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ABSTRACT
We introduce version two of the fast star cluster evolution code Evolve Me A Cluster of StarS
(EMACSS). The first version (Alexander and Gieles) assumed that cluster evolution is balanced
for the majority of the life cycle, meaning that the rate of energy generation in the core of
the cluster equals the diffusion rate of energy by two-body relaxation, which makes the code
suitable for modelling clusters in weak tidal fields. In this new version, we extend the model
to include an unbalanced phase of evolution to describe the pre-collapse evolution and the
accompanying escape rate such that clusters in strong tidal fields can also be modelled. We
also add a prescription for the evolution of the core radius and density and a related cluster
concentration parameter. The model simultaneously solves a series of first-order ordinary
differential equations for the rate of change of the core radius, half-mass radius and the
number of member stars N. About two thousand integration steps in time are required to solve
for the entire evolution of a star cluster and this number is approximately independent of N. We
compare the model to the variation of these parameters following from a series of direct N-body
calculations of single-mass clusters and find good agreement in the evolution of all parameters.
Relevant time-scales, such as the total lifetimes and core collapse times, are reproduced with
an accuracy of about 10 per cent for clusters with various initial half-mass radii (relative to
their Jacobi radii) and a range of different initial N up to N = 65 536. The current version
of EMACSS contains the basic physics that allows us to evolve several cluster properties for
single-mass clusters in a simple and fast way. We intend to extend this framework to include
more realistic initial conditions, such as a stellar mass spectrum and mass-loss from stars. The
EMACSS code can be used in star cluster population studies and in models that consider the
co-evolution of (globular) star clusters and large-scale structures.

Key words: methods: numerical – stars: kinematics and dynamics – globular clusters: gen-
eral – Galaxy: kinematics and dynamics – open clusters and associations: general – galaxies:
star clusters: general.

1 IN T RO D U C T I O N

The dynamical evolution of star clusters is the result of several
internal and external processes, including two-body relaxation, in-
teractions between single and binary stars, escape across the tidal
boundary and the internal evolution and mass-loss of single and
binary stars (e.g. Meylan & Heggie 1997). Modelling collisional
systems is challenging because all these effects operate on their

� E-mail: m.gieles@surrey.ac.uk

own time-scale, ranging over many orders of magnitudes from the
orbital period of hard binary stars to the Galactic orbit of the cluster,
and depending in different ways on the number of stars N (Aarseth
& Heggie 1998). The direct N-body approach is a versatile method
for solving the gravitational N-body problem and correctly com-
bines the interplay between the various dynamical scaling laws and
their corresponding time-scales. Owing to recent progress in the use
of special hardware to accelerate the force calculations (Gaburov,
Harfst & Portegies Zwart 2009; Nitadori & Aarseth 2012) it is now
feasible to model medium sized globular clusters (N � 2–3 × 105),
with moderate initial densities, over a Hubble (Hurley & Shara

C© 2013 The Authors
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2012; Sippel & Hurley 2013). However, the O(N2) nature of the
computational effort of direct N-body integrations does not allow
us yet to model globular clusters containing the number of stars
of typical globular clusters (about 106) with realistic initial density
(� 104 M� pc−3) over a Hubble time.

We aim to develop a relatively simple, and extremely fast (com-
pared to the direct N-body approach) prescription for the evolution
of a few fundamental properties of tidally limited clusters, such as
N and the various cluster radii (core radius, half-mass radius and
tidal radius) with an N-independent computational effort. Having
a fast and simplified prescription of complex astrophysical objects
allows us to use these objects in population synthesis studies, or to
combine the evolutionary prescription with that of other astrophysi-
cal phenomena. Examples exist for other applications, for example,
for the evolution of individual stars of different mass and metallic-
ity (Hurley, Pols & Tout 2000), binary stars (Hurley, Tout & Pols
2002), binary populations (Eldridge, Izzard & Tout 2008) and for
the products of stellar collisions (Lombardi et al. 2002). A possible
application of such a tool for star cluster evolution is the modelling
of observed properties of star cluster populations (Jordán et al.
2005, 2007; Harris, Harris & Alessi 2013), which will enable us
to use star clusters more efficiently as tracers of the formation and
evolution of the host galaxy (Freeman & Bland-Hawthorn 2002;
Brodie & Strader 2006; Prieto & Gnedin 2008; Gnedin, Ostriker &
Tremaine 2013). Additionally, a fast prescription of cluster evolu-
tion can be combined with models of galaxy evolution or cosmology.
Both applications are currently out of reach because existing, more
sophisticated, methods to solve the N-body problem are computa-
tionally too expensive (for a review see the supplementary material
of Portegies Zwart, McMillan & Gieles 2010).

Gieles, Heggie & Zhao (2011) present a simple analytical theory
for the evolution of N and half-mass radius of tidally limited clusters.
The model assumes that there is always a balance between the rate
of energy generation in the core and the flux of energy through
the half-mass radius by two-body relaxation. The theory connects
two existing models of Michel Hénon: the isolated cluster (Hénon
1965) and the tidally limited cluster (Hénon 1961). To connect
these models, it was assumed that the energy conduction rate is
the same in both models (for a derivation and comparison of these
quantities see Gieles et al. 2011). Numerical N-body simulations
recently confirmed the validity of this assumption (Alexander &
Gieles 2012, hereafter Paper I).

In Paper I, we present the first version of a versatile cluster evolu-
tion package in the form of the publicly available code Evolve Me
A Cluster of StarS (EMACSS).1 It allows a user to define the cluster
and tidal field parameters and the code provides the evolution of
cluster parameters based on the assumption of balanced evolution.
The evolution of the number of stars N and half-mass radius rh

of a cluster are obtained by solving two coupled first-order ordi-
nary differential equations, namely Ṅ (N, rh,�) and ṙh(N, rh, �)
with a fourth-order Runge–Kutta integrator. Here � is the angu-
lar frequency of the cluster about the centre of the galaxy. Several
assumptions had to be made to reduce the evolution of clusters to
such a simple model: relaxation-driven escape of stars is the only
mechanism that reduces N; the cluster evolves in a self-similar fash-
ion, such that rh is a constant times the virial radius rv (in this case
rh = rv); cluster orbits are circular and the balanced evolution starts
after a fixed number of initial half-mass relaxation time-scales τ rh

and the cluster is not evolved in that first phase.

