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Abstract

To Þnd approximations for bias, variance and mean squared error of least-squares esti-
mators for all coefficients in a linear dynamic regression model with a unit root we derive
asymptotic expansions and examine their accuracy by simulation. It is found that in this
particular context useful expansions exist only when the autoregressive model contains at
least one non-redundant exogenous explanatory variable. Surprisingly, the large-sample
and small-disturbance asymptotic techniques give closely related results, which is not the
case in stable dynamic regression models. We specialize our general expressions for mo-
ment approximations to the case of the random walk with drift model and Þnd that they
are unsatisfactory when the drift is small. Therefore, we develop what we call small-drift
asymptotics which proves to be very accurate, especially when the sample size is very small.

1. Introduction

In dynamic regression models with normally distributed white noise disturbances least squares
(maximum likelihood) estimators may be seriously biased in small samples. Strong evidence for
this is provided by Sawa (1978) who used the moment generating function to Þnd exact values for
the bias (and variance) of the least squares estimator of the lagged dependent variable coefficient
in the case of a constant but no exogenous variables, i.e. the stable AR(1) model. This work
was extended by Hoque and Peters (1986) to the case of included exogenous variables under
normality assumptions, while Peters (1987) analyzed the same ARX(1) model with non-normal
disturbances. These papers provided numerical results for different disturbance structures and
exogenous data series.

An alternative approach to investigating the moments of econometric estimators is to Þnd
asymptotic approximations. This was the method followed by Grubb and Symons (1987), who
used large-T asymptotics in the tradition of Kendall (1954) where T is the sample size. They
derived an expression for the bias to the order of T−1 of the lagged dependent variable coefficient
in the ARX(1) model, while the present authors � henceforth referred to as KP � analyzed the
bias of the full coefficient vector, see KP (1993). Later, KP (1994) extended the analysis to the
higher-order dynamic regression model, i.e. ARX(p), and Kiviet et al. (1995) to the dynamic
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Toulouse, and a later version has been catalogued as Tinbergen Institute discussion paper 2001-118/4. We are
greatful for the many constructive remarks we received at various occassions over several years.
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seemingly unrelated regression model. More recently, KP (1998b) found the bias to the order
of T−2 in the stable ARX(1) model.

In econometrics there are two main approaches to Þnding asymptotic approximations to the
moments of estimators in models with random regressors. The Þrst was introduced by Nagar
(1959), who found large sample approximations to the moments of consistent k-class estimators
in a static simultaneous equation model, while a second alternative procedure was employed
in the same model by Kadane (1971) based upon small disturbance asymptotics. This yielded
small-σ asymptotic approximations which, remarkably, were essentially the same as the large-T
ones. However, KP (1993, 1994) compared bias approximations from these two approaches and
found that they can produce quite different results in dynamic regression models; in particular,
in that context the large-T approximation (which was also used by Grubb and Symons) was
found to be superior, both theoretically and numerically.

Asymptotic methods are also used to approximate the distribution of estimators. In the
context of stable and unstable dynamic regression models Evans and Savin (1984) employ both
large-T and small-σ methods and, because they focus on Þrst-order asymptotic distributions,
they establish equivalence. Interesting results on asymptotic distributions in near unit root
models have also been obtained by Nabeya and Sørensen (1994), but their results do not yield
approximations to the moments of estimators.

The moment approximations in dynamic regression models referred to above were all ob-
tained in stable models with stationary or non-stationary exogenous regressors. Although the
large-T approximations, in particular the second-order approximations, are often remarkably
accurate, it has also been demonstrated that they are of limited use for models where the AR
parameter is close to unity. In KP (1998b) it was even established that for near unit root mod-
els an approximation to the order of T−2 is generally much more vulnerable than the simpler
approximation to order T−1. Given the current interest in non-stationary models, a natural
extension of the KP work is to a model in which the stability assumption is relaxed. The need
for bias reduction methods in unit root models is also expounded in Abadir (1995).

In this paper we examine the least squares estimator in the normal ARX(1) model when the
true coefficient of the lagged dependent variable is unity. This unit root generates stochastic
and deterministic trends in the dependent variable which have profound effects on the order
of magnitude of the relevant terms in asymptotic expansions. Our major achievements are
the derivation of an approximation accurate to order T−3 for the bias of the lagged dependent
variable coefficient (this bias is of order T−2 when the exogenous regressors are stationary) and
an approximation accurate to order T−4 for the mean squared error (MSE) of this coefficient
(when the bias is of order T−2, then the variance and the MSE are of order T−3). In addition,
we show that, unlike in the stable case, the large-T and small-σ approximations produce results
which are very closely related, with � quite remarkably � the small-σ results potentially superior
here because we Þnd that an order T−2 approximation does not contain all terms of order σ2,
whereas the order σ2 approximation does include all contributions of order T−2 and also some
of the order T−3 terms. Attention is also paid to the moments of the full vector of coefficients
when the model contains further stationary or non-stationary regressors.

The paper is organized as follows. In Section 2 we distinguish large sample and small
disturbance asymptotic methods, focusing on asymptotic expansions for the lagged dependent
variable coefficient estimator in ARX(1) models. We identify particular existence problems for
these expansions and examine and develop alternatives. In Section 3 we obtain various general
large-T and small-σ approximations to Þnite sample bias, variance and mean squared error in
this class of model, and specialize these results for the case of an AR(1) model with a non-zero
intercept as the only regressor. Section 4 extends the results for the full coefficient vector of
a unit root model with an arbitrary number of possibly non-stationary regressors. In Section
5 we investigate the accuracy of the theoretical results via simulation methods and Section 6
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concludes. Proofs are given in a series of Appendices.

2. Expansions for the Unit Root Coefficient

In the Nagar approach to Þnding moment approximations we commence by expressing the
estimation error in terms of stochastic components which are of decreasing order of magnitude
in terms of the sample size T . In particular, we determine a positive constant δ such that for
an estimator bλ of the unknown parameter λ we have the expansion

T δ(bλ− λ) = a0 + T−1/2a1 + T−1a2 + T−3/2a3 + · · ·+ T−q/2aq + T−(q+1)/2Rq+1, (2.1)

where the aj , j = 0, ..., q and the remainder Rq+1 are all Op(1) as T → ∞. Notice that the
Þrst-order asymptotic distribution is determined by the leading term, i.e. T δ(bλ− λ) L→ a0 as
T →∞. Often δ = 1

2 but it may take other values in non-stationary models.
The small disturbance approach requires that a normalized estimation error be represented

in terms of stochastic components which are of decreasing order of magnitude with respect to
the standard deviation of the disturbance term, σ. Typically, the expansion takes the form

1

σ
(bλ− λ) = úa0 + σ úa1 + σ

2 úa2 + σ
3 úa3 + · · ·+ σq úaq + σq+1 úRq+1, (2.2)

where the úai , i = 0, ..., q and úRq+1 are all bounded in probability as σ → 0.
When large-T or small-σ expansions have been found moment approximations can be ob-

tained by dividing the corresponding moments of the retained terms in the expansion by the
normalizing constant (i.e. T δ or σ−1). However, there is no standard approach to Þnding these
expansions; we shall return to this point later.

The autoregressive model of our interest will be written

y = λy−1 +Xβ + u, (2.3)

where the scalar λ and the k × 1 vector β are coefficients whose values are unknown, y =
(y1, ..., yT )

0 is a T ×1 vector of observations on a dependent variable, y−1 is the y vector lagged
one time period, i.e. y−1 = (y0, ..., yT−1)0, X is a full column rank T × k matrix of observations
on k strongly exogenous regressors and u ∼ N(0,σ2) is the T × 1 disturbance vector. We shall
examine the least-squares estimators of λ and β conditional on X and y0 (the Þrst observed
value for y). In particular we investigate the bias, variance and MSE of these estimators in Þnite
samples. For the moment we shall assume that all components of X are bounded, so X 0X =
O(T ). Assuming that Z = (y−1 : X) has rank k + 1, the least-squares estimator for λ in (2.3)
is given by

bλ = y0−1My
y0−1My−1

= λ+
y0−1Mu
y0−1My−1

, (2.4)

where M = IT −X(X 0X)−1X 0. We may write

y−1 = y0c(λ) +C(λ)Xβ +C(λ)u, (2.5)

where c(λ) is a T × 1 vector and C(λ) a T × T matrix given by

c(λ) =



1
λ
λ2

·
·
·

λT−1


, C(λ)=



0 · · · · · 0
1 0 · · · · ·
λ 1 · · · · ·
λ2 λ · · · · ·
· · · · · · ·
· · · · · · ·

λT−2 λT−3 · · λ 1 0


. (2.6)
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In the unit root case c(1) is just a vector with all components unity, whereas C(1) has zeroes
on and above its main diagonal and components unity below. Introducing special notation for
this situation we deÞne:

ι := c(1) =


1
1
·
·
1

 , J := C(1) =

0 · · · 0
1 0 · · ·
· · · · ·
· · · 0 ·
1 · · 1 0

 . (2.7)

In Appendix A various properties of expressions in ι and J are collected, which will be used in
the derivations to follow. Due to the unit root these differ markedly from those given for C(λ)
for |λ| < 1 in Appendix A of KP (1998a).

We shall focus now on the situation where λ is unknown and is estimated by least-squares,
but where actually λ ≡ 1, i.e. model (2.3) has a unit root. Hence, (2.5) specializes into

y−1 = y0ι+ JXβ + Ju, (2.8)

and, assuming the presence of a constant in the model so that Mι = 0, we have

My−1 =MJXβ +MJu. (2.9)

Hence, My−1 is free of y0 so that bλ in (2.4) does not depend on y0. This is in sharp contrast
to the stable model for which KP (1998b) showed to what extent Þnite sample bias is affected
by the actual value and stochastic properties of the start-up value y0.

From (2.4) and (2.9) we Þnd for the estimation error of the unit root model

bλ− 1 = β0X 0J 0Mu+ u0J 0Mu
β0X 0J 0MJXβ + 2β0X 0J 0MJu+ u0J 0MJu

(2.10)

for which an expansion is to be developed. We Þrst focus on obtaining large-T results. To
proceed, we have to examine the orders of magnitude of all terms in the above ratio. For the
present setting where X 0X = O(T ), which will be relaxed in Section 4, this is done in Appendix
B. Assuming β 6= 0 (i.e. not all regressors are redundant), we may rewrite the estimation error
(2.10) as

bλ− 1 = µβ0X 0J 0Mu+ u0J 0Mu
β0X 0J 0MJXβ

¶µ
1+

2β0X 0J 0MJu+ u0J 0MJu
β0X 0J 0MJXβ

¶−1
, (2.11)

and if β is Þxed and Þnite i.e. β = O(1), it follows that the Þrst factor of (2.11) has two
terms which are Op(T

−3/2) and Op(T−2) respectively, and in the other (inverted) factor there
are two ratios which are of order Op(T

−1/2) and Op(T−1) respectively. In going from (2.10) to
(2.11) we have divided both the numerator and denominator of (2.10) by the (�largest�) term
β0X 0J 0MJXβ, which we call the base. Notice that it appears in the denominator of the inverse
term in (2.11) so that when this inverse is expanded as a power series successive terms are of
decreasing order in probability. Using the very simple expansionµ

1+
2β0X 0J 0MJu+ u0J 0MJu

β0X 0J 0MJXβ

¶−1
= 1− 2 β

0X 0J 0MJu
β0X 0J 0MJXβ

+Op(T
−1),

and upon omitting in (2.11) all terms of stochastic magnitude op(T−2), it is easily shown that

bλ− 1 = β0X 0J 0Mu
β0X 0J 0MJXβ

+
u0J 0Mu

β0X 0J 0MJXβ
− 2β

0X 0J 0Muu0J 0MJXβ¡
β0X 0J 0MJXβ

¢2 + op(T
−2), (2.12)
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where the Þrst term is Op(T
−3/2) and the remaining two terms are Op(T−2). Hence, the Þrst

term of (2.12) determines the Þrst-order asymptotic distribution of the estimator. Under the
assumed conditions it is readily shown that the limiting distribution is still normal, i.e.

T 3/2(bλ− 1) L→ N

Ã
0, lim
T→∞

σ2

1
T 3
β0X 0J 0MJXβ

!
, (2.13)

but that the rate of convergence is faster (δ = 3/2) than in the stable model. This surprising
result is well-known now, see for example West (1988) and Banerjee et al. (1993, Chapter 6),
who give particular attention to the case where there is a constant term but no exogenous
variables.

