction

The Kepler (Borucki et al. 2009) and CoRoT (Auvergne et al.
2009; Baglin et al. 2009) space missions have resulted in a
wealth of detailed new pulsation data for an extended sample
of stars. Pápics et al. (2012) presented a list of oscillation fre-
quencies obtained by 5 months of photometric monitoring of the
B3 IV star HD 43317 by the CoRoT satellite combined with
high resolution and high S/N spectra obtained with the ground
based HARPS instrument of ESO. They conclude from the spec-
troscopic variability that for this star the rotation frequency Ωs
is about 50% of the critical break-up speed. Asteroseismic stud-
ies of rapidly rotating stars are complicated by the fact that the
Coriolis force makes the set of oscillation equations unsepara-
ble into an r and θ part. A possible approach (Unno et al. 1989)
is to approximate the full oscillation solution by a truncated se-
ries of spherical harmonics to describe the r and θ dependence
and solve a coupled set of differential equations by a shooting
method. One may assume a ϕ dependence of eimϕ with given m,
since the unperturbed star is assumed spherically symmetric.
However, many of the observed oscillation frequencies with sig-
nificant amplitudes in Pápics et al. (2012) fall in the so-called
“inertial-range” with |σ/(2Ωs)| < 1, for which the correspond-
ing oscillation modes cannot be adequately described by super-
position of only a small number of spherical harmonics, which
makes this method rather cumbersome.

Several papers describing new developments with oscilla-
tion codes have appeared recently, see Ouazzani et al. (2012),
Valsecchi et al. (2013) and Townsend & Teitler (2013). In this
paper another approach is used whereby an iterative relaxation
calculation (like the Henyey codes used for stellar evolution cal-
culations) is performed on a fine (r, θ) grid using a 2D non-
adiabatic code in which the Coriolis force (first order in Ωs) is
fully taken into account but the centrifugal force (being second
order in Ωs) is neglected. We use a two-step procedure where
we first search in complex frequency space for strong stellar
responses using a prescribed forcing as done earlier (Savonije
2005). After zooming in to these resonances we now use in the
second step the thus obtained resonant response as input for the
relaxation code (in which the forcing terms have been taken out)
which iterates until the solution converges to the corresponding
free oscillation mode. In this way it is relatively easy to find free
oscillation modes with a relaxation code. A problem (even with
1D) relaxation codes has always been to find a suitable starting
model from which the oscillation code is able to succesfully con-
verge the iterative sequence, e.g. Unno et al. (1989). With the
current code this is generally no longer a problem. The relax-
ation method where the oscillation equations are solved as dif-
ference equations on a 2D grid has the advantage that the higher
order harmonics induced by the Coriolis force are included in
the solution. Evidently it requires a grid with adequate resolu-
tion which implies use of considerable computer power.
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Although the inferred stellar parameters (Pápics et al. 2012)
imply a rapid rotation speed of Ωs/Ωc = 0.5 that would require
inclusion of the centrifugal distortion (∝(Ωs/Ωc)2) of the star, a
spherically symmetric star is used as input model for the pul-
sation calculations. Note in this respect that the non-spherical
centrifugal distortion of the star induces baroclinic currents in
the otherwise stably stratified radiative layers which can signif-
icantly perturb the angular momentum profile. This is a signifi-
cant complication which makes it difficult to produce an unper-
turbed non-spherical equilibrium structure, but see the work by
Espinosa Lara & Rieutord (2013) for recent developments.

In the current oscillation calculations the Coriolis force is
fully taken into account as this force is required to simulate the
direct first order effect of rotation on stellar pulsations. We study
the oscillation modes and their linear stability in a B-star rotat-
ing withΩs/Ωc = 0.5 in the frequency range where the strongest
photometric amplitudes are observed in HD 43317 (up to 4.5 cy-
cles per day in the observer’s frame).

1.1. Stellar input model

For a first test of this new code we consider a uniformly ro-
tating main sequence star of 5.4 M� with radius Rs = 3.8 R�,
Teff = 1.70 × 104 K and Z = 0.014 as a model for the B3 IV
star HD 43317, in line with data given in Pápics et al. (2012).
The unperturbed (1D) stellar model used as input model for the
oscillation calculations was obtained with the freely obtainable
stellar evolution code MESA1 (Paxton et al. 2013) using stan-
dard OPAL opacities and no overshooting from the convective
core. The 5.4 M� model has a convective core that extends to
r/Rs = 0.118 and a shallow convective surface shell between
r/Rs = 0.994−0.996.