1 The code is available from http://github.com/emacss

This paper extends EMACSS to include the following physical pro-
cesses: the evolution of the core radius rc and core density ρc, the
evolution of N and the radii in the unbalanced evolution phase prior
to core collapse and the evolution of the ratio rh/rv. The last ratio
depends on the density profile and therefore the concentration of the
cluster. With these new additions, EMACSS can also evolve clusters
that are initially filling the Roche volume and lose a large fraction of
their stars prior to core collapse. In the current version, we assume
that all stars have the same mass.

The structure of the paper is as follows: in Section 2, we introduce
the theoretical framework of the new version of EMACSS. In Section 3,
we present a suite of direct N-body simulations that is compared
to EMACSS and used to implement the new features. In Section 4,
we demonstrate the performance of EMACSS by comparing it to all
N-body models and in Section 5, we present our conclusions and
discuss the future steps for EMACSS that will include a stellar mass
function and the mass-loss of stars.

2 FR A M E WO R K

In this section, we set out the theoretical framework that is used
to describe the evolution of the core radius rc and core density ρc

in the unbalanced phase (Section 2.2), the evolution of the other
parameters in the unbalanced phase (Section 2.3) and the transition
to the balanced phase and the evolution of the core (Section 2.4).
The evolution of the half-mass radius in balanced evolution and the
escape rates in both the balanced phase and the unbalanced phase
are discussed in Sections 2.5 and 2.6, respectively. We start by
introducing in Section 2.1 the variables, time-scales and definitions
used in this paper.

2.1 Variables, definitions and time-scales

A fundamental aspect of the evolution of a collisional system, i.e. a
star cluster, is the increase of the total energy (the system becoming
less bound) on a time-scale shorter than the age of the Universe,
because of two-body relaxation. For clusters in weak tidal fields, this
energy increase (i.e. less negative) results in an expansion (Gieles
et al. 2010) of the cluster and for tidally limited clusters the energy
increase results in the escape of stars. The quantity we want to
evolve in a cluster model is, therefore, the total energy E of the
cluster (Gieles et al. 2011; Paper I). For a self-gravitating system in
virial equilibrium E can be written as

E = −κ
GM2

rh
. (1)

Here, G is the gravitational constant, M and rh are the mass and the
half-mass radius of the cluster, respectively, and κ is a form factor
that depends on the density profile of the cluster. In the definition
of E, we do not include the binding energy of multiple stars. This
definition of E is often referred to as the external energy (as in Giersz
& Heggie 1997). We assume that the only contributions to the total
energy are the kinetic energy T and the gravitational energy W, such
that E = T + W = W/2 = −T. Combined with the definition of the
virial radius rv = −GM2/(2W) we then find that κ = rh/(4rv). Note
that we ignore the contribution of the tidal field Etide to the total
energy. Fukushige & Heggie (1995) show that the ratio Etide/W �
0.4(rh/rJ)3 for a tidal field due to a point-mass galaxy, which even
for very large ratios of rh/rJ results in a relative contribution of Etide

to E of only a few per cent. We do include the effect the tides have
on the escape of stars.
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Taking the time derivative on each side of equation (1) and di-
viding by −E we find how the fractional change in energy relates
to the fractional change in the other variables

− Ė

E
= − κ̇

κ
+ ṙh

rh
− 2

ṁ

m
− 2

Ṅ

N
. (2)

Here, we have used M = mN, where m is the mean mass of the stars
and N is the number of stars. In this work, we assume single-mass
clusters so ṁ = 0 from now on.2 We are interested in the evolution
of these quantities on a half-mass relaxation time-scale τ rh which
is defined as (Spitzer & Hart 1971)

τrh = 0.138
N1/2r

3/2
h√

Gm ln(0.11N )
. (3)

Here, ln (0.11N) is the Coulomb logarithm and the argument is
appropriate for single-mass clusters (Giersz & Heggie 1994). To
describe the fractional change of the cluster properties per τ rh we
define the following dimensionless parameters:

ε ≡ − Ėτrh

E
, (4)

λ ≡ κ̇τrh

κ
, (5)

μ ≡ ṙhτrh

rh
, (6)

ξe ≡ − Ṅτrh

N
. (7)

In Gieles et al. (2011), it was assumed that the dimensionless rate
of evolution of energy is constant during the entire evolution, i.e.

ε = ζ � 0.1. (8)

Here, ζ can be interpreted as the efficiency of energy conduction of
the cluster and depends on the stellar mass spectrum in the sense
that clusters with a wider mass spectrum evolve faster (Spitzer &
Hart 1971; Kim, Lee & Goodman 1998). In Paper I, we used ε = 0
in the unbalanced phase (energy is conserved), which is accurate
for isolated clusters and approximately correct for clusters in weak
tidal fields. In this work, we allow for unbalanced evolution of
the cluster such that ε ≥ 0 and ε �= ζ in the unbalanced phase
(Section 2.3) and ε = ζ in the balanced phase (Section 2.5). In
the unbalanced phase, λ is positive because the cluster gets more
concentrated and it is negative in the later evolution. In Paper I,
we considered clusters that start deeply embedded within rJ (RhJ ≡
rh/rJ � 1/30), which means that μ is always positive in the initial
phase of balanced evolution because the cluster expands to the tidal
radius. In (roughly) the second half of the evolution μ is negative
and equals approximately −ξ e/3 because the cluster contracts at
a (roughly) constant density in the tidal field (Hénon 1961; Gieles
et al. 2011). In this paper, we consider clusters that initially fill
the Roche volume (RhJ � 0.1−0.2) and for these clusters μ can
be negative at the start of the evolution. The value of ξ e is always
positive, because Ṅ is always negative.

If we multiply both sides of equation (2) by τ rh we can write
the evolution of the energy in terms of the dimensionless quantities
defined in equations (4)–(7), i.e.

ε = −λ + μ + 2ξe. (9)

2 The variation of the mean stellar mass as the result of mass-loss from stars
and the preferential ejection of low-mass stars will be included in version 3
(Alexander et al. in preparation).