It is of interest to note that in (2.10) the denominator naturally contains a decomposition
of the term y0−1My−1 into its stochastic and non-stochastic parts such that the non-stochastic
part β0X 0J 0MJXβ is independent of σ2 whereas it is also the �largest� term and subsequently
may then form a suitable base for the expansion of the denominator. This differs from the
situation in the stable dynamic model and the approach followed by Kendall (1954), Grubb
and Symons (1987) and KP (1993, 1994, 1998a,b) where the base chosen for the expansion was
E(y0−1My−1) which is linear (but not generally affine) in σ2. As a result the large-T and the
small-σ expansions yield qualitatively different results, as shown in KP (1993, 1994). In fact
the small-σ results were shown to be marked inferior in the stable case because any Þnite order
small-σ approximation omits terms of order T−1.

In the present nonstable model, where the base β0X 0J 0MJXβ is independent of σ2, we
Þnd a strong correspondence between the large-T and small-σ asymptotic results. To see this,
consider the expansion in (2.12). If u is replaced by σε, where ε is a vector of independent
standard normal variables, then the expansion involves terms of increasing order in σ, so that
the expansions to Op(σ) and Op(σ

2) coincide with the expansions to Op(T
−3/2) and Op(T−2)

respectively. However, when focusing on bias, the expansions again show a difference between
small-σ and large-T approximations. Below, we will prove that the third term in the expan-
sion (2.12), which is Op(T

−2), has an expectation that is O(T−3), which is thus omitted from
the large-T approximation to order T−2. Therefore the O(σ2) contribution to the bias con-
tains, apart from the components of order of magnitude T−2, some contributions of order T−3.
So, surprisingly, in this unit root model the Þrst-order small-σ bias approximation includes a
contribution which is of second-order in a large-T sense.

Close correspondence of large-T and small-σ asymptotic results has earlier been established
between the Þndings of Nagar (1959) and Kadane (1971) for consistent k-class estimators in a
static simultaneous equation framework. As shown in KP (1996) this equivalence breaks down,
however, for the inconsistent least-squares estimator in the static simultaneous equations model,
where an appropriate base for the expansion is again linear in σ2, whereas it is independent of
σ2 for consistent estimators.

One speciÞc Þnding in KP (1993) is that in the stable model the small-σ expansion is not
feasible when y0 = 0 and β = 0, because the estimator bλ is invariant with respect to σ in that
case. When β = 0 in the present unit root model small-σ is again not feasible because the
estimation error (2.10) reduces then to a simple ratio of quadratic forms in standard normal
variates. Hence, its moments can be accurately determined by well-known numerical methods.
Nevertheless it is instructive to examine large-T expansions for this case. Using the expectation
of the denominator as a base, and substituting ε = u/σ, we obtain

bλ− 1 =
u0J 0Mu
u0J 0MJu

=
ε0J 0Mε
ε0J 0MJε

(2.14)

=
ε0J 0Mε

E (ε0J 0MJε)

·
1+

ε0J 0MJε− E (ε0J 0MJε)
E (ε0J 0MJε)

¸−1
.
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Since ε0J 0MJε − E (ε0J 0MJε) = Op(T
2) and E (ε0J 0MJε) = O(T 2) the random term in the

inverse factor is Op(1) and not Op(T
−κ) with κ > 0 as would be required for a converging

expansion. An alternative formulation is however

ε0J 0Mε
ε0J 0MJε

=
ε0J 0Mε
ε0J 0Jε

·
1− ε

0J 0X(X 0X)−1XJε
ε0J 0Jε

¸−1
(2.15)

and now the random term in the inverse factor is Op(T
−1/2) enabling a valid expansion. How-

ever, evaluation of moment approximations from this expansion requires the evaluation of prod-
ucts of ratios of stochastic terms, and hence is in fact more involved than obtaining the expec-
tation of the left-hand side simple ratio directly.

As we shall see from the simulations in Section 5, the accuracy of our large-T or small-σ
expansions based moment approximations, to be obtained in Sections 3 and 4, deteriorates
when β gets close to zero. Therefore it could be worthwhile to develop special approximations
for the case where β gets local to zero in some sense. Thus, alongside the cases β = O(1) and
β = 0, we examined β = O(T−δ) and β = O(σδ) for δ > 0. The result is that for 0 < δ < 1

2
the original expansion is valid and so yields similar unsatisfactory results. For δ = 1

2 no valid
expansion can be found, while for δ > 1

2 the largest term in the numerator of (2.10) is u0J 0Mu
and in the denominator u0J 0MJu. This implies the same problems as in the β = 0 case. Hence,
expansions for β local to zero in a small-σ or in a large-T sense do either not exist, or are
inaccurate, or they cannot be usefully employed in this context.

However, an expansion in which β gets small in its own right will prove to be useful. We will
label this small-drift asymptotics, which operates as follows. Consider the random walk with
drift model yt = λyt−1+β+ut with start-up value y0 and where λ ≡ 1. DeÞning y∗t = (yt−y0)/σ,
the model can be rewritten as

y∗t = λy
∗
t−1 + β

∗ + εt, (2.16)

with λ = 1, β∗ = β/σ, y∗0 = 0 and εt ∼ iidN(0, 1). Note that β∗ is the drift standardized by σ.
DeÞning A ≡ IT − ιι0/T, we can rewrite (2.10) for this special case as

bλ− 1 = ι0J 0Aεβ∗ + ε0J 0Aε
ι0J 0AJιβ∗2 + 2ι0J 0AJεβ∗ + ε0J 0AJε

, (2.17)

where now, when β∗ gets small, ε0J 0AJε is the largest term in the denominator, which, given

bλ− 1 = ε0J 0Aε+ ι0J 0Aεβ∗

ε0J 0AJε

·
1+

2ι0J 0AJεβ∗ + ι0J 0AJιβ∗2

ε0J 0AJε

¸−1
,

suggests the expansion (accurate to order β∗2)

bλ− 1 = ε0J 0Aε+ ι0J 0Aεβ∗

ε0J 0AJε

·
1− 2ι

0J 0AJεβ∗ + ι0J 0AJιβ∗2

ε0J 0AJε
+ 4

(ι0J 0AJε)2β∗2

(ε0J 0AJε)2

¸
+Op(β

∗3).

Taking expectations we lose all terms in β∗ and obtain

E(bλ− 1) = E

µ
ε0J 0Aε
ε0J 0AJε

¶
(2.18)

−β∗2E
·
(ι0J 0AJι)ε0J 0Aε+ 2ε0AJιι0J 0AJε

(ε0J 0AJε)2
− 4ε

0J 0Aε(ι0J 0AJε)2

(ε0J 0AJε)3

¸
+ o(β∗2).

Note that the two right-hand side expectations are functions of T only, since they do not involve
any unknown parameters, and hence have to be calculated only once. The Þrst term is the least-
squares bias of bλ in the unit root model with zero start-up and zero drift, see (2.14), and the
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second term approximates to order O(β∗2) the incrementation in bias due to a non-zero drift.
We can rewrite (2.18) as

E(bλ− 1) = g0(T )− g1(T )β∗2 + o(β∗2), (2.19)

and the functions gi(T ), i = 0, 1 can be obtained either by sophisticated analytical approxi-
mations or by straightforward simulation. We chose the latter and examined 10 ≤ T ≤ 80.
Using 107 replications we inferred from the standard errors of the estimates of these expecta-
tions that the precision for g0(T ) is satisfactory (standard error smaller than 0.0001), whereas
for g1(T ) these are much larger, especially when T is small, though not exceeding 0.015 when
T ≥ 15. Since g1(T ) is to be multiplied by β

∗2, which should be small, the overall precision
seems satisfactory. Graphs of these functions, to be employed in Section 5, are given in Figure
2.1.

Figure 2.1: Functions g0(T ) [��] and g1(T ) [� � �]

3. The Moments of the Unit Root Coefficient Estimator

We now derive in the model with arbitrary X matrix approximations to the bias, the variance
and the mean squared error of the estimator bλ given in (2.4) according to large-T and small-
σ principles. An approximation to the bias accurate to O(T−2) is obtained by summing the
expected values of the three terms in (2.12). Since the expected value of the Þrst term is
zero and that of the third term is of order T−3, just the second term determines the O(T−2)
bias. Extending this expansion and including all terms of Op(T

−3) leads to the following result
(proved in Appendix C).

Theorem 1. In the Þrst-order dynamic regression model (2.3) where the coefficient of the
lagged dependent variable λ is equal to unity, β 6= 0, β = O(1) and X 0X = O(T ), the bias of

7



the least squares estimator of λ to the order of T−3 is given by:

E(bλ− 1) =
σ2 [tr (MJ) + 1]

β0X 0J 0MJXβ
− σ

4 tr (MJ) tr (J 0MJ)¡
β0X 0J 0MJXβ

¢2
+
4σ4 tr (MJ)β0X 0J 0MJJ 0MJXβ¡

β0X 0J 0MJXβ
¢3 + o(T−3). (3.1)

Note that bλ is unbiased to order T−3/2 and also to order σ. Also note that the bias of bλ is
O(T−2) and that the bias to order T−2 is given by

E(bλ− 1) = −σ2 tr{(X 0X)−1X 0JX}
β0X 0J 0MJXβ

+ o(T−2), (3.2)

whereas an approximation to order σ2 incorporates an extra O(T−3) contribution, viz. the term
σ2
¡
β0X 0J 0MJXβ

¢−1
. Hence, large-T and small-σ asymptotic expansions correspond here more

closely than in the stable dynamic model (where small-σ is inferior because any Þnite order
small-σ approximation omits terms of order T−1), but they are not equivalent and the leading
term of small-σ incorporates contributions here, which are omitted in the leading term of the
large-T approximation.

The case where there is a constant term but no further exogenous variables is of particular
interest. The corresponding bias can be obtained by substituting X = ι in Theorem 1, but
the resulting expression will then include also some elements which are o(T−3). These can be
eliminated; the resulting �trimmed� expression is evaluated in Appendix D, leading to the
following result.

Corollary 1. If in the model of Theorem 1 we have X = ι with Þnite intercept β 6= 0, then
the bias simpliÞes to:

E(bλ− 1) = −6µσ
β

¶2 1
T 2
+ 18

µ
σ

β

¶2 1
T 3
− 84
5

µ
σ

β

¶4 1
T 3
+ o(T−3). (3.3)

From this we see that the bias is always negative to the order T−2, and that the magnitude
of the bias crucially depends on the ratio σ/β. From Corollary 1 it is fully evident that an
approximation to order O(σ2) incorporates some of the order T−3 bias, viz. a positive contri-
bution, whereas a negative order T−3 contribution is omitted because it is O(σ4). Note that
when σ/β = (90/84)1/2 ≈ 1.15 the two O(T−3) terms cancel.

To obtain an approximation to the MSE of bλ we use (2.11) and write
(bλ− 1)2 = µβ0X 0J 0Mu+ u0J 0Mu

β0X 0J 0MJXβ

¶2µ
1+

2β0X 0J 0MJu+ u0J 0MJu
β0X 0J 0MJXβ

¶−2
. (3.4)

Expanding the right hand side term as a power series in which successive terms are of increasing
powers of Op(T−1/2) yields the following (proof in Appendix E).

Theorem 2. In the model of Theorem 1 the MSE of the least squares estimator of λ to the
order of T−4 is given by:

E(bλ− 1)2 =
σ2

β0X 0J 0MJXβ
+ σ4

{[tr (MJ)]2 + tr (JMJM)− tr (J 0MJ)}¡
β0X 0J 0MJXβ

¢2
+4σ4

¡
β0X 0J 0MJJ 0MJXβ − β0X 0J 0MJMJMJXβ

¢¡
β0X 0J 0MJXβ

¢3 + o(T−4). (3.5)
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Because the squared bias of bλ is O(T−4) the Þrst term in the above expression, which is
the only O(T−3) contribution to the MSE, establishes also an approximation to Var(bλ) =
MSE(bλ) − [E(bλ − 1)]2. For the special case of a constant and no further exogenous regressors
this yields:

Corollary 2. If in the model of Theorem 2 we have X = ι with Þnite intercept β 6= 0, then
the MSE and variance simplify to

E(bλ− 1)2 = 12µσ
β

¶2 1
T 3
+
336

5

µ
σ

β

¶4 1
T 4
+ o(T−4) (3.6)

and

Var(bλ) = 12µσ
β

¶2 1
T 3
+
156

5

µ
σ

β

¶4 1
T 4
+ o(T−4). (3.7)

From the results of the two corollaries it is apparent that for a given sample size T the quality
of the approximations will deteriorate as |σ/β| increases above unity. Thus the smaller the
absolute value of the standardized drift |β/σ| is, the larger the sample size will need to be to
achieve a desired accuracy. This point will be addressed in Section 5 where the accuracy of the
approximations will be examined and compared with their �untrimmed� counterparts, but also
with the specially designed small-drift asymptotic approximations.