2. Basic oscillation equations

We use spherical coordinates (r, θ, ϕ) with the origin at the star’s
centre, whereby θ = 0 corresponds to its rotation axis. We give
here the forced version of the oscillation equations (with the
forcing terms S or T ) used to calculate the input model for the
relaxation code (where these terms are set equal to zero).

Let us denote the velocity perturbation and displacement
vector in the star by u′ and ξ with u′ = iσ ξ and denote perturbed
Eulerian quantities like pressure P′, density ρ′, temperature T ′,
and the energy flux vector F′ with a prime. The linearized hy-
drodynamic equations governing the non-adiabatic oscillations
of a star in the corotating frame are (Unno et al. 1989):[(
∂

∂t
+ Ωs

∂

∂ϕ

)
v′i

]
ei + 2Ωs × u′ +

1
ρ
∇P′ − ρ

′

ρ2
∇P = SF (1)

(
∂

∂t
+ Ωs

∂

∂ϕ

)
ρ′ + ∇ ·

(
ρu′

)
= 0, (2)

(
∂

∂t
+ Ωs

∂

∂ϕ

) [
s′ + ξ · ∇s

]
= − 1
ρT
∇ · F′, (3)

F′

F
=

(
dT
dr

)−1 [(
3T ′

T
−
ρ′

ρ
−
κ′

κ

)
∇T + ∇T ′

]
(4)

where we have added the forcing term SF , while ei are the unit
vectors of our spherical coordinate system, κ denotes the opac-
ity of stellar material and s its specific entropy. These perturba-
tion equations represent, respectively, conservation of momen-
tum, conservation of mass and conservation of thermal energy,

1 http://mesa.sourceforge.net/

while the last equation describes the perturbed radiative energy
diffusion. For simplicity we adopt the usual Cowling (1941) ap-
proximation: i.e. we neglect perturbations to the gravitational
potential caused by the star’s oscillatory distortion. For the os-
cillation modes studied here this is an adequate approximation.

The unperturbed stellar model being spherically symmetric,
we may choose a fixed value of the azimuthal index m (plus
the oscillation frequency σ relative to the inertial frame) and
separate the ϕ- and time part in the oscillation equations given
above. Thus we may write the solution for the displacement vec-
tor etc. as

ξ(r, θ, ϕ, t) = ξ(r, θ) ei(σt−mϕ). (5)

From now on the displacements and Eulerian perturbations are
considered functions of r and θ only and the above overline on
ξ(r, θ) and the factor ei(σt−mϕ) will be omitted in the equations.
Note that, in contrast to the usual practice, we consider m to be
always positive. Then σ > 0 corresponds to wave motion in the
positive ϕ direction and negative σ corresponds to retrograde
wave motion in the inertial frame.

After defining a certain value for the azimuthal index m
the star is forced with a spherical harmonic component (l,m)
whereby the order l is chosen as the smallest integer for the
adopted equatorial symmetry (either odd or even). The oscilla-
tion frequency in the corotating frame is σ = σ−mΩs and nega-
tive/positive for retrograde/prograde modes in the frame corotat-
ing with the star. Obviouslyσ = 0 corresponds to σ/m = Ωs, i.e.
the observer would see a mode with pattern speed equal to the
angular rotation rate of the star. Assuming a uniformly rotating
star with angular velocity Ωs, the radial, θ and ϕ components of
the equation of motion can be expressed as

σ2ξr + (2iσΩs sin θ) ξϕ −
1
ρ

∂P′

∂r
+

1
ρ

dP
dr

(
ρ′

ρ

)
= Sr (6)

σ2ξθ + (2iσΩs cos θ) ξϕ −
P
ρ

1
r
∂

∂θ

(
P′

P

)
= Sθ (7)

σ2ξϕ − 2iσΩs (sin θ ξr + cos θ ξθ) +
im

r sin θ
P
ρ

(
P′

P

)
= Sϕ. (8)

The spheroidal forcing terms on the right hand side of
Eqs. (6)−(8) are applied in case of a predominantly spheroidal
(g- or p-) mode and are defined (using an arbitrary scaling con-
stant C) as

Sr = C l
rl−1

ρ
Pm

l (θ)

Sθ = C
rl−1

ρ

∂

∂θ
Pm

l (θ); Sϕ = −i m C
rl−1

ρ

Pm
l (θ)

sin θ
·

When a predominately toroidal (r-)mode is studied the horizon-
tal forcing terms Sθ and Sϕ in Eqs. (7) and (8) are (adequately)
replaced by Tθ and Tϕ with

Tθ = −i m C
rl′−1

ρ

Pm
l′ (θ)

sin θ
; Tϕ = −C

rl′−1

ρ

∂Pm
l′ (θ)

∂θ

where for even (with l − m even) modes l′ = l + 1 and for odd
modes (with l − m odd) l′ = l − 1.