The reader may have noted that we have not mentioned the core
radius rc so far, whilst we set out to include the evolution of rc in
the model. We have thus far omitted rc from the equations because
rc only enters indirectly in the definition of E through κ , which can
be interpreted as a concentration parameter. The concentration of
a cluster in the well-known King (1966) models is defined as the
logarithm of the ratio rt/rc, where rt is the King truncation radius
which is the radius at which the density drops to zero. Here, we make
the assumption that throughout the entire evolution κ depends only
on the ratio Rch ≡ rc/rh, i.e. κ = κ(Rch), independent of the tidal
truncation radius. This is motivated by the fact that the total energy
is most sensitive to variations of the mass distribution within rh,
where the gravitational energy is highest. In Section 3, we show
that results of N-body models support this assumption. To proceed,
we introduce an additional dimensionless parameter

δ ≡ ṙcτrh

rc
(10)

for the evolution of the core radius rc on a τ rh time-scale. To include
δ in the energy equation (9) we take the time derivative of κ(Rch),
using Ṙch/Rch = ṙc/rc − ṙh/rh, such that

κ̇

κ
= K

(
ṙc

rc
− ṙh

rh

)
, (11)

with K ≡ d ln κ/d lnRch. With this expression we can relate the di-
mensionless parameter λ that describes the evolution of κ (equation
5) to the dimensionless parameters for the half-mass radius and core
radius, μ (equation 6) and δ (equation 10), respectively,

λ = K(δ − μ). (12)

We substitute this in equation (9) to find

ε = −Kδ + (1 + K)μ + 2ξe. (13)

This equation relates the evolution of the total energy E to the
evolution of the core radius rc (through δ), the half-mass radius
rh (through μ) and the number of stars N (through ξ e). It is this
equation we are going to solve to get the time evolution of rc, rh and
N in the unbalanced phase. Before we discuss the change of energy
ε in the unbalanced phase in Section 2.3, we first discuss the rate at
which the core radius contracts in the unbalanced phase.

2.2 Core contraction and gravothermal catastrophe

In the earliest phase of unbalanced evolution of a single-mass clus-
ter, the contracting core converts gravitational energy in kinetic
energy which provides the energy that is required by two-body re-
laxation. Because the energy requirement is set by the cluster as
a whole the core contracts on a half-mass relaxation time-scale.
Because of our definition of δ (equation 10) it follows that δ is ap-
proximately constant in that phase. When the relaxation time-scale
of the core itself becomes much shorter than τ rh then a runaway
contraction follows. This process is often referred to as core col-
lapse, or the gravothermal catastrophe (Lynden-Bell & Wood 1968)
and it takes over from the slow contraction when the core radius be-
comes smaller than rc � 0.07rh (Cohn 1980). From that moment the
evolution of the core is decoupled from the evolution of the cluster
and the core contracts self-similarly on a core relaxation time-scale
τ rc (Lynden-Bell & Eggleton 1980) until the collapse is halted by
the formation of the first hard binary (in the absence of other energy
sources, such as primordial binaries, a central black hole or stellar
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mass-loss, Heggie 1975). The definition of τ rc is (Spitzer & Hart
1971)

τrc = σ 3
c

15.4G2mρc ln(0.11N )
. (14)

Here, σ 2
c is the mean-square velocity of stars in the core and ρc is

the core density. The core is to good approximation an isothermal
system and σ 2

c can be written as σ 2
c = (4/3)πGρ0r

2
c , where ρ0 �

2ρc is the central density. During the gravothermal catastrophe the
core density increases as

ρc = ρc0r
−α
c , (15)

where ρc0 is a constant of proportionality and 2.2 � α � 2.3
(Lynden-Bell & Eggleton 1980; Heggie & Stevenson 1988; Baum-
gardt et al. 2003). For simplicity, we assume that this relation holds
during the entire unbalanced phase so we can write

σ 2
c = 8

3
πGρc0r

2−α
c . (16)

Now τ rc is only a function of one variable (rc) and two parameters
(ρc0 and α), which are determined in Section 3. For the rate of
core contraction during the gravothermal catastrophe we use δ2 =
ṙcτrc/rc. To ensure a smooth transition between the two different
phases we define δ as

δ = δ1 + δ2
τrh

τrc
. (17)

Here, δ1 is a negative constant that describes the speed of the initial
contraction on a τ rh time-scale and δ2 is a negative constant that
describes the gravothermal catastrophe on a τ rc time-scale. For
clusters that start with rc/rh � 0.07 the second term on the right-
hand side of equation (17) is initially small because τ rh/τ rc 	δ1/δ2

and therefore δ � δ1. Whilst the core contracts at this rate, the ratio
τ rh/τ rc grows and at some point the second term becomes dominant
and during the runaway collapse we have δ � δ2τ rh/τ rc. Combined
with equation (10) we find that in this phase ṙc/rc = δ2/τrc. In
Section 3, we will demonstrate that this simple linear addition of
the two core contractions rates accurately describes the evolution
of rc and we determine the constants δ1 and δ2 from theory and
N-body models.

Now that we have defined how δ depends on the other cluster
parameters, we turn to the variation of ε in the unbalanced phase.

2.3 Unbalanced/pre-collapse evolution

To be able to numerically solve equation (13) we need to have an
expression for the rate of change of energy ε in the unbalanced
phase. In this phase, the cluster has no energy source and the core
contracts to generate heat. In isolation, the total energy of the cluster
is conserved (ε = 0, Paper I). In a tidal field, the energy of the cluster
can change because of the escape of stars over the tidal boundary.
This is an important effect to consider for clusters in a strong tidal
field, because for these clusters more than half of the stars can
escape before core collapse (e.g. Baumgardt 2001).

For most of the unbalanced phase the escape of stars happens on
a relaxation time-scale because the outer parts of the cluster expand
while the core contracts on a τ rh time-scale (Section 2.2) and the
response of the cluster can be implemented with straightforward
energy considerations. Assume a cluster that has a large ratio RhJ �
0.1−0.2, meaning that the cluster ‘fills’ the Roche volume. Then
assume that stars gain energy by relaxation effects until they reach
the escape energy and leave the cluster through the Lagrangian

points with small velocities, such that the specific energy of the
escaping stars is approximately −GM/rJ. The change in energy as
a result of the loss of stars is thus dE = −(GM/rJ)dM. Dividing this
by E/τ rh we find that the energy increase depends on the escape
rate as

ε = RhJ

κ
ξe. (18)

To understand the cluster’s response to the loss of stars, we substitute
this expression for ε in equation (13) and find for the evolution of
rh

μ = (RhJ/κ − 2) ξe + Kδ

1 + K . (19)

Because τ rh and all the terms on the right-hand side of equation
(19) are functions of rc, rh, N and the angular frequency of the
cluster about the Galaxy centre �, we can rewrite equation (19) as
ṙh(rc, rh, N, �). This we can solve simultaneously with ṙc(rc, rh, N )
and Ṅ (rc, rh, N,�) with a simple fourth-order Runge–Kutta inte-
grator, as in Paper I. To be able to solve these equations in time we
need to have an expression for ξ e, which is the topic of Section 2.6.