4. The Moments of the Full Coefficient Vector

We now approximate the Þrst two moments of the least squares estimator of the full vector of
coefficients (λ,β0), and at the same time we shall relax the assumption on the stationarity of
the exogenous regressors. We rewrite model (2.3) as

y = λy−1 +Xβ + u = Zα+ u, (4.1)

where Z = (y−1 : X), α = (λ,β0)0 and the least squares estimator

bα = (bλ, bβ0)0 = (Z0Z)−1Z0y (4.2)

has estimation error Ã bλ− 1bβ − β
!
= bα− α = (Z0Z)−1Z0u. (4.3)

In the case where all regressors X are stationary the estimation error of bλ is Op(T−3/2) while
that of bβ is Op(T−1/2). If some of the regressors in X are non-stationary this affects the order of

probability of both the corresponding coefficients� estimation error and that of bλ. For regressors
that are I(1), i.e. integrated of order one, the estimation error will be Op(T

−3/2), and if such
a regressor has a non-zero coefficient the dependent variable will in principle be I(2), due to
the unit root, which reduces the estimation error of bλ to Op(T−5/2); the same happens when a
non-redundant linear deterministic trend occurs in the model.

To facilitate the development of an appropriate asymptotic expansion for generalX matrices
we shall rescale the regressors and coefficients so that all components of the rescaled estimation
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error vector are of the same stochastic magnitude. Thus, we consider the (k + 1) × (k + 1)
diagonal matrix D designed such that:

D = diag (d1, · · ·, dk+1)

di = T δi , (i = 1, ..., k + 1)

DZ 0ZD = Op(T )

 (4.4)

In the unit root model with stationary X we should have δ1 = −1 and δi = 0 for i > 1; in
a model with k = 2, where the Þrst column of X corresponds to the constant and the second
is a linear trend, we should select δ1 = −2 (if the trend coefficient is nonzero and δ1 = −1
otherwise), δ2 = 0 and δ3 = −1. The model is now

y = ZD(D−1α) + u, (4.5)

with rescaled coefficients D−1α and estimation error

D−1 (bα− α) = (DZ0ZD)−1DZ 0u. (4.6)

To simplify subsequent analysis, we put

W = ZD = Z̄D + �ZD = W̄ + �W, (4.7)

where W̄ = Z̄D = E (Z)D is nonstochastic and �W = �ZD = (Z − Z̄)D is stochastic with
zero mean. Since �Z = Jue01, with e1 = (1, 0, · · ·, 0)0 a (k + 1) × 1 unit-vector, we may write
�W = Jue01D. Now (4.6) can be expressed as

D−1 (bα− α) = (W̄ 0W̄ + W̄ 0 �W + �W 0W̄ + �W 0 �W )−1(W̄ + �W )0u. (4.8)

Note that D is designed such that W̄ 0W̄ = DZ̄ 0Z̄D = O(T ), W̄ 0 �W = DZ̄0 �ZD = Op(T
1/2),

�W 0 �W = D �Z 0 �ZD = Op(1), W̄
0u = Op(T 1/2) and �W 0u = Op(1). Assuming that W̄ 0W̄ is invert-

ible, and putting

R = (W̄ 0W̄ )−1, P = W̄ 0 �WR+ �W 0W̄R, S = �W 0 �WR, (4.9)

where R = O(T−1), P = Op(T−1/2) and S = Op(T−1), we may write

D−1 (bα− α) = R(I + P + S)−1(W̄ + �W )0u, (4.10)

and the inverse matrix can be expanded with successive terms being of descending stochastic
order. It is our intention here to Þnd a stochastic expansion of (4.10) including terms up to
Op(T

−1) only. Hence, it will suffice to approximate the inverse matrix by

(I + P + S)−1 = I − P + op(T−1/2).
The required expansion is then

D−1 (bα− α) = R(I − P )(W̄ + �W )0u+ op(T−1)
= RW̄ 0u+R �W 0u−RPW̄ 0u+ op(T−1), (4.11)

from which the following bias approximation readily follows (see Appendix G).

Theorem 3. In the Þrst-order dynamic regression model (4.1), where the coefficient of the
lagged dependent variable λ is equal to unity, the regressor matrix Z = (y−1 : X) and the
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scaling matrix D = diag (d1, · · ·, dk+1) , with di = T δi (i = 1, ..., k+ 1), is such that DZ0ZD =
Op(T ), the bias of the least squares estimator of the separate elements of the coefficient vector

α =
¡
λ,β0

¢0
can be approximated, provided that Z̄ = (y0ι+ JXβ : X) has full column rank and

β is Þnite and non-zero, as ( i = 1, ..., k):

E(bβi − βi) = −σ2e0i+1[(Z̄ 0Z̄)−1Z̄ 0JZ̄ +
1

2
(T − k − 1)Ik+1](Z̄ 0Z̄)−1e1

+o(T−1+δi+1), (4.12)

and

E(bλ− 1) = −1
2
(T − k)σ2e01(Z̄0Z̄)−1e1 + o(T−1+δ1). (4.13)

This bias approximation of order O(T−1+δ1) for bλ is equivalent to the O(T−2) expression given
in (3.2). From this, and more generally from the lines followed in the proof of Theorem 3,
it is evident that non-stationarity of the regressors does not change the algebraic form of the
approximations; the principal difference is just that the various terms in the approximations
may be of smaller order of magnitude. Hence, the full approximation given in Theorem 1 also
applies to a model which includes a nonredundant I(1) regressor or a linear trend, but then its
accuracy is actually of order O(T−4) rather than O(T−3).

Finally we shall derive an approximation to the MSE of all elements of the coefficient vector.
From (4.10) we obtain the expansion

D−1 (bα− α) = R(I − P − S + PP )W̄ 0u+R(I − P ) �W 0u+ op(T−3/2), (4.14)

from which an expansion for D−1 (bα− α) (bα− α)0D−1 to order T−2 easily follows and this
yields (proof in Appendix H):

Theorem 4. In the model of Theorem 3 the elements of the MSE(bα) matrix , i.e. E(bαi −
αi)(bαj − αj) for i, j = 1, ..., k + 1, are given by

σ2e0iQej
+σ4[tr(QZ̄ 0JJ 0Z̄)− 2 tr(QZ̄ 0JJZ̄)− tr ¡J 0J¢

+tr(QZ̄ 0JZ̄QZ̄0JZ̄) + tr(QZ̄0JZ̄) tr(QZ̄ 0JZ̄)](e0iQe1)(e
0
jQe1)

+σ4(e01Qe1)(e
0
iQZ̄

0[JJ 0 − JJ − J 0J 0 + JZ̄QZ̄ 0J + J 0Z̄QZ̄ 0J 0]Z̄Qej)
+σ4(e01Qej)(e

0
1QZ̄

0[JJ 0 − J 0J − J 0J 0]Z̄Qei)
+σ4(e01Qei)(e

0
1QZ̄

0[JJ 0 − J 0J − JJ ]Z̄Qej)
+σ4[(e01QZ̄

0JZ̄Qe1) + tr(QZ̄0JZ̄)(e01Qe1)](e
0
iQZ̄

0[J + J 0]Z̄Qej)
+o(T−2+δi+δj ), (4.15)

where Q = (Z̄ 0Z̄)−1, Z̄ = E(Z) and ei is the ith unit vector.

From the results in Theorems 3 and 4 approximations to the elements of Var(bα) can be obtained
straightforwardly.

5. The Accuracy of the Approximations

In this section the accuracy of the approximations is examined in the context of three types
of autoregressive models with a unit root, viz. (i) the AR(1) model with a constant only, (ii)
the same model including a linear trend as well, and (iii) the model where this linear trend has
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been replaced by an arbitrary exogenous regressor generated according to a stationary AR(1)
process. Although some of the moments of these least squares estimators can be obtained by
numerical integration, see Evans and Savin (1984) and Paolella (2003), we shall estimate them
straightforwardly by simulation. With a sufficiently large number of replications, the exact
moments can be obtained to a high degree of accuracy so that the estimated moments can be
taken as almost exact for the purpose at hand. Our estimates of true bias, variance and MSE
presented below are based on 105 replications and we also present estimated standard errors of
our Monte Carlo estimates (indicated by MCSE).

For the random walk with drift case, the model actually simulated was y∗t = λy∗t−1+β
∗+ εt

(t = 1, ..., T ) of (2.16), where y∗0 = 0, λ = 1, β
∗ = β/σ 6= 0. Note that we have already found

that bλ is invariant with respect to y0, so taking this to be zero has no consequences for our
Þndings on bλ. From (2.10) it is directly seen that the properties of bλ are not determined by β
and σ separately, but only by their ratio, and that is why we scaled the simulation model and
gave it unit variance. For 0 ≤ |β/σ| < 1 the stochastic trend of the random walk with drift
model dominates the deterministic trend in a certain sense; for |β/σ| > 1 the deterministic
trend dominates. Being especially interested in cases where β is non-negative and given that
our approximations are not valid for β = 0 (for Monte Carlo results on estimator bias in this
model when β = 0 see the g0(T ) function of Figure 2.1 and also MacKinnon and Smith, 1998),
we examined cases where 10 = β/σ = 0.1. Results for three different sample sizes are given in
Tables 1, 2 and 3 respectively. As is to be expected, the bias of bλ depends strongly on β/σ. For
β much larger than σ the bias is very small, even in very small samples. For relatively small
values of β the bias is substantial in samples of a limited size and there is a very serious bias
problem in small samples when β is much smaller than σ.

The case β < σ seems to be relevant in practice. Some empirical evidence is provided by
Rudebusch (1992, Table 3), where a difference stationary model is Þtted by least-squares to 14
time-series. Some care is required in interpreting these results, because they are biased and
even inconsistent in case of model misspeciÞcation, but also because the random walk with drift
model was estimated directly in only a few cases. The more usual case involved augmented
equations which implicitly use a transformation to remove serial correlation and, hence, change
the constant term. However, one can easily recover an estimate of the original constant. For
the 12 cases that have a positive estimate of β/σ, 4 range from 0.19 to 0.26, 7 estimates range
from 0.45 to 0.66 and one is 1.18. Empirical evidence is also found in Hylleberg and Mizon
(1989, p.227) and Banerjee et al. (1993, p.171) which report β/σ values of 0.25, 0.72, 0.77 and
about 1 respectively.

The numerical results for the various approximations to moments derived in this paper are
labelled in the tables by the order of their smallest fully included term and also by the formula
from which they originate (sometimes by deliberately omitting terms in order to be able to
examine the effects of these higher-order terms). Note that non-trimmed approximations may
include parts of terms which are of the same or of smaller order as the remainder term.

In the majority of the cases examined the approximations are very good. However, in sit-
uations where the bias is very substantial, and these are the cases where β/σ is small (we
deliberately included extreme values for β/σ, which may be empirically less relevant, to exam-
ine the robustness of the expansions), the quality of the large-T and small-σ approximations is
generally poor, or sometimes extremely bad, and in those situations the higher-order approxi-
mation is even worse than the approximation established by the leading term only; note for this
phenomenon the difference for the result of Corollary 1 when the full O(T−3) formula is used
or only its O(T−2) term. For large β/σ the higher-order approximation is better. We Þnd no
systematic quality difference between the trimmed and the untrimmed approximations, and the
O(σ2) approximation is not found to be systematically better than the O(T−2) approximation.
Note that the small-drift approximation (only calculated for β∗ ≤ 0.5) does well where the
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other approximations break down. Especially when T and the drift are both small the O(β∗2)
approximation is remarkably accurate. The variance of bλ, and even more so its MSE, increases
when β/σ decreases. We Þnd here again that trimming has little effect and that the large-T
and small-σ approximations are very bad for very small β/σ values, especially for small T.
However, it would be relatively straightforward to develop an adequate small-drift asymptotic
approximation for these second moments. Note that the untrimmed approximations for the
MSE of bλ given in Theorems 2 and 4 respectively give slightly different results. This is because
they are obtained in different ways and hence the retained terms may include different bits
and pieces that are of the same order as the remainder term. The bias in the estimator of the
intercept increases when the intercept decreases, hence its relative impact is very substantial
for small β/σ and then it does not change much with T (for 20 ≤ T ≤ 80). We should keep
in mind, however, that the distribution of bβ is not independent of y0, so choosing y0 = 0 in
the Monte Carlo does not provide general results in this respect (it can be shown, though, that
only the higher moments of bβ are affected by y0 and not its bias). The O(T−1) approximation
to the bias given in Theorem 3 is found to be very accurate as long as the relative bias is less
than, say, 50%. For β/σ > 0.5 the approximations to the variance and MSE of bβ are very good,
even for samples as small as T = 20.