These forcing terms are applied to search for resonant modes
by varying the complex forcing frequency in the direction of
maximum response. The found resonant modes are then used
as input to obtain the corresponding free oscillation modes.
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The equation of continuity (2) can be expressed as

ρ′

ρ
+

1
r2ρ

∂

∂r

(
ρr2 ξr

)
+

1
r sin θ

∂

∂θ
(sin θ ξθ) −

i m
r sin θ

ξϕ = 0. (9)

After applying the thermodynamic relation

δs =
P
ρT

1
Γ3 − 1

(
δP
P
− Γ1
δρ

ρ

)

(where δs denotes a Langrangian entropy perturbation) in terms
of Chandrasekhar’s adiabatic exponents Γ1 and Γ3, the energy
Eq. (3) can be rewritten

1
Γ1

P′

P
−
ρ′

ρ
−A ξr = iΛ

[
∇ ·

(
F′

F

)
+

d ln F
dr

(
F′r
F

)]
(10)

where F is the unperturbed (radial) energy flux. The
Schwarzschild discriminant A and characteristic diffusion
length Λ are defined by:

A = d ln ρ
dr
− 1
Γ1

d ln P
dr

; Λ =
(Γ3 − 1)
Γ1

F
σP
·

The radial and horizontal components of the perturbed energy
flux follow from Eq. (4) as

F′r
F
=

(
d ln T

dr

)−1
∂

∂r

(
T ′

T

)
− (κT − 4)

(
T ′

T

)
−

(
κρ + 1

) (ρ′
ρ

)
(11)

F′θ
F
=

(
d ln T

dr

)−1 1
r
∂

∂θ

(
T ′

T

)
(12)

F′ϕ
F
=
−i m

r sin θ

(
d ln T

dr

)−1 (
T ′

T

)
· (13)

After substituting F′θ and F′ϕ in the divergence term of Eq. (10)
and using the equation of state (14) (where the χ’s stand for the
usual logarithmic partial derivatives of the pressure and χμ =
χρ

d ln ρ
dr + χT

d ln T
dr −

d ln P
dr is of importance in the layers outside

the convective core with a composition gradient):

P′

P
= χρ

ρ′

ρ
+ χT

T ′

T
+ χμ ξr (14)

to eliminate ρ′ from Eqs. (6)−(11) we are left with six equations
in the six unknowns (ξr/Rs), (ξθ/Rs), (ξϕ/Rs), (P′/P), (T ′/T ) and
(F′r/F).

In convective regions, i.e. in the convective core and convec-
tive shell at the surface of our 5.4 M� B-star, we add (turbulent)
viscous terms

iσ
ρ r2

∂

∂r

(
ρ ζ r2 ∂ξi

∂r

)
+

i ζ σ
r2 sin θ

∂

∂θ

(
sin θ

∂ξi
∂θ

)
(15)

to the equations of motion (6)−(8) where the subindex i stands
for r, θ or ϕ and the kinematic viscosity ζ is calculated with
simple mixing length theory. The mixing length λ = 1.5 HP

and convective velocities are taken from the stellar evolution
code MESA that was used to calculate the unperturbed equi-
librium model. The kinematic viscosity ζ is corrected (reduced)
for timescale mismatch between convective- and oscillatory mo-
tions according to the prescription of Goldreich & Keeley (1977)
and attains a maximum value of about 1013 cm2/s near the stel-
lar centre. The turbulent viscous terms in the convective regions
tend to damp the induced very short wavelength oscillations
(Savonije & Papaloizou 1997).

2.1. Boundary conditions

We apply the usual boundary conditions e.g. Unno et al. (1989)
at the stellar centre. At the stellar surface we apply Stefan-
Boltzmann’s law δFr

F = 4 δTT and put δPP = 0. At the stellar equa-
tor we apply the adopted (anti)symmetry of (odd) even modes,
at the rotation axis we use the expansion corresponding with
the adopted spherical harmonics (or their derivative) used in the
forcing.