From equation (19), we see that the rate at which a cluster shrinks,
or expands, depends critically on the ratio RhJ. Consider a Plummer
model with RhJ = 5κ/3. Because for this model κ � 0.2, we have
RhJ � 0.333 and we find that μ � −(1/3)ξ e (ignoring the small
contribution of K). This means that the half-mass radius shrinks
as N1/3 as the cluster loses stars. Because rJ also shrinks as N1/3

in response to the escape of stars we find that for this RhJ the
cluster shrinks at a constant density and, therefore, constant RhJ.
For RhJ � 1/3, and under the assumption that the density profile
(i.e. κ) does not change, the cluster is unstable and will go into
a runaway dissolution. For clusters with RhJ < 5κ/3 � 0.333 rh

shrinks faster than rJ until an energy source becomes active.
Clusters in the post-collapse phase evolve roughly at a constant

RhJ � 0.145 (Hénon 1961), i.e. much lower than 1/3. This is be-
cause the energy of these clusters changes not only because of a
loss of stars over the tidal boundary, but also because of energy
production in the core (see the discussion on p. 57 of chapter 3.2 in
Spitzer 1987). In the next section, we discuss the transition to the
balanced phase.

2.4 Core collapse criterion and core evolution
in the balanced phase

Before we can define the exact condition for the transition from un-
balanced to balanced evolution it is necessary that we first consider
the evolution of rc in the balanced phase.

2.4.1 Core evolution in the balanced phase

In the balanced phase the size of rc depends on the amount of energy
that is produced, which in turn is set by the energy demand of the
cluster as a whole (Hénon’s principle). For realistic clusters, it can
get complicated to understand this when we consider the combined
effect of (primordial) binary stars, black holes, stellar mass-loss, etc.
For single-mass clusters without primordial binary stars, however,
it is possible to express the evolution of rc in terms of rh and N. With
the assumption of energy balance and steady heating by binary stars
that form in multiple encounters one can derive that in this phase
the core radius depends on N and rh as (see box 28.1 in Heggie
& Hut 2003) rc = (N/N2)−2/3rh, where N2 is a constant that will
be determined in Section 3. The evolution of rc is passive, in the

 at U
niversiteit van A

m
sterdam

 on Septem
ber 1, 2014

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/


920 M. Gieles et al.

sense that it follows the evolution of N and rh which follow from
the assumption of balanced evolution (Gieles et al. 2011; Paper I).

For clusters with N � 7000 there is no steady core evolution, but
the core undergoes gravothermal oscillations (Bettwieser & Sugi-
moto 1984; Goodman 1987). We do not include these oscillations
of the core, although a simple prescription exists (Allen & Heggie
1992). Instead, we assume that for large N the ratio Rch tends to
a constant Rch � (N3/N2)−2/3, where N3 � 7000 is the boundary
between clusters for which Rch evolves as N−2/3 (i.e. for N � N3)
and those for which Rch is constant (i.e. for N � N3). The exact
value for N3 will be determined in Section 3. To implement the
convergence to a constant Rch for clusters with large N we use

Rch =
(

N2

N
+ N2

N3

)2/3

, (20)

�
{

(N/N2)−2/3 for N << N3;

(N3/N2)−2/3 for N >> N3.
(21)

Taking the time derivative of equation (20) and multiplying by τ rh

we find an expression for δ in the post-collapse phase

δ = 2

3
ξe

(
1 + N

N3

)−1

+ μ. (22)

For large N 
 N3 the core radius evolves at the same rate as the
half-mass radius because the first term on the right-hand side is
negligible and therefore δ � μ, while for N � N3 the ratio Rch

grows as N−2/3 while N decreases. The evolution of rh (i.e. μ) is
discussed in Section 2.5.

For the evolution of the core density ρc, we assume that between
rc and rh the cluster is approximately isothermal and has a density
distribution ρ ∝ r−2, such that

ρc = ρhR−2
ch , (23)

where ρh = 3M/(8πr3
h ) is the average density within rh.

Now we have defined the equilibrium evolution of rc and Rch in
the balanced phase, we consider the transition from unbalanced to
balanced evolution.

2.4.2 Criterion for core collapse

We define the moment of core collapse as the moment in the evo-
lution that Rch has reached the value of the relation for Rch as a
function of N in the balanced phase (equation 20). At each time step
in the unbalanced phase the criterion changes because it depends
on the instantaneous value of Rch and N. This allows us to make the
transition to the balanced evolution without a priori (i.e. before the
evolution starts) knowledge of the exact moment of core collapse.
Core collapse time is well understood for isolated, single-mass,
Plummer models: roughly 17 initial τ rh (e.g. Larson 1970; Aarseth,
Henon & Wielen 1974), but it is hard to predict what it is when
the cluster loses a significant number of stars in the unbalanced
phase, or starts with a smaller core. Both effects are now included
in the EMACSS model. The way we make the transitions causes us
to underestimate the maximum core density in the collapse. This
is because after core collapse the core expands towards larger radii
and this core bounce (Inagaki & Lynden-Bell 1983) is not included
in the model. This effect can be seen in the N-body models (see
Section 3). The relation we propose describes the evolution of rc

near the maxima after core bounce and is therefore a reasonable
description for the majority of the evolution.

2.5 Half-mass radius in balanced evolution

Combining equation (22) with the relation for the total energy vari-
ation (equation 13) we find that the half-mass radius evolution in
balanced evolution relates to ζ and ξ e as

μ = ζ +
(

2

3
K

[
1 + N

N3

]−1

− 2

)
ξe. (24)

If we ignore the variation of the density profile due to the evolution
of rc (i.e. K = 0) we find μ = ζ − 2ξ e, i.e. the relation that was used
in Paper I. The small K dependent term in equation (24) is the only
difference with the radius evolution in the balanced phase presented
in Paper I. The consequence of this difference is that the evolution
of rh and rv is slightly different in the balanced phase for clusters
with N � N3, whereas in Paper I we assumed rh/rv = 1. In the next
section, we discuss the escape rate ξ e in both the unbalanced and
the balanced evolution.