Next we examine the unit root model with a trending drift, i.e.

y∗t = λy∗t−1 +
β1
σ +

β2
σ t+ εt

y∗0 = 0, λ = 1,
β1
σ 6= 0, β2σ 6= 0

εt ∼ iidN(0, 1)


t = 1, ..., T. (5.1)

Note that our approximations are not valid for the case where β1 = β2 = 0. We could have
included the case where the intercept is redundant (β1 = 0) and not the linear trend (β2 6= 0),
but we didn�t, because this does not seem to be a particularly relevant case. We have to exclude
the case where the linear trend is the only redundant regressor (i.e. β1 6= 0, β2 = 0) because
then we have X = (ι : τ ) with τ t = t so that JX = (Jι : Jτ) = (τ − ι : Jτ) and hence
Z̄ = [(τ − ι)β1/σ : τ − ι : Jτ ] does not have full column rank. So this is another case for which
the large-T and small-σ expansions do not exist.

The special form of the X matrix implies thatMy−1, given in (2.9), is invariant with respect
to β1, and so it follows directly from expression (2.4) that the distribution of

bλ will not depend
on β1, and neither will its bias and MSE, nor their approximations. Note that the estimatorsbβ1 and bβ2 are not invariant with respect to either β1 or β2 or y0. We present numerical results
for model (5.1) for parametrizations with β2/σ = 0.1 only; some support for a value in this
range (or smaller) may be obtained again from Rudebusch (1992, Table 9). In Tables 4, 5 and 6
we present some results. For very small samples the bias in bλ is substantial. Its approximation
by the leading term approximation given in Theorem 3 works adequately, even for T = 20.
Including the O(T−4) term, which can be obtained readily from Theorem 1, is found to be
counterproductive in a very small sample. Note that the approximation for the MSE of bλ
given in Theorem 4 works well. As always the quality of the approximation of the variance
suffers when the bias approximation is poor. Note that especially in small samples the relative
biases of bβ1 and bβ2 are very substantial, and that these biases are opposite in sign. Their
approximations, even for huge biases, are remarkably good, and also the second moments can
be approximated extremely well.
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Finally we look into the model

yt = λyt−1 + β1 + β2xt + ut

xt = γ1 + γ2xt−1 + ξt

ξt ∼ iidN(0, 1− γ22)

 t = 1, ..., T, (5.2)

where the xt series is stationary with unit variance and independent of the disturbances.
Because λ = 1, a parsimonious speciÞcation would be ∆yt = β1 + β2xt + ut. We took
β1 = 0, γ1 = 0, y0 = 0 and σ2 = 1, which have no consequences for bλ, whereas we chose
γ2 = {0.5, 0.9}, which produces a less and a more smooth xt series (which were kept constant
over the Monte Carlo replications). We varied the signal-noise ratio SN in the parsimonious
speciÞcation and considered SN = {1, 4, 19}. Since SN = β22Var(xt)/σ

2 = β22 this implies
β2 =

√
SN = {1, 2, 4.36}, whereas the corresponding population multiple correlation coeffcient

R2 of the model is SN
SN+1 = {0.5, 0.8, 0.95}. Results are given in Tables 7, 8 and 9 (based on 106

replications; left panel is for γ2 = 0.5, right panel for γ2 = 0.9). For the non-zero coefficients λ
and β2 the biases are larger for the model with the smooth regressor, and as a rule the biases
decrease with the signal to noise ratio. We chose the design parameters such that the results
expose where about the approximations break down. Note that the O(T−4) approximation
to the bias of bλ is only better than the O(T−3) version when the bias is not too large. The
approximations to the bias in the β coefficients all overstate the actual bias, except when this
bias is very small. All approximations to second moments are found to be quite satisfactory,
except when both the signal to noise ratio and the sample size are very small.

6. Conclusions

The above derivations and calculations shed light on the factors which are important in deter-
mining the bias, the variance and MSE in the unit root dynamic regression model. Earlier, in
KP (1993, 1998b), we developed bias approximation formulae for the stable model and found
that small-σ versions are inferior to large-T versions and that these deteriorate close to the
unit root case, especially when higher-order terms are taken into account. In the present study
we develop special approximations for the unit root case and establish that the large-T and
small-σ versions may both work very well, apart from cases where the regressors are, or are close
to being, redundant, but then alternative asymptotic parameter sequences can be exploited.
From the numerical experiments we Þnd that for the random walk with drift model the bias is
substantial when the sample size is small and the drift is smaller than the standard deviation
of the random shock. This may often be a realistic case, and then bias correction may be worth
pursuing. The large-T or small-σ approximations obtained in this study can be used for that
purpose, but our numerical experiments show that they do not work well for very small relative
values of the drift term. For that situation we present an alternative approximation based on
what we call a small-drift asymptotic expansion and this proves to be very accurate in the
special cases it is meant for. When further exogenous regressors are added to the model the
bias may get worse for practically relevant parameter values. We give special attention to the
model with an intercept and a linear deterministic trend which is so often applied in practice,
viz. when the Dickey-Fuller test is applied. We illustrate that the bias in this model is heavily
dependent on the sample size, and that it may be approximated quite accurately. When the
model contains another stationary exogenous explanatory variable (instead of a linear trend),
we show that the magnitude of the bias depends not only strongly on the sample size, but also
on the smoothness of the regressor and on a signal to noise ratio. We expose the (extreme) cases
where the bias approximation formulae break down and illustrate that in this respect leading
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terms in asymptotic expansions are more robust than higher-order terms. The latter are only
useful when the error of the leading term does not exceed (roughly) 20%. For all models exam-
ined we show that second moments of the least-squares estimators can be approximated quite
accurately by our higher-order asymptotic expressions. We conclude that over a substantial
and practically very relevant part of the parameter space of autoregressive models the tools
developed in this paper can be exploited to improve inference methods when samples are small
or only moderately large and a unit root is present.
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A. Basic results on ι and J

For the T ×1 vector ι and the T ×T matrix J, introduced in (2.7), we have the following results
for t = 1, ..., T : (Jι)t = t − 1, (JJι)t = (t− 1) (t− 2) /2, (J 0Jι)t = [T (T − 1) − t (t− 1)]/2,
(J 0ι)t = T − t and (JJ 0ι)t = (t− 1) (T − t/2). Making use of the well-known summation
results

PT
t=1 t = (T + 1)T/2,

PT
t=1 t

2 = (T + 1) (2T + 1)T/6,
PT
t=1 t

3 = [(T + 1)T ]2/4 andPT
t=1 t

4 = (T + 1) (2T + 1) (3T 2 + 3T − 1)T/30 we also Þnd:

ι0Jι =
TX
t=1

(t− 1) = T

2
(T − 1) = 1

2
T 2 − 1

2
T, (A.1)

ι0J 0Jι =
TX
t=1

(t− 1)2 = 1

3
T 3 − 1

2
T 2 +

1

6
T, (A.2)

ι0JJ 0ι =
TX
t=1

(T − t)2 =
TX
t=1

(t− 1)2 = 1

3
T 3 − 1

2
T 2 +

1

6
T, (A.3)

ι0JJι =
TX
t=1

(T − t) (t− 1) = 1

6
T 3 − 1

2
T 2 +

1

3
T, (A.4)

ι0JJ 0Jι =
TX
t=1

(t− 1)2 (T − t/2) = 5

24
T 4 − 5

12
T 3 +

7

24
T 2 − 1

12
T, (A.5)

ι0J 0J 0Jι =
1

2

TX
t=1

(t− 1)2 (t− 2) = 1

8
T 4 − 5

12
T 3 +

3

8
T 2 − 1

12
T − 1, (A.6)

ι0JJJι =
1

2

TX
t=1

(T − t) (t− 1) (t− 2) = 1

24
T 4 − 1

4
T 3 +

11

24
T 2 − 1

4
T, (A.7)

ι0J 0JJ 0Jι =
TX
t=1

·
T

2
(T − 1)− t

2
(t− 1)

¸2
=
2

15
T 5 +O(T 4), (A.8)

ι0J 0J 0J 0Jι =
1

2

TX
t=1

·
T

2
(T − 1)− t

2
(t− 1)

¸
(t− 1) (t− 2) = 1

30
T 5 +O(T 4). (A.9)
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The simple structure of J also leads to the results:

tr(J i) = 0, for i = 1, 2, ... (A.10)

tr(J 0J) =
1

2
T 2 − 1

2
T, (A.11)

tr
¡
J 0JJ 0J

¢
=

TX
t=1

"
(t− 1) (T − t)2 +

T−tX
i=0

i2

#
=
1

6
T 4 +O(T 3). (A.12)

B. Basic results on orders of magnitude

Here we collect results that support the statements made in Sections 3 and 4 on orders of
magnitude of relevant expressions. From E (X 0u) = 0 and Var (X 0u) = σ2 (X 0X) = O (T )
follows X 0u = Op(T 1/2). Since JX = O(T ) we have X 0J 0JX = O(T 3) and X 0J 0u = Op(T 3/2),
also giving X 0J 0MJX = O(T 3) and X 0J 0Mu = Op(T

3/2). Along similar lines X 0J 0JJ 0JX =
O(T 5) yieldsX 0J 0Ju = Op(T 5/2), from whichX 0J 0MJu = Op(T 5/2) follows. From E (u0Ju) = 0
and Var (u0Ju) = σ4 tr (J 0J) = O(T 2) we Þnd u0Ju = Op(T ), which yields u0J 0Mu = Op(T ).
Moreover, because E (u0J 0Ju) = σ2 tr(J 0J) = O(T 2) and Var (u0J 0Ju) = 2σ4 tr (J 0JJ 0J) =
O(T 4), we Þnd u0J 0Ju = Op(T 2), from which u0J 0MJu = Op(T 2) follows.

C. Proof of Theorem 1

Expanding the inverse factor of (2.11) further than in (2.12) we obtainµ
1+ 2

β0X 0J 0MJu
β0X 0J 0MJXβ

+
u0J 0MJu

β0X 0J 0MJXβ

¶−1
= 1− 2β0X 0J 0MJu

β0X 0J 0MJXβ
− u0J 0MJu
β0X 0J 0MJXβ

+ 4

µ
β0X 0J 0MJu
β0X 0J 0MJXβ

¶2
+4

¡
β0X 0J 0MJu

¢
(u0J 0MJu)¡

β0X 0J 0MJXβ
¢2 − 8

µ
β0X 0J 0MJu
β0X 0J 0MJXβ

¶3
+ op(T

−3/2).