2.2. Numerical method

Equations (6)−(11) are expressed as finite difference equations
on a (r, θ) grid with 1512 radial grid points and 130 grid points
in the interval θ = 0 → 1

2 π. The solution in the southern hemi-
sphere follows from the adopted parity of the studied oscillation
mode. In the radial direction the MESA code’s staggered mesh is
adopted: two cell boundaries where we define ξ and F′r, while P′

and T ′ are defined at the cell centre in between. In the numerical
procedure three grid levels (both for cell centres and boundaries)
are used to allow treatment of second order derivatives in the vis-
cosity terms and the energy diffusion equation. In the θ direction
we use an equidistant mesh, again with three levels per cell to
allow the treatment of second order derivatives.

The equations of motion and (radial) flux equation are evalu-
ated at the cell boundaries, while the equations of continuity and
energy are evaluated at cell centres. Starting (at radial level 2)
and applying the 6 or 7 (relaxation version of code) difference
equations by moving from the rotation axis towards the equator
and using the boundary conditions at the centre all variables at
radial level 1, (i.e. r = 0) can be eliminated. By matrix inver-
sions one can set up relations between the unknown perturba-
tion variables at radial level 2 and 3 until the stellar equator is
reached. By finally applying the known parity of the oscillation
to eliminate the unknown perturbations at the gridpoint beyond
the equator it is possible to express each perturbation variable at
radial level 2 in terms of (all) the variables at radial level 3. One
can now repeat the same procedure from rotation axis to stellar
equator at one higher radial level and so on until the surface is
reached. After applying the surface boundary conditions for the
last stride from rotation axis to equator we obtain the solution
at the equator for r = Rs. By backsubstitution in the stored re-
currence relations one can work back in reverse order to find the
perturbations throughout the 2D stellar oscillation model.

For a measure of the oscillatory response to the forcing the
pressure perturbation is integrated over the upper hemisphere of
the star:

R(σ) =
4 π
Ms

∫ Rs

Rcc

∫ π/2

0
r2 ρ(r)

(
P′(r, θ)

P(r)

)
Pm

l (θ) sin θ dθ dr

with Rcc the convective core boundary; l and m correspond to the
applied forcing. By stepping through frequency space and each
time recalculating |R| until a maximum response is passed we
search for resonances. We then zoom in onto the resonance and
use the resonant solution as input for the relaxation code. For this
we use the same oscillation equations but without forcing terms
and consider the complex oscillation frequencyσ as an extra un-
known, thereby introducing non-linear σ terms. In most cases it
requires about ten iterations to converge to the free oscillation
mode. The sign of the imaginary part of σ determines whether
the found mode is stable (Im(σ) > 0) or not (Im(σ) < 0). The
code was written in Fortran 90 and parallelized to work on mul-
ticore machines. On a 16 core node of SARA’s national compute
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cluster LISA (Amsterdam) the code takes about 3 (4) minutes to
calculate one iteration for the forced (free) version of the code.

2.3. Visibility (V) of a mode

Since the observations with CoRoT and Kepler deliver detailed
photometric information of pulsating stars it is desirable to have
a measure of the brightness of the unstable oscillation modes
found with our new code. The actual amplitude of the calcu-
lated modes can not be determined without greatly increasing
the scope and computer requirements of the study by introduc-
ing nonlinear effects and coupling between oscillation modes.
Because this is beyond the scope of the current study we have
to use a simpler way to compare with the observations. There
is another important factor that determines the photometric vari-
ability: the contribution by the various radiating oscillating sur-
face regions partially cancel, depending on the type of mode and
this visibility effect can be easily estimated and used to discrim-
inate between different modes and compare observations with
the calculated modes. Recently Reese et al. (2013) have also de-
fined and calculated a (more refined) visibility of modes. They
have taken the stellar flattening into account, but their mode cal-
culations are adiabatic. We use the diffusion Eq. (4) for radia-
tive energy transport (or mixing length theory for convective
energy transport) for a fully non-adiabatic treatment up to the
stellar “surface” and apply (Sect. 2.1) Stefan-Boltzmann’s law
δFr
F = 4 δTT at the outer boundary, neglecting details of the stellar

atmosphere.
First the (complex) perturbed radial flux is normalized for

the particular mode by dividing it by the maximum modulus at-
tained at some θ-value. Suppose the observer’s inclination angle
is i and its azimuthal position angle is given by ϕobs = 0. At a
point (θ, ϕ) on the stellar surface the time-dependent real value
of the Lagrangian perturbation of the radial surface flux can be
expressed as
δFr (Rs, θ)