2.6 Escape rate

Up to this point, we have expressed the evolution in terms of N and
the dimensionless escape rate ξ e. To be able to solve all relations in
time, we need an expression for ξ e and the initial number of stars
N. In this section, we find expressions for ξ e in the balanced phase
(Section 2.6.1) and in the unbalanced phase (Section 2.6.2). From
the N-body simulations (Section 3), we find that ξ e in the unbalanced
phase is lower than what we found for the balanced evolution in
Paper I. An increase of the mass-loss rate after core collapse was
also found for multimass model by Lamers, Baumgardt & Gieles
(2010). Before we can describe ξ e in the unbalanced phase, we need
to first recall the definition of ξ e in the balanced phase as described
in detail in Paper I.

2.6.1 Escape rate in the balanced phase

In this section, we discuss the escape rate of stars in the balanced
phase by recalling the framework described in Paper I. The argu-
ments used in Paper I follow from the results of Gieles & Baumgardt
(2008), who find that the escape rate in N-body models of tidally
limited clusters depends on the ratio RhJ and N as ξe ∝ R3/2

hJ N1/4.
The scaling R3/2

hJ is because the escape energy is lower for larger
RhJ, which makes it easier for a larger fraction of the stars to escape
in a τ rh time-scale. The scaling with N1/4 is because of the delayed
escape of stars from the anisotropic Jacobi surface (Fukushige &
Heggie 2000), which preferentially slows down the escape of stars
from low-N systems (Baumgardt 2001). Isolated clusters lose a
small fraction (approximately a per cent) of their stars every re-
laxation time (Baumgardt, Hut & Heggie 2002). To include both
effects, we used the following expression for ξ e in Paper I

ξe = ξe1(1 − P) + 3

5
ζP, (25)

where ξ e1 = 0.0142 (Paper I) is the escape rate for isolated clusters
and

P =
( RvJ

RvJ1

)z (
N

N1

log[0.11N1]

log[0.11 N ]

)1−x

, (26)

with z = 1.61 (Paper I), x = 0.75 (Baumgardt 2001; Paper I) and
RvJ1 = 0.145 (Hénon 1961; Paper I). In weak tidal fieldsP � 0 and
ξ e � ξ e1, a constant rate of escape per relaxation time, while for
tidally limited clusters the quantity P � 1 and ξ e � (3/5)ζ � 0.06.
The scaling constant N1 was determined in Paper I (N1 = 38 252),
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but in Section 3 we slightly revise this value. This is because in
equation (26) we use rv in the ratio RvJ and τ rh is expressed in
terms of rh and in the current version rh/rv is allowed to evolve,
whereas in Paper I rh was always equal to rv.

2.6.2 Escape rate in the unbalanced phase

The expression for ξ e in the unbalanced phase should satisfy three
conditions: first, isolated clusters lose almost no stars (Baumgardt
et al. 2002); secondly, the escape rate of Roche volume filling
clusters is about f � 0.3 times that in the balanced phase and,
finally, it should connect to ξ e in the balanced phase. We therefore
adopt the following relation for ξ e in the unbalanced phase

ξe = Fξe1(1 − P) + (f + [1 − f ]F )
3

5
ζP, (27)

=
{

f (3/5)ζP for F = 0;

ξe1(1 − P) + (3/5)ζP for F = 1.
(28)

Here, F = Rmin
ch /Rch and Rmin

ch is the minimum ratio of Rch(N )
in the unbalanced phase and is reached at the moment of core
collapse (equation 20). In the beginning of the evolution of low-
concentration clusters (such as Plummer models), we have Rch 

Rmin

ch and therefore F � 0 and there is only a contribution from
escapers due to the tidal truncation: ξ e � f(3/5)ζ . This relation
ensures that ξ e � 0 for isolated clusters in the unbalanced phase, as
it should. Close to core collapse Rch � Rmin

ch and therefore F � 1
such that both the term due to escapers in isolation and the term
due to escapers in the tidal field approach the values in balanced
evolution.

3 IM P L E M E N TAT I O N A N D C O M PA R I S O N
TO N- B O DY SI M U L AT I O N S

3.1 Description of N-body simulations

Here, we describe the details of a suite of direct N-body simulations
to benchmark the EMACSS model against. We model clusters with
five different values of N ranging from N = 4 096 to 65 536 with
steps of a factor of 2. All stars have the same mass and the clusters
were initially described by Plummer (1911) models or King (1966)
models with W0 = 5 with isotropic velocity distributions. The latter
model was used for the simulations of clusters in strong tidal fields
to avoid having stars above the escape energy. We used the standard
N-body units, such that G = M = −4E = 1 (Heggie & Mathieu
1986). The virial radius rv is defined as rv = −GM2/(2W), where
W is the gravitational energy. We assume that the clusters are in
virial equilibrium initially, such that W = 2E and rv = 1. In this
case, the conversion factor for time in physical units (t∗) relates to
the value of rv in physical units (r∗

v ) and the mass in physical units
(M∗) as t∗ = (GM∗/r∗

v
3)−1/2. The half-mass radii for the Plummer

and King models in these units are rh � 0.78 and 0.82, respectively.
The initial value for κ for the two models is thus κ0 � 0.195 and
0.205. In EMACSS κ0 is computed from the initial rh as κ0 = rh/4
(because rv = 1).

The equation of motion of the stars was solved in a reference
frame that corotates with the circular orbit of the cluster about a
point-mass galaxy. The centrifugal, Coriolis and tidal forces were
added to the forces due to the other N − 1 stars (equation 1 in Giersz
& Heggie 1997). The strength of the tidal field can be quantified

by the angular frequency � of the cluster orbit. For a circular
orbit around a point-mass galaxy the Jacobi radius rJ of the cluster
depends on � and the mass of the cluster M as

rJ =
(

GM

3�2

)1/3

. (29)

We modelled four sets of clusters with different initial ratios RhJ.
Two sets of compact (in terms of RhJ) clusters were presented in
Paper I. These clusters were initially described by Plummer models
and the two sets had initial values of RhJ = 1/100 and 1/30. For
this study, we ran two additional sets of ‘Roche filling’ clusters with
RhJ = 1/10 (Plummer) and a series of King (1966) models with
W0 = 5. For the latter set of runs RhJ = 1/5.37, but we will refer to
these runs as RhJ = 1/5. For low-N clusters multiple simulations
were done to average out statistical fluctuations, in the same way as
was done in Paper I: for N = [4 096, 8 192, 16 384, 32 768, 65 536]
we ran [16, 8, 4, 2, 1] simulations, respectively.