Substitution in (2.11) yields

bλ− 1 =
β0X 0J 0Mu

β0X 0J 0MJXβ
+

u0J 0Mu
β0X 0J 0MJXβ

− 2
¡
β0X 0J 0Mu

¢ ¡
β0X 0J 0MJu

¢¡
β0X 0J 0MJXβ

¢2
−2
¡
β0X 0J 0MJu

¢
(u0J 0Mu)¡

β0X 0J 0MJXβ
¢2 −

¡
β0X 0J 0Mu

¢
(u0J 0MJu)¡

β0X 0J 0MJXβ
¢2

−(u
0J 0MJu) (u0J 0Mu)¡
β0X 0J 0MJXβ

¢2 + 4

¡
β0X 0J 0MJu

¢2 ¡
β0X 0J 0Mu

¢¡
β0X 0J 0MJXβ

¢3
+4

¡
β0X 0J 0MJu

¢2
(u0J 0Mu)¡

β0X 0J 0MJXβ
¢3 + 4

¡
β0X 0J 0MJu

¢ ¡
β0X 0J 0Mu

¢
(u0J 0MJu)¡

β0X 0J 0MJXβ
¢3

−8
¡
β0X 0J 0MJu

¢3 ¡
β0X 0J 0Mu

¢¡
β0X 0J 0MJXβ

¢4 + op(T
−3).
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To approximate the bias we take the expectation of these terms. Terms involving an odd
number of zero mean normal random variables can be ignored. Occasionally we can simplify the
expressions by using the fact that in traces or in scalars the expression is sometimes unchanged
when J is replaced by J 0, and hence J can be replaced by [J + J 0] = 1

2 [ιι
0−IT ]. BecauseMι = 0,

this may lead to some simpliÞcation. Using

E
¡
u0J 0Mu

¢
= σ2 tr (MJ) =

1

2
σ2 tr[M(ιι0 − IT )] = −1

2
σ2(T − k) = O(T ),

E
¡
β0X 0J 0Muu0J 0MJXβ

¢
= σ2β0X 0J 0MJMJXβ

= −1
2
σ2β0X 0J 0MJXβ = O(T 3),

E
¡
u0J 0MJu

¢ ¡
u0J 0Mu

¢
= σ4

£
tr (MJ) tr

¡
J 0MJ

¢
+ 2 tr

¡
J 0MJJ 0M

¢¤
= σ4

£
tr (MJ) tr

¡
J 0MJ

¢− tr ¡J 0MJ¢¤
= σ4 tr (MJ) tr

¡
J 0MJ

¢
+ o(T 3),

E
¡
β0X 0J 0MJu

¢2 ¡
u0J 0Mu

¢
= E

¡
u0J 0MJXββ0X 0J 0MJu

¢ ¡
u0MJu

¢
= σ4

£
tr
¡
J 0MJXββ0X 0J 0MJ

¢
tr (MJ) + 2 tr

¡
J 0MJXββ0X 0J 0MJMJ

¢¤
= σ4

£
tr (MJ)β0X 0J 0MJJ 0MJXβ + 2β0X 0J 0MJMJJ 0MJXβ

¤
= O(T 6),

E
¡
β0X 0J 0MJu

¢ ¡
β0X 0J 0Mu

¢ ¡
u0J 0MJu

¢
= E

¡
u0J 0MJu

¢ ¡
u0J 0MJXββ0X 0J 0Mu

¢
= σ4

£
tr
¡
J 0MJ

¢
β0X 0J 0MJ 0MJXβ + 2β0X 0J 0MJ 0MJJ 0MJXβ

¤
= σ4[−1

2
tr
¡
J 0MJ

¢
β0X 0J 0MJXβ + 2β0X 0J 0MJ 0MJJ 0MJXβ]

= 2σ4β0X 0J 0MJ 0MJJ 0MJXβ + o(T 6),

E
¡
β0X 0J 0MJu

¢3 ¡
β0X 0J 0Mu

¢
= E

¡
u0J 0MJXββ0X 0J 0MJu

¢ ¡
u0J 0MJXββ0X 0J 0Mu

¢
= 3σ4

¡
β0X 0J 0MJJ 0MJXβ

¢ ¡
β0X 0J 0MJMJXβ

¢
= −3

2
σ4
¡
β0X 0J 0MJJ 0MJXβ

¢ ¡
β0X 0J 0MJXβ

¢
= O(T 8),

and removing terms that are of such magnitude that they can be neglected in an O(T−3)
approximation, yields

E(bλ− 1) =
σ2 tr(MJ)

β0X 0J 0MJXβ
+

σ2

β0X 0J 0MJXβ
− σ

4 tr (MJ) tr (J 0MJ)¡
β0X 0J 0MJXβ

¢2
+
4σ4 tr (MJ)β0X 0J 0MJJ 0MJXβ¡

β0X 0J 0MJXβ
¢3 +

8σ4β0X 0J 0MJMJJ 0MJXβ¡
β0X 0J 0MJXβ

¢3
+
8σ4β0X 0J 0MJ 0MJJ 0MJXβ¡

β0X 0J 0MJXβ
¢3 + op(T

−3),

where the last two terms can be combined, such that the numerator involves

β0X 0J 0(MJ + J 0)MJJ 0MJXβ = −1
2
β0X 0J 0MJJ 0MJXβ = O(T 5),

which shows that these two terms can be neglected in the result of the theorem.
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D. Proof of Corollary 1

Putting X = ι, M = IT − 1
T ιι

0 and β scalar in the various terms of Theorem 1 and using results
from Appendix A leads to

tr (MJ) = − 1
T
ι0J 0ι = −1

2
(T − 1) ,

X 0J 0MJX = ι0J 0Jι− 1

T

¡
ι0Jι

¢2
=
1

12
T (T − 1) (T + 1) ,

tr
¡
J 0MJ

¢
= tr

¡
J 0J

¢− 1

T
ι0JJ 0ι =

1

6
(T 2 − 1),

X 0J 0MJJ 0MJX = ι0J 0JJ 0Jι− 2

T
ι0Jιι0JJ 0Jι+

1

T 2
ι0J 0ιι0JJ 0ιι0Jι =

1

120
T 5 +O(T 4),

which after substitution lead to the result of the Corollary.

E. Proof of Theorem 2

To Þnd the approximation to the MSE we commence from (3.4). Using an expansion for the
inverse factor of the form (1+ x)−2 = 1− 2x+3x2− 4x3 + .... the MSE may be approximated
by

E(bλ− 1)2 =
E
¡
β0X 0J 0Mu

¢2¡
β0X 0J 0MJXβ

¢2 + E (uJ 0Mu)2¡
β0X 0J 0MJXβ

¢2 − 2E
¡
β0X 0J 0Mu

¢2
(u0J 0MJu)¡

β0X 0J 0MJXβ
¢3

−8E
¡
β0X 0J 0Mu

¢
(u0J 0Mu)

¡
β0X 0J 0MJu

¢¡
β0X 0J 0MJXβ

¢3
+12

E
¡
β0X 0J 0Mu

¢2 ¡
β0X 0J 0MJu

¢2¡
β0X 0J 0MJXβ

¢4 + o(T−4).

Here we have removed terms from the original expansion which involve a product of an odd
number of normal random variables with mean zero, together with terms which are op(T−4). Be-
low we evaluate the expectations in the various numerators and exploit the same simpliÞcation
as in Appendix C.

E
¡
β0X 0J 0Mu

¢2
= σ2β0X 0J 0MJXβ,

E
¡
uJ 0Mu

¢2
= σ4{[tr (MJ)]2 + tr (JMJM) + tr ¡J 0MJ¢},

E
¡
β0X 0J 0Mu

¢2 ¡
u0J 0MJu

¢
= E

¡
u0MJXββ0X 0J 0Mu

¢ ¡
u0J 0MJu

¢
= σ4

©
tr
¡
J 0MJ

¢
β0X 0J 0MJXβ + 2β0X 0J 0MJ 0MJMJXβ

ª
,

E
¡
β0X 0J 0Mu

¢ ¡
u0J 0Mu

¢ ¡
β0X 0J 0MJu

¢
= E

¡
u0J 0MJXββ0X 0J 0Mu

¢ ¡
u0J 0Mu

¢
= σ4

©
tr (MJ)β0X 0J 0MJ 0MJXβ + β0X 0J 0M

£
J 0MJ 0 + JJ 0

¤
MJXβ

ª
= σ4{−1

2
tr (MJ)β0X 0J 0MJXβ + β0X 0J 0M

£
JMJ + JJ 0

¤
MJXβ},
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E
¡
β0X 0J 0Mu

¢2 ¡
β0X 0J 0MJu

¢2
= E

¡
u0MJXββ0X 0J 0Mu

¢ ¡
u0J 0MJXββ0X 0J 0MJu

¢
= σ4[β0X 0J 0MJXβ × β0X 0J 0MJJ 0MJXβ + 2

¡
β0X 0J 0MJMJXβ

¢2
]

= σ4[β0X 0J 0MJXβ × β0X 0J 0MJJ 0MJXβ +
1

2

¡
β0X 0J 0MJXβ

¢2
].

Substitution yields

E(bλ− 1)2 = σ2

β0X 0J 0MJXβ
+ σ4

[tr (MJ)]2 + tr (JMJM) + tr (J 0MJ)¡
β0X 0J 0MJXβ

¢2
−2σ4 tr (J

0MJ)β0X 0J 0MJXβ + 2β0X 0J 0MJ 0MJMJXβ¡
β0X 0J 0MJXβ

¢3
−8σ4β

0X 0J 0M [JMJ + JJ 0]MJXβ − 1
2 tr (MJ)β

0X 0J 0MJXβ¡
β0X 0J 0MJXβ

¢3
+12σ4

β0X 0J 0MJXβ × β0X 0J 0MJJ 0MJXβ + 1
2

¡
β0X 0J 0MJXβ

¢2¡
β0X 0J 0MJXβ

¢4 + o(T−4)

and removing terms of small order we obtain

E(bλ− 1)2 =
σ2

β0X 0J 0MJXβ
+ σ4

[tr (MJ)]2 + tr (JMJM)− tr (J 0MJ)¡
β0X 0J 0MJXβ

¢2
−4σ4β

0X 0J 0MJ 0MJMJXβ¡
β0X 0J 0MJXβ

¢3 − 8σ4β
0X 0J 0MJMJMJXβ¡
β0X 0J 0MJXβ

¢3
+4σ4

β0X 0J 0MJJ 0MJXβ¡
β0X 0J 0MJXβ

¢3 + o(T−4)

which then, after minor further simpliÞcation, gives the result of the theorem.

F. Proof of Corollary 2

Following up on the proof in Appendix D, we have to evaluate a few extra expressions after
putting X = ι, M = IT − 1

T ιι
0 and β scalar. We Þnd

tr (JMJM) = tr (JJ)− 2

T
ι0JJι+

1

T 2
¡
ι0Jι

¢2
= − 1

12
T 2 +

1

2
T − 5

12
,

and

X 0J 0MJMJMJX = ι0J 0JJJι− 1

T
ι0J 0ιι0JJJι− 1

T
ι0J 0Jιι0JJι− 1

T
ι0J 0JJιι0Jι

+
2

T 2
¡
ι0J 0ι

¢2
ι0JJι+

1

T 2
ι0J 0Jι

¡
ι0J 0ι

¢2 − 1

T 3
¡
ι0J 0ι

¢4
= − 1

720
T 5 +O(T 4).

Substitution yields

E(bλ− 1)2 =

µ
σ

β

¶2 12

T (T 2 − 1) +
µ
σ

β

¶4 122
T 4

µ
1

4
− 1

12
− 1
6

¶
+4

µ
σ

β

¶4 123
T 4

µ
1

120
+

1

720

¶
+ o(T−4)

which leads to the result in the corollary.
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G. Proof of Theorem 3

The required bias is obtained from the expansion (4.11). Since terms with an odd number of
stochastic factors have zero expectation, we have to evaluate

E
£
D−1 (bα− α)¤ = E[R �W 0u]−RE[(W̄ 0 �W + �W 0W̄ )RW̄ 0u] + o(T−1).

We Þnd

E(R �W 0u) = RE(De1u0J 0u) = RDe1E(u0J 0u) = 0,

E(W̄ 0 �WRW̄ 0u) = E(W̄ 0Jue01DRW̄
0u) = σ2W̄ 0JW̄RDe1,

E( �W 0W̄RW̄ 0u) = E(De1u0J 0W̄RW̄ 0u) = σ2 tr(RW̄ 0JW̄ )De1,

hence, using R = D−1(Z̄ 0Z̄)−1D−1 and W̄ = Z̄D, we Þnd

E
£
D−1 (bα− α)¤ = (G.1)

−σ2D−1[(Z̄ 0Z̄)−1Z̄ 0JZ̄ + tr{(Z̄0Z̄)−1Z̄0JZ̄}Ik+1](Z̄ 0Z̄)−1e1 + o(T−1).
Some further simpliÞcation is possible. Note that

tr{(Z̄0Z̄)−1Z̄ 0JZ̄} = 1

2
tr{(Z̄0Z̄)−1Z̄0 ¡J + J 0¢ Z̄} = 1

2
tr{Z̄(Z̄0Z̄)−1Z̄ 0 ¡ιι0 − IT ¢}.