F (Rs)
= c1 (θ, ϕ) cos (σr t) + c2 (θ, ϕ) sin (σr t)

with σr = Re(σ) is the real part of the oscillation frequency and

c1 (θ, ϕ) = Re

(
δFr (Rs, θ)

F (Rs)

)
cos (mϕ) + Im

(
δFr (Rs, θ)

F (Rs)

)
sin (mϕ)

c2 (θ, ϕ) = Re

(
δFr (Rs, θ)

F (Rs)

)
sin (mϕ) − Im

(
δFr (Rs, θ)

F (Rs)

)
cos (mϕ).

Integrating (numerically) over the area of the stellar hemisphere
visible for the observer and dividing by the effective area of the
stellar disc we obtain

I = 1
π

∫ ∫
[c1 cos (σrt) + c2 sin (σrt)] cos γ sin θ dθ dϕ

with cosγ =
[
cos i cos θ + sin i sin θ cosϕ

]
the projection factor.

We rewrite this integral as

I = C1 cos (σr t) + C2 sin (σr t) = V cos (σr t + α)

where α is a phase factor. The visibility of the mode is defined as
the oscillation amplitude (by normalization a number between 0
and 1)

V =
√

C2
1 +C2

2 . (16)

In this paper we adopt an inclination i = 25 degrees for the
observer, as estimated for the star HD 43317 by Pápics et al.
(2012). The largest visibility (0.54) occurs for the odd m = 0
g-mode with 19 radial nodes and frequeny 1.09 cpd. The radial
nodes are counted for a fixed value of θ.

Table 1. Frequency ranges where unstable modes are found: respec-
tively in stellar frame (in units of Ωc) and after ; in inertial frame (in
cycles per day).

(l τm) σ/Ωc > 0; cpd σ/Ωc < 0; cpd
(100) (1.58:0.34); (4.32:0.93) ...
(200) (1.69:0.33); (3.63:1.42) ...
(101) (0.61:0.52); (3.02:2.79) (−1.26:−0.55); (−2.08:−0.14)
(201) (1.12; 0.38); (4.43:2.40) (−1.19:−0.62); (−1.89;−0.34)
(211) ... (−0.3273); (0.467)
(202) (0.40:0.33); (3.81:3.63) (−1.31:−0.51); (−1.54:1.32)
(302) (0.58:0.43); (4.31:3.89) (−1.00 −0.69); (−0.01:0.83)
(312) ... (−0.28:−0.25); (1.97:2.03)

Notes. We have searched no further than �4.5 cpd in the inertial frame.
Positive or negative frequency values correspond to prograde or retro-
gade wave motion in stellar/inertial frame. The mode coding (100) etc.
is defined in Sect. 3.1.

3. Results

Stability calculations were performed for oscillation modes with
m-values of 0, 1 and 2 focussed on the frequency range <4.5 cpd
in the inertial frame where the brightest lines occur. Table 1
shows the frequency ranges where unstable modes are found in
both the stellar and inertial frame. From now on all frequencies
σ in the corotating frame are listed in units of the critical rota-
tion frequencyΩc =

√
GM2

s /R3
s . Frequencies listed as cycles per

day (cpd) are always in the inertial frame. All plots correspond
to free oscillation modes, unless stated otherwise (Fig. 3).

3.1. Used coding (l, τ, m) for the oscillation modes

As indicated above we apply forcing terms defined by spherical
harmonic indices (l,m) in the oscillation equations and search
for resonances with modes compatible with the thus imposed
behaviour near the rotation axis and symmetry about the stellar
equator. For a given m-value and adopted parity at the equator
we choose for the applied forcing the lowest compatible l-value,
for example for m = 1 we choose either l = 1 (even modes)
or l = 2 (odd modes). The oscillation of an odd m = 1 mode
includes components l = 2, 4, 6 etc. In the following modes will
be described by three numbers given in parentheses, like (202) or
(211) where the first number denotes the l-value and the third the
m-value of the initially applied forcing. The middle number (τ)
is either 0 (“spheroidal” forcing) or 1 (“toroidal” forcing). The
(211) mode is thus an odd r-mode with m = 1. We use the same
coding for the free oscillation modes as they have the same sym-
metries as the corresponding forced solution from which they
were derived. The perturbations, like P′/P or the components of
the displacement vector ξ, are complex quantities as they de-
scribe the amplitude and phase of the oscillation.