Stars are counted as members when their distance to the centre of
the cluster is less than rJ and stars are removed from the simulation if
their distance from the cluster centre exceeds 2rJ. The Jacobi radius
rJ and the number of members are calculated iteratively using equa-
tion (29). The core radius is defined as in chapter 15.2 of Aarseth
(2003) and with this definition for rc both the Plummer model and
the King model with W0 = 5 have Rch � 0.4. The energy E of
the cluster is defined as the external energy (kinetic and potential
components of single stars and the centres of mass of multiples,
see Giersz & Heggie 1997) separately from the internal energy of
particles (i.e. the energy stored in binaries and multiples). For all
simulations we used the N-body code NBODY6, which is a fourth-
order Hermite integrator with Ahmad & Cohen (1973) neighbour
scheme (Makino & Aarseth 1992; Aarseth 1999, 2003) with ac-
celerated force calculation on NVIDIA Graphics Processing Units
(Nitadori & Aarseth 2012). In the next sections, we compare the
results of the N-body models to EMACSS and determine the parame-
ters. To do this, we isolate the various physical process and build up
the model piece by piece in Sections 3.2 to 3.4 to find the values of
the parameters of the various physical processes described in Sec-
tion 2. The fluctuations that occur in small N systems are taken into
account by comparing EMACSS to the average of the results for the
individual runs with the same initial condition, but different random
seeds. The final best-fitting parameters of EMACSS are summarized
in Table 1.

3.2 Relation between κ and Rch

The first thing we determine from the N-body simulations is the
relation between κ and the ratio Rch (Section 2.1). The points were
computed as follows: for 20 runs with N ranging from N = 4 096
to 65 536 with steps of two, and RhJ = 1/5, 1/10, 1/30 and 1/100
we determined the values of κ and log Rch from the individual
simulations. All runs follow similar tracks, but the relation κ(Rch)
in the unbalanced phase is different from the relation in the balanced
phase. In the balanced phase, there is an indication that κ is smaller
for larger N models at low values of Rch, but we will not include
this small N dependence in the model. The difference between the
unbalanced and balanced curves is most likely due to the difference
in density profile: in the unbalanced phase the cluster starts with a
large core and during the collapse it develops an r−2.2 cusp in the
central density profile. In the balanced phase, the central density
profile is almost isothermal and the central density cusp is r−2.
Because of this difference, we describe the κ(Rch) relation in the
different phases with different functions. To separate the evolution
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Table 1. Summary of all the parameters in EMACSS.

Process Quantity Unbalanced Balanced Equation

Energy diffusion ζ 0.1 0.1 † (8)
rc evolution δ1 −0.09‡ (10,17)

δ2 −0.002‡ (10,17)
ρc0 0.055 (15)
α 2.2 (15)

Concentration Rch0 0.100 0.220 (30)
κ0 rh/(4rv) 0.200 (30)
κ1 0.295 0.265 (30)

Escape rate ξ e f 0.3 (27)
ξ e1 0.0142 0.0142� (25,27)
x 0.75 0.75� (26)
z 1.61 1.61� (26)

RvJ1 0.145 0.145� (26)
N1 15000 15000† (26)

Rch evolution N2 12 (20)
N3 15000† (20)

Notes: † the values found in Paper I are slightly adjusted; ‡ in the code
these values are normalized to ζ , such that the user can choose to use a
different value of ζ and adjust the speed of the entire evolution; � from
Paper I.

in the two phases we have to find a definition of core collapse in
these models. We define core collapse as the moment when the total
energy E increases by more than 5 per cent in a unit of N-body time.
Such a sharp increase in E is not found at any other moment in all
runs and turns out to be a useful definition for all simulations. For
both the balanced and the unbalanced phase, the median of κ was
found in 50 bins that were equally spaced in log Rch. A minimum of
N = 200 remaining stars was used. In Fig. 1, we show the κ values

Figure 1. The evolution of κ as a function of the ratio Rch = rc/rh for
clusters in the unbalanced (pre-collapse) phase (top) and in the balanced
(post-collapse) phase (bottom). The dashed lines approximate the N-body
results with error functions (equation 30). In the unbalanced phase, there are
two dashed lines shown: the top line corresponds to the King (1966) models
(κ0 � 0.205) and the bottom line corresponds to the Plummer (1911) models
(κ0 � 0.195).

of the N-body models as dots with the results for the unbalanced
and the balanced phase in the top and bottom panels, respectively.

We find that for both evolutionary phases the κ values can be well
described by an error function of the form

κ(Rch) = κ1 + (κ0 − κ1) erf

( Rch

Rch0

)
. (30)

The values for the constants are given in Table 1 and we note that for
the unbalanced phase κ0 = rh/(4rv) depends on the initial density
profile of the cluster. For this function, the logarithmic derivative K
(equations 11 and 12) is

K = Rch

κ

2(κ0 − κ1) exp(−R2
ch/R2

ch0)√
πRch0

(31)

and for the parameters used here we find −0.1 � K < 0.
The last point of consideration is the connection between κ(Rch)

in the unbalanced phase and κ(Rch) in the balanced phase. Because
the constant κ1 is different in these two phases the function κ(t) is
discontinuous at core collapse if we simply jump to the new κ(Rch)
relation at core collapse. This would also result in a discontinuity
in the energy evolution, which is not desirable. We therefore add a
term to λ in the balanced phase that ensures that κ(t) is continuous
and that κ evolves to the relation κ(Rch) of equation (30) with the
parameters appropriate for the balanced phase on a τ rh time-scale.
The functional form for λ we use in the balanced phase is

λ = K(δ − μ) + κ(Rch) − κ

κ(Rch)
. (32)

At the start of balanced evolution (i.e. at core collapse) κ is higher
than κ(Rch), such that the added term on the right-hand side of
equation (32) is negative. The difference between κ and κ(Rch)
gets smaller every integration step and κ approaches κ(Rch) asymp-
totically. We do not include this extra term in the energy balance
(equation 19) such that the system is slightly out of balance, in
the sense that ε � ζ , for a fraction of a relaxation time after core
collapse. This phase can be interpreted as the ‘core bounce’ phase
(Inagaki & Lynden-Bell 1983) in which excess energy is released
by the newly formed binary star(s) which is diffused by two-body
relaxation.