Since the regression contains a constant, we have Z̄(Z̄ 0Z̄)−1Z̄ 0ι = ι, and hence

tr{(Z̄0Z̄)−1Z̄0JZ̄} = 1

2
[tr
¡
ιι0
¢− tr (Ik+1)] = 1

2
(T − k − 1) . (G.2)

Finally consider

e01(Z̄
0Z̄)−1Z̄0JZ̄(Z̄0Z̄)−1e1 =

1

2
e01(Z̄

0Z̄)−1Z̄ 0[ιι0 − I]Z̄(Z̄ 0Z̄)−1e1.

Because ι is the second column of Z̄ we have (Z̄ 0Z̄)−1Z̄ 0ι = e2, and hence, using e01e2 = 0,

e01(Z̄
0Z̄)−1Z̄ 0JZ̄(Z̄ 0Z̄)−1e1 = −1

2
e01(Z̄

0Z̄)−1e1. (G.3)

Premultiplying both sides of (G.1) with e01D and making use of (G.2) and (G.3) yields the bias

of bλ as stated in the theorem, which can be shown to be equivalent to (3.2) for the case δ1 = −1.
Premultiplying (G.1) by e0i+1D yields the bias of the individual elements bβi, i = 1, ..., k.
H. Proof of Theorem 4

Upon removing the terms which are a product of an odd number of normal random variables
with zero mean, we may write

E[D−1 (bα− α) (bα− α)0D−1] =
RE[W̄ 0uu0W̄ + �W 0uu0 �W + PW̄ 0uu0W̄P 0

−PW̄ 0uu0 �W − W̄ 0uu0 �WP 0 − P �W 0uu0W̄ − �W 0uu0W̄P 0

+PPW̄ 0uu0W̄ + W̄ 0uu0W̄P 0P 0 − SW̄ 0uu0W̄ − W̄ 0uu0W̄S0]R+ o(T−2). (H.1)
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The required approximation to the MSE of bα is obtained by evaluating this expectation and
pre- and post-multiplying the result by D. We make use of the substitutions W̄ 0W̄ = R−1,
�W = Jue01D, P = W̄ 0Jue01DR +De1u0J 0W̄R and S = De1u

0J 0Jue01DR and, often using the
result E(uu0Buu0) = σ4[tr(B)I + B + B0] for general B matrices, we Þnd for the successive
terms:

E(W̄ 0uu0W̄ ) = σ2W̄ 0W̄ = σ2R−1

E( �W 0uu0 �W ) = E(De1u0J 0uu0Jue01D) = σ
4 tr

¡
J 0J

¢
De1e

0
1D

E(PW̄ 0uu0W̄P 0)
= E(W̄ 0Jue01DRW̄

0uu0W̄RDe1u0J 0W̄ +De1u
0J 0W̄RW̄ 0uu0W̄RDe1u0J 0W̄

+W̄ 0Jue01DRW̄
0uu0W̄RW̄ 0Jue01D +De1u

0J 0W̄RW̄ 0uu0W̄RW̄ 0Jue01D)
= E(W̄ 0Juu0W̄RDe1e01DRW̄

0uu0J 0W̄ +De1e
0
1DRW̄

0uu0J 0W̄RW̄ 0uu0J 0W̄
+W̄ 0Juu0W̄RW̄ 0Juu0W̄RDe1e01D + u

0J 0W̄RW̄ 0uu0W̄RW̄ 0JuDe1e01D)
= σ4(e01DRDe1)W̄

0JJ 0W̄ + 2σ4W̄ 0JW̄RDe1e01DRW̄
0J 0W̄

+σ4 tr(RW̄ 0JW̄ )De1e01DRW̄
0J 0W̄ + σ4De1e

0
1DRW̄

0J 0W̄RW̄ 0J 0W̄
+σ4De1e

0
1DRW̄

0JJ 0W̄ + σ4 tr(RW̄ 0JW̄ )W̄ 0JW̄RDe1e01D
+σ4W̄ 0JW̄RW̄ 0JW̄RDe1e01D + σ

4W̄ 0JJ 0W̄RDe1e01D
+σ4 tr(RW̄ 0JW̄ ) tr(RW̄ 0JW̄ )De1e01D
+σ4 tr(RW̄ 0JJ 0W̄ )De1e01D + σ

4 tr(RW̄ 0JW̄RW̄ 0JW̄ )De1e01D

E(PW̄ 0uu0 �W ) = E(W̄ 0Jue01DRW̄
0uu0Jue01D +De1u

0J 0W̄RW̄ 0uu0Jue01D)
= E(W̄ 0Juu0Juu0W̄RDe1e01D + u

0J 0W̄RW̄ 0uu0JuDe1e01D)
= σ4W̄ 0JJW̄RDe1e01D + σ

4W̄ 0JJ 0W̄RDe1e01D
+σ4 tr(RW̄ 0JJ 0W̄ )De1e01D + σ

4 tr(RW̄ 0JJW̄ )De1e01D
E(W̄ 0uu0 �WP 0) = [E(PW̄ 0uu0 �W )]0

E(P �W 0uu0W̄ ) = E(W̄ 0Jue01DRDe1u
0J 0uu0W̄ +De1u

0J 0W̄RDe1u0J 0uu0W̄ )
= E[(e01DRDe1)W̄

0Juu0J 0uu0W̄ +De1e
0
1DRW̄

0Juu0J 0uu0W̄ ]
= σ4(e01DRDe1)W̄

0JJ 0W̄ + σ4(e01DRDe1)W̄
0JJW̄

+σ4De1e
0
1DRW̄

0JJ 0W̄ + σ4De1e
0
1DRW̄

0JJW̄
E( �W 0uu0W̄P 0) = [E(PW̄ 0uu0 �W )]0

E(PPW̄ 0uu0W̄ )
= E(W̄ 0Jue01DRW̄

0Jue01DRW̄
0uu0W̄ +De1u

0J 0W̄RW̄ 0Jue01DRW̄
0uu0W̄

+W̄ 0Jue01DRDe1u
0J 0W̄RW̄ 0uu0W̄ +De1u

0J 0W̄RDe1u0J 0W̄RW̄ 0uu0W̄ )
= E[W̄ 0Juu0J 0W̄RDe1e01DRW̄

0uu0W̄ +De1e
0
1DRW̄

0uu0J 0W̄RW̄ 0Juu0W̄
+(e01DRDe1)W̄

0Juu0J 0W̄RW̄ 0uu0W̄ +De1e
0
1DRW̄

0Juu0J 0W̄RW̄ 0uu0W̄ ]
= σ4(e01DRW̄

0JW̄RDe1)W̄ 0JW̄ + σ4W̄ 0JJ 0W̄RDe1e01D
+σ4W̄ 0JW̄RDe1e01DRW̄

0JW̄ + σ4 tr(RW̄ 0JJ 0W̄ )De1e01D
+2σ4De1e

0
1DRW̄

0J 0W̄RW̄ 0JW̄ + σ4 tr(RW̄ 0JW̄ )(e01DRDe1)W̄
0JW̄

+σ4(e01DRDe1)W̄
0JJ 0W̄ + σ4(e01DRDe1)W̄

0JW̄RW̄ 0JW̄
+σ4 tr(RW̄ 0JW̄ )De1e01DRW̄

0JW̄ + σ4De1e
0
1DRW̄

0JJ 0W̄
+σ4De1e

0
1DRW̄

0JW̄RW̄ 0JW̄

22



E(W̄ 0uu0W̄P 0P 0) = [E(PPW̄ 0uu0W̄ )]0

E(SW̄ 0uu0W̄ ) = E(De1u
0J 0Jue01DRW̄

0uu0W̄ ) = E(De1e01DRW̄
0uu0J 0Juu0W̄ )

= σ4 tr(J 0J)De1e01D + 2σ
4De1e

0
1DRW̄

0J 0JW̄
E(W̄ 0uu0W̄S0) = [E(SW̄ 0uu0W̄ )]0

Now we can evaluate the expectation of the term in square brackets in (H.1). This amounts to:

σ2R−1 + σ4 tr
¡
J 0J

¢
De1e

0
1D + σ

4(e01DRDe1)W̄
0JJ 0W̄

+2σ4W̄ 0JW̄RDe1e01DRW̄
0J 0W̄ + σ4 tr(RW̄ 0JW̄ )De1e01DRW̄

0J 0W̄
+σ4De1e

0
1DRW̄

0J 0W̄RW̄ 0J 0W̄ + σ4De1e
0
1DRW̄

0JJ 0W̄
+σ4 tr(RW̄ 0JW̄ )W̄ 0JW̄RDe1e01D + σ

4W̄ 0JW̄RW̄ 0JW̄RDe1e01D
+σ4W̄ 0JJ 0W̄RDe1e01D + σ

4 tr(RW̄ 0JW̄ ) tr(RW̄ 0JW̄ )De1e01D
+σ4 tr(RW̄ 0JJ 0W̄ )De1e01D + σ

4 tr(RW̄ 0JW̄RW̄ 0JW̄ )De1e01D
−σ4W̄ 0JJW̄RDe1e01D − σ4W̄ 0JJ 0W̄RDe1e01D − 2σ4 tr(RW̄ 0JJ 0W̄ )De1e01D
−2σ4 tr(RW̄ 0JJW̄ )De1e01D − σ4De1e01DRW̄ 0J 0J 0W̄ − σ4De1e01DRW̄ 0JJ 0W̄
−2σ4(e01DRDe1)W̄ 0JJ 0W̄ − σ4(e01DRDe1)W̄ 0JJW̄ − σ4De1e01DRW̄ 0JJ 0W̄
−σ4De1e01DRW̄ 0JJW̄ − σ4(e01DRDe1)W̄ 0J 0J 0W̄ − σ4W̄ 0JJ 0W̄RDe1e01D
−σ4W̄ 0J 0J 0W̄RDe1e01D + σ

4(e01DRW̄
0JW̄RDe1)W̄ 0JW̄ + σ4W̄ 0JJ 0W̄RDe1e01D

+σ4W̄ 0JW̄RDe1e01DRW̄
0JW̄ + 2σ4 tr(RW̄ 0JJ 0W̄ )De1e01D

+2σ4De1e
0
1DRW̄

0J 0W̄RW̄ 0JW̄ + σ4 tr(RW̄ 0JW̄ )(e01DRDe1)W̄
0JW̄

+2σ4(e01DRDe1)W̄
0JJ 0W̄ + σ4(e01DRDe1)W̄

0JW̄RW̄ 0JW̄
+σ4 tr(RW̄ 0JW̄ )De1e01DRW̄

0JW̄ + σ4De1e
0
1DRW̄

0JJ 0W̄
+σ4De1e

0
1DRW̄

0JW̄RW̄ 0JW̄ + σ4(e01DRW̄
0JW̄RDe1)W̄ 0J 0W̄

+σ4De1e
0
1DRW̄

0JJ 0W̄ + σ4W̄ 0J 0W̄RDe1e01DRW̄
0J 0W̄

+2σ4W̄ 0J 0W̄RW̄ 0JW̄RDe1e01D + σ
4 tr(RW̄ 0JW )(e01DRDe1)W̄

0J 0W̄
+σ4(e01DRDe1)W̄

0J 0W̄RW̄ 0J 0W̄ + σ4 tr(RW̄ 0JW̄ )W̄ 0J 0W̄RDe1e01D
+σ4W̄ 0JJ 0W̄RDe1e01D + σ

4W̄ 0J 0W̄RW̄ 0J 0W̄RDe1e01D
−2σ4 tr(J 0J)De1e01D − 2σ4De1e01DRW̄ 0J 0JW̄ − 2σ4W̄ 0J 0JW̄RDe1e01D

Exploiting J + J 0 = ιι0 − I yields
W̄RW̄ 0(J + J 0)W̄ = W̄RW̄ 0(ιι0 − I)W̄ = (ιι0 − I)W̄ ,
W̄ 0(J + J 0)W̄R = W̄ 0(ιι0 − I)W̄R = W̄ 0ιι0W̄R− I = W̄ 0ιe02 − I,

W̄ 0(J + J 0)W̄RDe1 = (W̄ 0ιe02 − I)De1 = −De1.
Thus we can simplify the term in square brackets and obtain:

σ2R−1

+σ4[2− tr ¡J 0J¢− 2 tr(RW̄ 0JW̄ )− 2 tr(RW̄ 0JJW̄ ) + tr(RW̄ 0JJ 0W̄ )
+ tr(RW̄ 0JW̄RW̄ 0JW̄ ) + tr(RW̄ 0JW̄ ) tr(RW̄ 0JW̄ )]De1e01D