Our simple coding (l, τ, m) for the calculated modes indi-
cates the basic symmetries, but this gives no information about
the actual harmonic content of the mode. The Coriolis force gen-
erates components with higher l-values, see Fig. 1 and modifies
the gravity modes which become “gravito-inertial modes” and
contain in principle an infinite number of spherical harmonic
components l for a given m. In practice their number is evi-
dently limited by the grid resolution. For |σ| > 0.5 the consecu-
tive unstable g-modes with given m-value are often of different
harmonic content in the sense that the l-value of the dominant
(mass average over star) Fourier-Legendre coefficient (Cl)max
fluctuates (and the number of radial nodes jumps about) between
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Fig. 1. Modulus of the horizontal components ξθ (left panels) and ξϕ
(right panels) of the displacement vector versus θ/π at some radial
meshpoints in the intermediate region outside the convective core (up-
per panels) and near the stellar surface, including the convective shell,
(lower two panels) for a (200) g-mode with frequency 1.713 cpd in the
inertial frame. The arrow indicates the critical (co)latitude θc.

consecutive modes. However, for about |σ| < 0.5 the high radial
order components are heavily damped and consecutive unstable
modes are usually in monotonic radial order with a fixed dom-
inant l-value and produce the striking sequences of (100) and
(200) g-modes in Fig. 5.

In the figures showing components ξθ and ξϕ of the displace-
ment vector we plot the modulus of these complex quantities.

3.2. Gravito-inertial modes

For frequencies in the inertial range |σ| < 2Ωs gravity waves are
substantially modified by rotation and sometimes called gravito-
inertial waves. These waves can only propagate between the
critical (co)latitudes θc and π − θc, i.e. in the “equatorial belt”
of the rotating star. The critical (co)latitude θc is defined by
cos (θc) = σ/(2Ωs). In the sections below we will simply speak
of g-modes when we mean these rotationally modified gravity
modes.

Gravito-inertial waves were studied by Savonije et al. (1995)
and Papaloizou & Savonije (1997) in tidal forcing calcula-
tions of a massive ZAMS star. Dintrans et al. (1999) studied
gravito-inertial waves for a stably stratified spherical shell in the
Boussinesq approximation. In the latter study these waves were
shown to have attractors with focussing on the critical surfaces.
However, a small diffusion as found in a normal star cancels
their focussing power. Several new studies of rotational (iner-
tial) waves in fully convective or barotropic stars/planets have
appeared, see Papaloizou & Ivanov (2010), Ivanov & Papaloizou
(2010) and Rieutord & Valdettaro (2010).

Neiner et al. (2012) claim that gravito-inertial modes are ex-
cited by stochastic effects in the hot Be-star HD 51452 as the
κ-mechanism is not effective in such a hot star. They suggest
that the gravito-inertial modes found by Pápics et al. (2012) in
HD 43317 are also of stochastic nature. However, our current re-
sults show that in HD 43317 these g-modes can be driven by the
κ-mechanism.

Fig. 2. Modulus of the horizontal components (ξθ and ξϕ) of the dis-
placement vector versus θ/π at some radial meshpoints in the interme-
diate region outside the convective core (upper panels) and near the
stellar surface (lower two panels) for a (100) g-mode with frequency
σr = 1.0215 (outside the inertial range) in the stellar frame.

3.3. r-modes

The Coriolis force also enables the occurrence of r-modes,
first studied as purely toroidal modes in stars by Papaloizou
& Pringle (1978). Using the “traditional approximation” it was
discovered by Savonije (2005) that a class of r-modes (“quasi
g-modes”) show sufficient density and temperature variations
to be destabilized by the κ-mechanism. Townsend (2005) came
almost simultaneously with a similar analysis to the same con-
clusion, while Lee (2006) investigated the stability of these
“buoyant” r-modes in more detail with the method of spherical
harmonic expansions. We do find a sequence of unstable buoyant
r-modes in our calculations, in perfect radial order.