The K values are quite low and K, therefore, affects the evolution
only mildly. In Paper I, we ignored the variation of κ and we assumed
that rh = rv throughout the evolution. For the N-body models,
initially rh � 0.8rv and the evolution of κ in the unbalanced phase
causes the ratio rh/rv to grow to approximately unity (Section 3.3).
If N becomes smaller than a few thousand the cluster evolves to low
concentration again.

3.3 Evolution of the core parameters

To quantify the rate of core contraction we first consider the evolu-
tion of the core parameters that define the core relaxation time-scale
τ rc (equation 14). In Fig. 2, we show the average density within the
core ρc as a function of rc in the unbalanced phase for clusters
with various initial N. The average core density ρc is defined as
3Mc/(4πr3

c ), where Mc is the total mass of the stars in the core. At
the start of the evolution all models start with ρc � 0.7 and rc �
0.3. When rc shrinks the density increases as

ρc = 0.055r−2.2
c , (33)

which corresponds to the dashed line in Fig. 2. This value of α = 2.2
is close to what was found in previous studies. Lynden-Bell & Eggle-
ton (1980) used theoretical arguments for the self-similar evolution
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A code for the evolution of star clusters II 923

Figure 2. Relation between core (mass) density ρc and core radius rc in
the unbalanced phase for N-body models for the RhJ = 1/5 models and the
RhJ = 1/100 models. For each of the RhJ sets a model for each N is shown.
The tight correlation in the N-body data justifies a single relation for ρc(rc)
for all models. The line shows the relation of equation (33).

of the core near the gravothermal catastrophe and found α = 2.21.
Heggie & Stevenson (1988) found a logarithmic slope of −2.23
from Fokker–Planck models of the late stages of core collapse and
Baumgardt et al. (2003) found a value of −2.26 from N-body mod-
els of single-mass clusters. We note that our slightly smaller value of
−2.2 is probably because we use this relation to describe the entire
core contraction phase starting at t = 0, while the studies men-
tioned above determined α in the final stages of core contraction
(the gravothermal catastrophe). With equation (33) and the expres-

sion for the central velocity dispersion σ c (equation 16) we have all
parameters of the core defined to be able to define τ rc (equation 14).

Now as we have defined how ρc depends on rc, we can turn to
the evolution of rc. Fig. 3 shows the evolution of N, rh and rc as a
function of time following from N-body models, expressed in the
initial τ rh, for clusters with different N and RhJ. In the left-hand
panels, the results for clusters with N = 4 096 are shown and in the
right-hand panels, we show the results for N = 65 536. Each panel
contains results for clusters with RhJ = 1/5 and 1/100. The data
points were selected to be in the unbalanced phase (pre-collapse) in
the same way as described in Section 3.2.

Initially, the core radius shrinks exponentially (i.e. a straight line
in logarithmic-linear plot), which is because of the contraction on a
τ rh time-scale. We find that δ1 � −0.09 (see equation 17) describes
the initial core contraction of the N-body models very well. For the
clusters with RhJ = 1/100, the core radius evolution accelerates
after about 15 initial τ rh and rc contracts on a τ rc time-scale. This
happens earlier for the RhJ = 1/5 clusters because τ rh shrinks be-
cause of the escaping stars (top panels) and the shrinking rh (middle
panels).

For the rate of runaway collapse (δ2), we find that a value of
δ2 = 0.002 provides a good description. From Fokker–Planck
models Cohn (1980) finds that in this phase the core density in-
creases at a rate ρ̇cτrc/ρc � 0.0036 and Baumgardt et al. (2003) find
ρ̇cτrc/ρc � 0.003 from N-body models. Because of the self-similar
nature of the collapse (ρc ∝ r−α

c ) we can relate this parameter to δ2

(equation 17) as δ2 = −α−1ρ̇cτrc/ρc (see equation 17, such that the
results of Cohn (1980) and Baumgardt et al. (2003) translate into
δ2 � 0.0016 and δ2 � 0.0014, respectively. It is not a concern that
we need a slightly larger value for δ2 to get a good description of
rc, because EMACSS does not evolve rc to the same small values as
the Fokker–Planck and N-body models, because we switch to bal-
anced evolution once Rch reaches the value of balanced evolution
(Section 2.4).

The middle panels of Fig. 3 show the evolution of rh. For the
clusters withRhJ = 1/100, the increase of rh from rh � 0.78 initially

Figure 3. Evolution of N (top row), the half-mass radius rh (middle row) and the core radius rc (bottom row) in the unbalanced phase for clusters with different
initial N: the 16 different realizations of the N = 4 096 model are shown in the left-hand panels and the N = 65 536 models are shown in the right-hand panels.
Each panel shows the results for RhJ = 1/5 (blue, bottom) and RhJ = 1/100 (green, top). The dashed lines show the result of EMACSS based on the expressions
for the evolution of rc (δ, equation 10) and rh (μ, equation 19).
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to rh � 1 at core collapse is due to the changing density profile
which was already seen in the increase of κ (Fig. 1). When escaping
stars can be ignored the rate of increase of rh relates to the rate of
change of rc as μ = Kδ/(1 + K) (equation 13). This relation nicely
describes both the evolution of rc and rh, also in the presence of
escapers as can be seen for the models with RhJ = 1/5. We find
that EMACSS slightly underestimates the moment of core collapse for
the RhJ = 1/5 models and EMACSS overestimates this moment for
the RhJ = 1/100 models. The differences in core collapse times are
in all cases less than approximately 6 per cent.

The top panels of Fig. 3 show that the clusters in strong tidal fields
(RhJ = 1/5) lose more than half their stars before core collapse. The
escape rate ξ e in this phase is discussed in more detail in the next
section.