+σ4(e01DRDe1)W̄
0(JJ 0 − JJ − J 0J 0)W̄

+σ4W̄ 0(JJ 0 − J 0J − J 0J 0)W̄RDe1e01D
+σ4De1e

0
1DRW̄

0(JJ 0 − J 0J − JJ)W̄
+σ4[(e01DRW̄

0JW̄RDe1) + tr(RW̄ 0JW̄ )(e01DRDe1)]W̄
0(J + J 0)W̄

+σ4(e01DRDe1)(W̄
0JW̄RW̄ 0JW̄ + W̄ 0J 0W̄RW̄ 0J 0W̄ )
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To obtain the required result for (H.1) we should pre- and postmultiply the above by R, but Þrst
we may remove terms from it that are o(1). Finally pre- and postmultiplying this expression
by D yields the result of the theorem.
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Table 1:
Bias, variance and MSE of coefficient estimators in model (2.16) for various values of β/σ

T = 20 ref. 10 5 2 1 0.5 0.2 0.1

bias bλ -0.0001 -0.0005 -0.0033 -0.0151 -0.0774 -0.1916 -0.2229
(MCSE) (0.0000) (0.0000) (0.0001) (0.0001) (0.0004) (0.0006) (0.0006)
O(T−2) (3.3) -0.0002 -0.0006 -0.0037 -0.0150 -0.0600 -0.3750 -1.5000
O(T−2) (3.2) -0.0001 -0.0006 -0.0036 -0.0143 -0.0571 -0.3571 -1.4286
O(σ2) (3.3) -0.0001 -0.0005 -0.0032 -0.0127 -0.0510 -0.3187 -1.2750
O(σ2) (3.1) -0.0001 -0.0005 -0.0032 -0.0128 -0.0511 -0.3195 -1.2782
O(T−3) (3.3) -0.0001 -0.0005 -0.0033 -0.0148 -0.0846 -1.6313 -22.275
O(T−3) (3.1) -0.0001 -0.0005 -0.0033 -0.0148 -0.0834 -1.5803 -21.450
O(β∗2) (2.19) � � � � -0.0037 -0.1967 -0.2244

Var bλ 0.0000 0.0001 0.0004 0.0018 0.0138 0.0311 0.0331
O(T−3) (3.7) 0.0000 0.0001 0.0004 0.0015 0.0060 0.0375 0.1500
O(T−3) (3.5) 0.0000 0.0001 0.0004 0.0015 0.0060 0.0376 0.1504
O(T−4) (3.7) 0.0000 0.0001 0.0004 0.0017 0.0091 0.1594 2.1000

MSE bλ 0.0000 0.0001 0.0004 0.0020 0.0198 0.0678 0.0828
O(T−4) (3.6) 0.0000 0.0001 0.0004 0.0019 0.0127 0.3000 4.3500
O(T−4) (3.5) 0.0000 0.0001 0.0004 0.0019 0.0127 0.3002 4.3519
O(T−4) (4.15) 0.0000 0.0001 0.0004 0.0019 0.0121 0.2747 3.9448

bias bβ/σ 0.0159 0.0331 0.0853 0.1757 0.3075 0.2381 0.1323
(MCSE) (0.0014) (0.0014) (0.0014) (0.0013) (0.0015) (0.0020) (0.0022)
O(T−1) (4.12) 0.0171 0.0343 0.0857 0.1714 0.3429 0.8571 1.7143

Var bβ/σ 0.1864 0.1862 0.1847 0.1816 0.2131 0.4030 0.4821
O(T−2) (4.15) 0.1857 0.1856 0.1848 0.1820 0.1709 0.0929 -0.1857

MSE bβ/σ 0.1866 0.1873 0.1920 0.2125 0.3077 0.4596 0.4996
O(T−2) (4.15) 0.1860 0.1867 0.1921 0.2114 0.2884 0.8276 2.7531

Table 2:
Bias, variance and MSE of coefficient estimators in model (2.16) for various values of β/σ

T = 40 ref. 10 5 2 1 0.5 0.2 0.1

bias bλ -0.0000 -0.0001 -0.0009 -0.0037 -0.0193 -0.0845 -0.1131
(MCSE) (0.0000) (0.0000) (0.0000) (0.0001) (0.0001) (0.0003) (0.0003)
O(T−2) (3.3) -0.0000 -0.0002 -0.0009 -0.0037 -0.0150 -0.0938 -0.3750
O(T−2) (3.2) -0.0000 -0.0001 -0.0009 -0.0037 -0.0146 -0.0915 -0.3659
O(σ2) (3.3) -0.0000 -0.0001 -0.0009 -0.0035 -0.0139 -0.0867 -0.3469
O(σ2) (3.1) -0.0000 -0.0001 -0.0009 -0.0035 -0.0139 -0.0868 -0.3471
O(T−3) (3.3) -0.0000 -0.0001 -0.0009 -0.0037 -0.0181 -0.2508 -2.9719
O(T−3) (3.1) -0.0000 -0.0001 -0.0009 -0.0037 -0.0180 -0.2472 -2.9136
O(β∗2) (2.19) � � � � 0.1599 -0.0795 -0.1137

Var bλ 0.0000 0.0000 0.0000 0.0002 0.0014 0.0081 0.0098
O(T−3) (3.7) 0.0000 0.0000 0.0000 0.0002 0.0008 0.0047 0.0187
O(T−3) (3.5) 0.0000 0.0000 0.0000 0.0002 0.0008 0.0047 0.0188
O(T−4) (3.7) 0.0000 0.0000 0.0000 0.0002 0.0009 0.0123 0.1406

MSE bλ 0.0000 0.0000 0.0000 0.0002 0.0018 0.0153 0.0226
O(T−4) (3.6) 0.0000 0.0000 0.0000 0.0002 0.0012 0.0211 0.2813
O(T−4) (3.5) 0.0000 0.0000 0.0000 0.0002 0.0012 0.0211 0.2813
O(T−4) (4.15) 0.0000 0.0000 0.0000 0.0002 0.0011 0.0203 0.2679

bias bβ/σ 0.0078 0.0171 0.0452 0.0930 0.1895 0.2269 0.1407
(MCSE) (0.0010) (0.0010) (0.0010) (0.0010) (0.0010) (0.0014) (0.0016)
O(T−1) (4.12) 0.0093 0.0185 0.0463 0.0927 0.1854 0.4634 0.9268

Var bβ/σ 0.0962 0.0962 0.0958 0.0951 0.0993 0.1886 0.2604
O(T−2) (4.15) 0.0963 0.0963 0.0961 0.0955 0.0930 0.0758 0.0140

MSE bβ/σ 0.0963 0.0965 0.0979 0.1037 0.1352 0.2401 0.2802
O(T−2) (4.15) 0.0964 0.0967 0.0983 0.1041 0.1274 0.2905 0.8730
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Table 3:
Bias, variance and MSE of coefficient estimators in model (2.16) for various values of β/σ

T = 80 ref. 10 5 2 1 0.5 0.2 0.1

bias bλ -0.0000 -0.0000 -0.0002 -0.0009 -0.0042 -0.0307 -0.0531
(MCSE) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0001) (0.0002)
O(T−2) (3.3) -0.0000 -0.0000 -0.0002 -0.0009 -0.0037 -0.0234 -0.0938
O(T−2) (3.2) -0.0000 -0.0000 -0.0002 -0.0009 -0.0037 -0.0231 -0.0926
O(σ2) (3.3) -0.0000 -0.0000 -0.0002 -0.0009 -0.0036 -0.0226 -0.0902
O(σ2) (3.1) -0.0000 -0.0000 -0.0002 -0.0009 -0.0036 -0.0226 -0.0902
O(T−3) (3.3) -0.0000 -0.0000 -0.0002 -0.0009 -0.0041 -0.0431 -0.4184
O(T−3) (3.1) -0.0000 -0.0000 -0.0002 -0.0009 -0.0041 -0.0428 -0.4145
O(β∗2) (2.19) � � � � � -0.0149 -0.0523

Var bλ 0.0000 0.0000 0.0000 0.0000 0.0001 0.0016 0.0026
O(T−3) (3.7) 0.0000 0.0000 0.0000 0.0000 0.0001 0.0006 0.0023
O(T−3) (3.5) 0.0000 0.0000 0.0000 0.0000 0.0001 0.0006 0.0023
O(T−4) (3.7) 0.0000 0.0000 0.0000 0.0000 0.0001 0.0011 0.0100

MSE bλ 0.0000 0.0000 0.0000 0.0000 0.0001 0.0025 0.0054
O(T−4) (3.6) 0.0000 0.0000 0.0000 0.0000 0.0001 0.0016 0.0187
O(T−4) (3.5) 0.0000 0.0000 0.0000 0.0000 0.0001 0.0016 0.0188
O(T−4) (4.15) 0.0000 0.0000 0.0000 0.0000 0.0001 0.0016 0.0183

bias bβ/σ 0.0037 0.0085 0.0230 0.0474 0.0983 0.1817 0.1368
(MCSE) (0.0007) (0.0007) (0.0007) (0.0007) (0.0007) (0.0009) (0.0011)
O(T−1) (4.12) 0.0048 0.0096 0.0241 0.0481 0.0963 0.2407 0.4815

Var bβ/σ 0.0491 0.0491 0.0491 0.0489 0.0489 0.0763 0.1235
O(T−2) (4.15) 0.0491 0.0491 0.0490 0.0489 0.0483 0.0442 0.0295

MSE bβ/σ 0.0492 0.0492 0.0496 0.0511 0.0586 0.1093 0.1422
O(T−2) (4.15) 0.0491 0.0492 0.0496 0.0512 0.0576 0.1021 0.2613

Table 4:
Moments of bλ, bβ1 and bβ2 in model (5.1) for various values of β1/σ and β2/σ = 0.1

T = 20 ref. 10 5 2 1 0.5 0.2 0.1

bias bλ -0.1776 -0.1776 -0.1776 -0.1776 -0.1776 -0.1776 -0.1776
(MCSE) (0.0005) (0.0005) (0.0005) (0.0005) (0.0005) (0.0005) (0.0005)
O(T−3) (4.13) -0.2051 -0.2051 -0.2051 -0.2051 -0.2051 -0.2051 -0.2051
O(T−4) (3.1) -0.2391 -0.2391 -0.2391 -0.2391 -0.2391 -0.2391 -0.2391

Var bλ 0.0287 0.0287 0.0287 0.0287 0.0287 0.0287 0.0287
O(T−6) 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200

MSE bλ 0.0602 0.0602 0.0602 0.0602 0.0602 0.0602 0.0602
O(T−6) (3.5) 0.0708 0.0708 0.0708 0.0708 0.0708 0.0708 0.0708
O(T−6) (4.15) 0.0620 0.0620 0.0620 0.0620 0.0620 0.0620 0.0620

bias bβ1 -2.4414 -1.5534 -1.0207 -0.8431 -0.7543 -0.7010 -0.6833
(MCSE) (0.0065) (0.0040) (0.0028) (0.0024) (0.0023) (0.0022) (0.0022)
O(T−1) (4.12) -2.6824 -1.7710 -1.2242 -1.0419 -0.9508 -0.8961 -0.8779

Var bβ1 4.1908 1.6147 0.7577 0.5869 0.5230 0.4915 0.4822
O(T−2) 4.3787 1.6642 0.7261 0.5286 0.4513 0.4119 0.3999

MSE bβ1 10.151 4.0278 1.7995 1.2977 1.0919 0.9829 0.9490
O(T−2) (4.15) 11.574 4.8007 2.2248 1.6142 1.3553 1.2149 1.1706

bias bβ2 1.9638 1.0759 0.5432 0.3656 0.2768 0.2235 0.2058
(MCSE) (0.0059) (0.0032) (0.0016) (0.0011) (0.0008) (0.0006) (0.0006)
O(T−2) (4.12) 2.0201 1.1087 0.5619 0.3796 0.2884 0.2338 0.2155

Var bβ2 3.4329 1.0138 0.2510 0.1115 0.0633 0.0413 0.0351
O(T−4) (4.15) 3.4165 1.0013 0.2429 0.1051 0.0579 0.0364 0.0304