3.4. Short wavelengths in the stellar interior

As noted by Papaloizou & Savonije (1997) very short wave-
length response is excited in the convective core by tidal forc-
ing with frequencies |σ| < 2Ωc (“inertial range”). These iner-
tial waves can leak out of the core and excite short wavelength
gravity waves. It is interesting that also in the free oscillation so-
lutions the Coriolis force induces short wavelength oscillations
near the boundary of the convective core and in the intermediate
regions outside the convective core. We find that these waves can
propagate quite far out into the star, see Fig. 1. One may won-
der whether the forced solution that is used as input model is the
cause of the short wavelengths in the free oscillation solution.
To check this we applied a high viscosity ζ = 1.0 × 1020 cm2/s
throughout the star during the first iteration in which the com-
plex frequency σ is kept fixed. The high viscosity makes the
first iterated solution smooth like the disturbances in Fig. 2. But
the converged free solution appears independent of this smooth-
ing, again with a significant short wavelength component in the
stellar interior.

The short wavelength oscillations are limited to the g-mode
propagation cavity, i.e. the equatorial belt between the two criti-
cal latitudes. Further out for r/Rs > 0.5 they become weaker and
finally disappear near r/Rs � 0.7. This is far below the driving
region for the κ-mechanism which is located near r/Rs � 0.96
where T � 2 × 105 K.
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Fig. 3. Modulus of the horizontal components (ξθ and ξϕ) of the dis-
placement vector versus θ/π at some radial meshpoints in the stellar
surface region, including the convective shell, for the (100) g-mode
with σ = (0.3783,−0.29 × 10−5) corresponding to 1.033 cpd in the
inertial frame. The upper two panels depict the forced solution (with
a jump), the lower panels the corresponding free solution with a short
wavelength disturbance near θc and a tiny spike. The arrow indicates the
critical (co)latitude θc.

For frequencies just outside the inertial range, where the
Coriolis force is still significant, it generates higher order spher-
ical harmonic components but the short wavelengths are com-
pletely absent in the star, see Fig. 2.

3.5. Jump in ξh at critical latitude in surface layers
(with forcing)

For all studied oscillation modes with |σ| ≤ 2Ωs the solutions
with forcing show in the surface region an almost discontinuous
jump in the horizontal components of the displacement vector
at the critical latitude. For “buoyant” r-modes this jump occurs
at the outer boundary of the convective surface shell, while for
g-modes the jump is often generated at the shell’s inner bound-
ary. Figure 3 shows the horizontal components of the displace-
ments vector in the surface region of a (100) g-mode for both
the forced and free solution. Apparently the discontinuous be-
haviour at the critical latitudes is generated by the applied forc-
ing, it is absent in the free solutions. Terquem et al. (1998), in
their study of the l = m = 2 tides in a non-rotating solar type
star, explained the found horizontal displacement ξh’s tendency
for discontinuous behaviour near a convective boundary as the
consequence of the fluid becoming locally barotropic when the
Brunt-Väisälä frequency |N2| = 0. In the current calculations
with rotation the discontinuity (always focussed at the critical
latitude) is also generated at a convective boundary (of the sur-
face shell) and propagates towards the stellar surface. In the free
solutions the jump in ξh in the surface layers is absent, but for
g-modes ξh does often show in the layers beyond the convec-
tive shell small amplitude short wavelength disturbances near
the critical latitude θc and a spike or dip at θc.

3.6. Visibility of unstable modes

As noted above, the best one can do with linear stability calcula-
tions is to compare the mode’s “visibility” with observed photo-
metric amplitudes. A first study of non-linear mode coupling in

Fig. 4. Visibility integrals
∫

ck(θ, ϕ) cos(γ) sin(θ) dϕ versus θ/π. The
functions ck with k = 1, 2 are defined in Sect. 2.3. The considered
ranges of ϕ and θ correspond to the hemisphere visible for the observer
at i = 25 degrees. Shown are the results for a (100) and (200) axisym-
metric g-mode in the upper panels and a (211) and (312) r-mode in the
lower panels.

rotating B-stars has been made by Lee (2012) applying selection
rules for three mode coupling derived in a study by Schenk et al.
(2002). Non-linear interaction between an unstable mode and
two stable daughter modes will lower the unstable mode’s am-
plitude and can cause the excitation of the two (linearly) stable
modes (processes that are ignored in our calculations). Further
work is required to understand and apply non-linear interactions
between modes in a rotating star.