3.4 Escape rate

In Fig. 4, we show the dimensionless escape rate ξ e as a function of
RvJ for the entire evolution of clusters with different N (N = 4 096

Figure 4. Dimensionless escape rate ξ e for clusters with N = 4 096 (green
crosses) and N = 65 536 (blue dots) for different initial RhJ. The derivative
Ṅ for the N-body data was found numerically from the average N(t) data by
dividing the evolution of N in approximately 100 equal steps �N which were
divided by the corresponding steps �t. The start and the direction of the
evolution of the EMACSS result is indicated with an arrow. The dashed lines
are the results from EMACSS using equation (27) for the unbalanced phase
which connects to the relation for the balanced phase of Paper I (equation
25). Clusters in a strong tidal field (two top panels) initially contract, i.e. the
ratio RvJ becomes smaller and the cluster moves to the left in this figure.
Clusters in weak tidal fields (bottom two panels) lose very few stars in the
unbalanced phase. Towards core collapse ξ e increases until it reaches the
balanced track (Paper I and equation 25) where the ξ e curves show a sharp
bend of approximately 90◦.

and 65 536) for the four different initial RhJ. The dependence of
ξ e on N and RvJ is well described by equation (27) and an es-
cape rate due to the tides in the unbalanced phase that is three
times lower than what it is in the balanced phase (i.e. f = 0.33).
When the clusters reach the balanced phase the ξ e curves turn by
about 90◦ and the subsequent evolution and corresponding N and
RvJ dependence is well described by the relation from Paper I
(equations 25 and 26).

3.5 Integration steps

In Paper I, we adopted an integration step of �t = 0.1τ rh. Here,
we need to take smaller steps in the unbalanced phase when the
core shrink on a τ rc time-scale. We therefore use in the unbalanced
phase

�t = [
(100τrc)−1 + (0.1τrh)−1

]−1
. (34)

For small τ rc near core collapse the step size is �t � 100τ rc. A step
size of 100τ rc is justified by the fact that the core parameters vary
only by a fraction of a per cent near core collapse (Section 3.3) and
with this step size we therefore still undersample the evolution of
the core. A convergence test showed that the final results change
by less than 1 per cent if we decrease �t by a factor of 100. In the
balanced phase we use �t = 0.1τ rh, as in Paper I. EMACSS outputs
the data every 0.1τ rh.

4 G E N E R A L R E S U LT S

In Figs 5 and 6 we show the results of the evolution of all parameters
for the N-body runs with initialRhJ = 1/5 andRhJ = 1/10, respec-
tively. The results following from EMACSS are shown as dashed lines
and provide an accurate description of rc, rh, rJ (i.e. N). The evolu-
tion of the derived quantities ρc, E and κ are also well reproduced. If
we consider the temporal aspects of evolution, such as the moment
of core collapse and the total lifetime then the difference between
the EMACSS results and the N-body results is within approximately
10 per cent for these models.

Figs 7 and 8 show the results for the compact clusters of Paper
I with initial RhJ = 1/30 and RhJ = 1/100, respectively. For these
clusters, the evolution of EMACSS is very similar to the version pre-
sented in Paper I and the good agreement between EMACSS and the
N-body models is therefore as expected. A small difference with
Paper I is that we here compare the model to the half-mass radius
rh and the virial radius rv (through κ), whereas in Paper I we only
considered the virial radius because we assumed rh = rv.

The only parameters we have not discussed yet are N2 and N3

(equation 20). From a comparison of EMACSS to the asymptotic evo-
lution of Rch(N ) we find N2 = 12. The model is not very sensitive
to the exact value of N3. Clusters with N � N3 evolve at con-
stant Rch in the balanced phase, whereas clusters with N � N3

evolve as Rch ∝ N−2/3 (Section 2.4.1). We find that for a value
of N3 = N1 = 15 000 EMACSS provides a satisfactory description
of rc for all runs. A summary of all model parameters is given in
Table 1.

5 C O N C L U S I O N S A N D F U T U R E WO R K

The new version of EMACSS reproduces the evolution of the three
fundamental radii of single-mass clusters evolving in a steady tidal
field: the core radius rc, the half-mass radius rh and the Jacobi
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Figure 5. Evolution of all cluster parameters as a function of N-body time (left) and N (right). In the left-hand panels the evolution is from left to right, and in
the right-hand panels evolution is from right to left. In the top panel (M(t)), the different curves from left to right are for N = 4096 (blue), N = 8192 (green),
N = 16 384 (red), N = 32 768 and N = 65 536 (magenta). The initial RhJ � 1/5 and the initial conditions for N-body models were given by a King (1966)
with W0 = 5. The evolution of all parameters in the unbalanced phase (roughly first half of the evolution) and the balanced phase (roughly second half) is well
described by the new version of EMACSS (shown as dashed lines).

(or tidal) radius rJ, where the latter is equivalent to the evolution of
the total mass M, or the number of stars N. Compared to version one
(Paper I) the code now also reproduces the unbalanced evolution
which is important for clusters in strong tidal fields (i.e. large initial
RhJ). This version also introduces the evolution of the core den-
sity ρc and a related cluster concentration parameter κ = rh/(4rv)

that depends on the ratio Rch = rc/rh. The evolution of the core
parameters introduces an additional number of integrations steps
compared to Paper I, most of which are in the phase just before core
collapse (the gravothermal catastrophe), when the core contracts
on a core relaxation time. Still, the entire evolution is solved with
a modest number of about 2000 integration steps, such that about
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Figure 6. As Fig. 5, but now for RhJ(0) = 1/10 and a Plummer model as initial conditions. In the left-hand panels the evolution is from left to right, and in
the right-hand panels evolution is from right to left.

103 models can be computed in a second on a single-core desktop
computer.

In a follow-up paper (Alexander et al., in preparation, Paper III),
we expand EMACSS to reproduce clusters with more realistic (initial)
properties such as a stellar mass function, and the evolution and
mass-loss of stars. Both code modules (single mass and multimass)
will be available in the same code and a command line switch allows
the user to select one of them. It is worth noting that the computa-
tional effort for solving cluster evolution is almost N-independent,

which makes EMACSS a powerful tool to do population synthesis
studies of globular cluster populations (Alexander & Gieles 2013;
Alexander et al., in preparation).
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Figure 7. As Fig. 5, but now for RhJ = 1/30 and a Plummer model as initial conditions. In the left-hand panels the evolution is from left to right, and in the
right-hand panels evolution is from right to left. These N-body models were first presented in Paper I.
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Figure 8. As Fig. 5, but now for RhJ = 1/100 and a Plummer model as initial conditions. In the left-hand panels the evolution is from left to right, and in the
right-hand panels evolution is from right to left. These N-body models were first presented in Paper I.
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