MSE bβ2 7.2895 2.1714 0.5461 0.2452 0.1399 0.0912 0.0774
O(T−4) (4.15) 7.4971 2.2305 0.5585 0.2492 0.1411 0.0911 0.0769
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Table 5:
Moments of bλ, bβ1 and bβ2 in model (5.1) for various values of β1/σ and β2/σ = 0.1

T = 40 ref. 10 5 2 1 0.5 0.2 0.1

bias bλ -0.0131 -0.0131 -0.0131 -0.0131 -0.0131 -0.0131 -0.0131
(MCSE) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)
O(T−3) (4.13) -0.0134 -0.0134 -0.0134 -0.0134 -0.0134 -0.0134 -0.0134
O(T−4) (3.1) -0.0131 -0.0131 -0.0131 -0.0131 -0.0131 -0.0131 -0.0131

Var bλ 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007
O(T−6) 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007

MSE bλ 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009
O(T−6) (3.5) 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009
O(T−6) (4.15) 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009

bias bβ1 -0.3510 -0.2856 -0.2464 -0.2333 -0.2268 -0.2229 -0.2216
(MCSE) (0.0022) (0.0019) (0.0017) (0.0016) (0.0016) (0.0016) (0.0016)
O(T−1) (4.12) -0.3476 -0.2841 -0.2460 -0.2333 -0.2270 -0.2232 -0.2219

Var bβ1 0.4999 0.3526 0.2813 0.2605 0.2506 0.2448 0.2429
O(T−2) 0.5021 0.3533 0.2814 0.2603 0.2503 0.2445 0.2426

MSE bβ1 0.6231 0.4341 0.3420 0.3149 0.3020 0.2945 0.2920
O(T−2) (4.15) 0.6229 0.4341 0.3419 0.3148 0.3018 0.2943 0.2918

bias bβ2 0.1588 0.0934 0.0542 0.0411 0.0345 0.0306 0.0293
(MCSE) (0.0010) (0.0006) (0.0003) (0.0003) (0.0002) (0.0002) (0.0002)
O(T−2) (4.12) 0.1542 0.0907 0.0527 0.0400 0.0336 0.0298 0.0285

Var bβ2 0.1027 0.0350 0.0115 0.0065 0.0046 0.0036 0.0033
O(T−4) (4.15) 0.1033 0.0351 0.0115 0.0065 0.0046 0.0036 0.0033

MSE bβ2 0.1279 0.0437 0.0144 0.0082 0.0058 0.0045 0.0041
O(T−4) (4.15) 0.1271 0.0434 0.0143 0.0081 0.0057 0.0045 0.0041

Table 6:
Moments of bλ, bβ1 and bβ2 in model (5.1) for various values of β1/σ and β2/σ = 0.1

T = 80 ref. 10 5 2 1 0.5 0.2 0.1

bias bλ -0.0008 -0.0008 -0.0008 -0.0008 -0.0008 -0.0008 -0.0008
(MCSE) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
O(T−3) (4.13) -0.0009 -0.0009 -0.0009 -0.0009 -0.0009 -0.0009 -0.0009
O(T−4) (3.1) -0.0008 -0.0008 -0.0008 -0.0008 -0.0008 -0.0008 -0.0008

Var bλ 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
O(T−6) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

MSE bλ 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
O(T−6) (3.5) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
O(T−6) (4.15) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

bias bβ1 -0.0653 -0.0611 -0.0586 -0.0577 -0.0573 -0.0571 -0.0570
(MCSE) (0.0012) (0.0011) (0.0011) (0.0011) (0.0011) (0.0011) (0.0011)
O(T−1) (4.12) -0.0641 -0.0599 -0.0574 -0.0566 -0.0562 -0.0559 -0.0558

Var bβ1 0.1440 0.1303 0.1226 0.1201 0.1189 0.1182 0.1179
O(T−2) 0.1442 0.1305 0.1228 0.1203 0.1191 0.1183 0.1181

MSE bβ1 0.1482 0.1340 0.1260 0.1235 0.1222 0.1214 0.1212
O(T−2) (4.15) 0.1483 0.1341 0.1261 0.1235 0.1222 0.1215 0.1212

bias bβ2 0.0120 0.0078 0.0053 0.0045 0.0040 0.0038 0.0037
(MCSE) (0.0002) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)
O(T−2) (4.12) 0.0119 0.0078 0.0052 0.0044 0.0040 0.0037 0.0037

Var bβ2 0.0043 0.0018 0.0008 0.0006 0.0005 0.0004 0.0004
O(T−4) (4.15) 0.0043 0.0018 0.0008 0.0006 0.0005 0.0004 0.0004

MSE bβ2 0.0045 0.0019 0.0008 0.0006 0.0005 0.0004 0.0004
O(T−4) (4.15) 0.0045 0.0019 0.0008 0.0006 0.0005 0.0004 0.0004
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Table 7:
Moments of bλ, bβ1 and bβ2 in model (5.2) for γ2 = {0.5, 0.9}

T = 20 ref. SN = 1 SN = 4 SN = 19 SN = 1 SN = 4 SN = 19
β2 = 1.00 β2 = 2.00 β2 = 4.36 β2 = 1.00 β2 = 2.00 β2 = 4.36

bias bλ -0.0918 -0.0266 -0.0055 -0.1376 -0.0426 -0.0077
(MCSE) (0.0001) (0.0001) (0.0000) (0.0002) (0.0001) (0.0000)
O(T−3) (4.13) -0.1165 -0.0291 -0.0061 -0.1535 -0.0384 -0.0081
O(T−4) (3.1) -0.1316 -0.0277 -0.0055 -0.3270 -0.0460 -0.0077

Var bλ 0.0127 0.0033 0.0007 0.0235 0.0058 0.0009
O(T−6) 0.0139 0.0033 0.0007 0.0333 0.0053 0.0009

MSE bλ 0.0212 0.0040 0.0007 0.0424 0.0076 0.0010
O(T−6) (3.5) 0.0303 0.0043 0.0007 0.0618 0.0071 0.0010
O(T−6) (4.15) 0.0274 0.0041 0.0007 0.0569 0.0068 0.0010

bias bβ1 0.1532 0.1312 0.0706 -0.0477 0.0224 0.0320
(MCSE) (0.0005) (0.0004) (0.0003) (0.0006) (0.0004) (0.0003)
O(T−1) (4.12) 0.3201 0.1600 0.0734 0.1625 0.0812 0.0373

Var bβ1 0.2325 0.1361 0.1219 0.3832 0.1489 0.0639
O(T−2) 0.1436 0.1263 0.1218 0.2569 0.1023 0.0616

MSE bβ1 0.2559 0.1534 0.1269 0.3855 0.1494 0.0650
O(T−2) (4.15) 0.2460 0.1519 0.1272 0.2832 0.1089 0.0630

bias bβ2 -0.0124 -0.0060 -0.0030 -0.0047 0.0148 0.0124
(MCSE) (0.0002) (0.0002) (0.0002) (0.0004) (0.0004) (0.0004)
O(T−2) (4.12) -0.0129 -0.0064 -0.0030 0.0596 0.0298 0.0137

Var bβ2 0.0624 0.0606 0.0605 0.1832 0.1514 0.1441
O(T−4) (4.15) 0.0604 0.0605 0.0606 0.1509 0.1453 0.1438

MSE bβ2 0.0625 0.0606 0.0605 0.1832 0.1516 0.1443
O(T−4) (4.15) 0.0606 0.0606 0.0606 0.1545 0.1462 0.1440

Table 8:
Moments of bλ, bβ1 and bβ2 in model (5.2) for γ2 = {0.5, 0.9}

T = 40 ref. SN = 1 SN = 4 SN = 19 SN = 1 SN = 4 SN = 19
β2 = 1.00 β2 = 2.00 β2 = 4.36 β2 = 1.00 β2 = 2.00 β2 = 4.36

bias bλ -0.0369 -0.0094 -0.0019 -0.0275 -0.0072 -0.0015
(MCSE) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
O(T−3) (4.13) -0.0380 -0.0095 -0.0020 -0.0307 -0.0077 -0.0016
O(T−4) (3.1) -0.0450 -0.0096 -0.0019 -0.0280 -0.0072 -0.0015

Var bλ 0.0025 0.0005 0.0001 0.0016 0.0004 0.0001
O(T−6) 0.0024 0.0005 0.0001 0.0014 0.0004 0.0001

MSE bλ 0.0038 0.0006 0.0001 0.0023 0.0004 0.0001
O(T−6) (3.5) 0.0039 0.0006 0.0001 0.0024 0.0005 0.0001
O(T−6) (4.15) 0.0038 0.0006 0.0001 0.0023 0.0004 0.0001

bias bβ1 -0.0035 -0.0142 -0.0095 -0.0359 -0.0222 -0.0109
(MCSE) (0.0003) (0.0002) (0.0002) (0.0003) (0.0002) (0.0002)
O(T−1) (4.12) -0.0452 -0.0226 -0.0104 -0.0488 -0.0244 -0.0112

Var bβ1 0.1004 0.0439 0.0295 0.0850 0.0470 0.0370
O(T−2) 0.0902 0.0421 0.0294 0.0844 0.0469 0.0370

MSE bβ1 0.1004 0.0441 0.0296 0.0863 0.0475 0.0371
O(T−2) (4.15) 0.0922 0.0426 0.0295 0.0868 0.0475 0.0371

bias bβ2 0.0157 0.0134 0.0070 0.1052 0.0618 0.0295
(MCSE) (0.0002) (0.0002) (0.0002) (0.0003) (0.0003) (0.0003)
O(T−2) (4.12) 0.0315 0.0157 0.0072 0.1307 0.0653 0.0300

Var bβ2 0.0344 0.0335 0.0335 0.0658 0.0691 0.0710
O(T−4) (4.15) 0.0327 0.0333 0.0335 0.0611 0.0690 0.0711

MSE bβ2 0.0346 0.0337 0.0336 0.0769 0.0730 0.0719
O(T−4) (4.15) 0.0337 0.0336 0.0336 0.0782 0.0733 0.0720
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Table 9:
Moments of bλ, bβ1 and bβ2 in model (5.2) for γ2 = {0.5, 0.9}

T = 80 ref. SN = 1 SN = 4 SN = 19 SN = 1 SN = 4 SN = 19
β2 = 1.00 β2 = 2.00 β2 = 4.36 β2 = 1.00 β2 = 2.00 β2 = 4.36

bias bλ -0.0156 -0.0045 -0.0010 -0.0091 -0.0024 -0.0005
(MCSE) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
O(T−3) (4.13) -0.0193 -0.0048 -0.0010 -0.0103 -0.0026 -0.0005
O(T−4) (3.1) -0.0154 -0.0045 -0.0010 -0.0090 -0.0024 -0.0005

Var bλ 0.0004 0.0001 0.0000 0.0002 0.0001 0.0000
O(T−6) 0.0004 0.0001 0.0000 0.0002 0.0001 0.0000

MSE bλ 0.0007 0.0001 0.0000 0.0003 0.0001 0.0000
O(T−6) (3.5) 0.0007 0.0001 0.0000 0.0003 0.0001 0.0000
O(T−6) (4.15) 0.0007 0.0001 0.0000 0.0003 0.0001 0.0000

bias bβ1 0.0302 0.0204 0.0106 -0.0319 -0.0194 -0.0095
(MCSE) (0.0002) (0.0002) (0.0001) (0.0002) (0.0001) (0.0001)
O(T−1) (4.12) 0.0473 0.0237 0.0109 -0.0423 -0.0211 -0.0097

Var bβ1 0.0448 0.0227 0.0161 0.0324 0.0207 0.0176
O(T−2) 0.0488 0.0229 0.0161 0.0326 0.0207 0.0176

MSE bβ1 0.0457 0.0231 0.0162 0.0334 0.0211 0.0176
O(T−2) (4.15) 0.0510 0.0235 0.0162 0.0344 0.0212 0.0177

bias bβ2 0.0208 0.0136 0.0069 0.0396 0.0216 0.0102
(MCSE) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)
O(T−2) (4.12) 0.0299 0.0149 0.0069 0.0444 0.0222 0.0102

Var bβ2 0.0117 0.0119 0.0120 0.0140 0.0142 0.0143
O(T−4) (4.15) 0.0113 0.0118 0.0120 0.0138 0.0142 0.0143

MSE bβ2 0.0122 0.0120 0.0120 0.0156 0.0147 0.0144
O(T−4) (4.15) 0.0122 0.0120 0.0120 0.0158 0.0147 0.0144
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