In the current work we can do no better than compare the
observed light variations with the visibility of the found unsta-
ble modes and see whether on this basis one can identify (some
of) the observed photometric variations. In Fig. 5 we have plot-
ted the photometric amplitudes (black lines) versus frequency
in the inertial frame, as determined by Pápics et al. (2012) and
superposed various symbols representing the here calculated vis-
ibility of unstable modes. As expected, the unstable modes with
the lowest m-values (m = 0 and m = 1) have the highest visi-
bility. For the adopted observer’s inclination angle of 25 degrees
the parity at the equator of a m = 0 or 1 mode makes hardly
any difference in its visibility. But in Fig. 5 it can be seen that
m = 2 even g-modes do have larger visibility than the odd g-
modes. Modes with m ≥ 3 have negligible visibility and are ig-
nored. Figure 4 shows that the unstable odd axisymmetric (100)
g-modes suffer almost no cancellation effect over the θ-range re-
sulting in a high visibility.

The unstable even (200) axisymmetric g-modes have three
θ-nodes in the θ-range 0–π/2 and the consequent cancellation
effects (Fig. 4) result in lower visibility. They cover a few ob-
served moderately bright lines. The remaining (100) g-modes
with smaller visibility also suffer cancellation as a consequence
of two or three nodes in θ. The m = 1 g-modes with visibilities in
the range 0.1−0.2 miss a clear link with observed counterparts,
while the even m = 2 g-modes could correspond with observed
weaker “lines” in Fig. 5. We find only one unstable (211) r-mode
at 0.47 cpd with moderate visibility (0.19) and a sequence of five
unstable (312) r-modes near 2 cpd with negligible visibility. The
(312) r-modes suffer both from strong cancellation in the ϕ in-
tegration and from cancellation in θ due to the odd parity at the
equator, see Fig. 4.
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Fig. 5. Visibility of all overstable modes vs.
frequency in inertial frame (cpd) projected on
Pápics list of observed photometric amplitudes
A (vertical black lines) vs. frequency. Adopted
inclination is 25 degrees. The photometric am-
plitudes are here normalized to a maximum
of 0.5. Triangles correspond to odd-, circles to
even g-modes and squares to (odd) r-modes. A
cross inside a symbol means the g-mode is ret-
rograde in the inertial frame. Colour definition:
red m = 0, green m = 1 and blue m = 2.

It is consolidating that the found unstable modes with the
highest visibility lie close to the frequencies at which the largest
photometric amplitudes are observed and correspond even to
the observed single moderately strong line located further out
at 4.33 cpd.

3.7. Constant period spacings

Pápics et al. (2012) have searched for (nearly) constant period
spacings in the light curve of HD 43317 and found a nearly
equidistant series of ten peaks with an average period spacing
of ΔP = 0.07337 day and another series of seven components
with average spacing ΔP = 0.07385 day for which they claim
the semi-constant spacing is not due to chance. Similar spac-
ings were found for a slow rotator HD 50230 (Degroote et al.
2010). We determined the period spacings of modes of a given
value of m and do not find nearly constant period spacings of
this kind. Most of the period spacings are smaller than at least
a factor 4−5 and mostly quite irregular. The current calculations
have thus no explanation for the inferred occurrence of (almost)
constant period spacings.

4. Conclusions
We have performed calculations of a rapidly rotating B-star
in which the Coriolis force is dominant or at least substantial
with a new method to find unstable oscillation modes. We have
searched for unstable modes with azimuthal index m = 0, 1 and 2
and defined the visibility of modes by estimating the cancellation
effect of the different (perturbed) radiating parts at the stellar sur-
face as seen by the observer. By comparing the observed photo-
metric variability (frequencies and brightness) of HD 43317 with
the thus determined visibility of modes in Fig. 5 it is reinforcing
that one can discern a global similarity between the two. The
most striking is that observationally inferred frequencies corre-
sponding with the largest photometric amplitudes in Fig. 5 are
close to those of the calculated modes with the highest visibility:
the odd axisymmetric g-modes. Even the bright line at 4.33 cpd
appears to almost coincide with an odd axisymmetric mode. It
seems plausible to identify the observed strongest photometric
variations in HD 43317 as unstable axisymmetric g-modes. The

connection between the unstable odd m = 1 g-modes with fre-
quency below 0.8 cpd and between 2 and 3 cpd, all with mod-
erately high visibility, and the observed photometric variability
is less clear. In most cases no substantial photometric variation
is seen for these frequencies. But, as noted above, the neglected
non-linear interactions and differential rotation may play a role.
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