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Abstract

In dynamic regression models the least-squares coefficient estimators are biased in
finite samples, and so are the usual estimators for the disturbance variance and for the
variance of the coefficient estimators. By deriving the expectation of the sum of the initial
terms in an expansion of the usual expression for the coefficient variance estimator and
by comparing this with an approximation to the true variance we find an approximation
to the bias in variance estimation from which a bias corrected estimator for the variance
readily follows. This is also achieved for a bias corrected coefficient estimator which
enables one to compare analytically the second-order approximation to the mean squared
error of the ordinary least-squares estimator and its counterpart after bias correcting
the coefficient estimator to first order. Ilustrative numerical and simulation results on
the magnitude of bias in coefficient and variance estimation and on the options for bias
reduction are presented for three particularly relevant cases of the ARX(1) class of models.
These show that substantial efficiency gains and test size improvements can easily be
realized.

1. Introduction

In dynamic regression models it is well known that the least squares estimators of the re-
gression coefficients and of the disturbance variance, and consequently the coefficient variance
estimator, are biased in finite samples. With regard to the estimation of the disturbance
variance, asymptotic approximations can be used to show that deflating the sum of squared
residuals by the degrees of freedom reduces the order of the bias by a factor of T, where T is
the sample size. In fact, the bias of such an estimator can be reduced even further. Kiviet and
Phillips (1998b) show that this bias can be reduced by another factor 7' when employing a

*A very early version of this paper has been presented at the Econometric Society World Meeting of 2000 in
Seattle. The first author wants to thank the universities of Illinois (Champaign-Urbana, USA) and Melbourne
(Victoria, Australia) where he enjoyed hospitality when elaborating this project.
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much more sophisticated expression for degrees of freedom correction. A natural extension to
this work is to examine the bias in estimators for the variance of the coefficients. In this paper
we have a closer look at the second moment of the least-squares estimator for the full vector
of coefficients. In addition, we also examine the variance and mean squared error of a bias
corrected estimator of the coefficients. From the results various conclusions can be drawn on
the effectiveness of bias correction and on appropriate variance estimation of (bias corrected)
least-squares estimators and their effects on test size in stable normal ARX(1) models. In this
class of model the dependent variable is determined linearly by an arbitrary number of strongly
exogenous (non-)stationary regressor variables, the one period lagged dependent variable with
coefficient smaller than one in absolute value, and by normally distributed i.i.d. disturbances.

We obtain our approximations to finite sample moments by extending the approach followed
by Nagar (1959) in such a way that the approximation errors of the results are of order T~ or
T2 or even smaller, where T is the sample size. This requires the development of a Taylor-type
expansion and then the analytical evaluation of the expectation of expressions which involve
terms consisting of products of up to four quadratic forms in standard normal vectors. The
approximation of the moments of statistical estimators in stable autoregressive models by use
of asymptotic expansions has already been undertaken for over half a century. Most early work
is particularly concerned with the estimator of the serial correlation coefficient in a first-order
autoregressive Gaussian process, see Bartlett (1946), Hurwicz (1950), Kendall (1954), Marriott
and Pope (1954) and White (1961). In the latter study, which focuses on the AR(1) model
with no (or a known) intercept, an analysis is also given of the bias in the variance estimator
of the coefficients, but generally speaking very little work has been done to find out how well
the usual standard deviation estimator estimates the true standard errors in linear dynamic
econometric models.

Our results concern a more general model than the AR(1), because we allow for any number
of arbitrary exogenous regressors in the autoregressive model and any form of pre-sample initial
condition of the dependent variable of this dynamic system. As in Kiviet and Phillips (1998b)?
the focus of attention here is the bias of ordinary least-squares (OLS) estimation (which is also
maximum likelihood conditional on yo and X)) of all the regression coefficients in the first-order
normal linear dynamic regression model

y=Ay_1+XB+u, (1.1)

where y = (y1,...,yr)" is a T x 1 vector of observations on a dependent variable, y_; is the y
vector lagged one period, i.e. y_1 = (Yo, ...,yr—1)’, and X is a full column-rank 7" x K matrix
of observations on K fixed or strongly exogenous regressors (such as a constant, a linear trend,
step/impulse/seasonal dummy variables or any other covariates not affected by feedbacks from
the dependent variable). The scalar coefficient A (with |[A| < 1) and K x 1 coefficient vector (3
are unknown, and u is a T' x 1 vector of independent Gaussian disturbances with zero mean
and constant variance o?. Below we shall give further attention to the precise assumptions
made on the initial conditions, i.e. concerning yp.

We first focus on an examination of the finite sample bias of the usual estimator of the
(asymptotic) variance of the OLS estimator & of the full coefficient vector a = (A, 3'), and
we shall develop a bias corrected variance estimator. We shall also consider a bias corrected
estimator & of a and examine its relative efficiency, both analytically and experimentally, in
simulations. Rewriting (1.1) as

y=Za+ u, (1.2)

1Henceforth we refer to the present authors by KP. For related work in stable ARX models see also KP
(1993, 1994, 1998a) and Kiviet et al. (1995). We have analyzed the finite sample characteristics of the first
two moments of the least-squares coefficient estimators in dynamic models with a unit root in KP 2003.



where Z = (y_1, X), the OLS estimator of the (K + 1) x 1 vector « is
a= (2217, (1.3)

and, based on regularity conditions and some asymptotic and finite sample arguments, its
variance V(&) = E[& — E(&)][& — E(&)]’ is usually estimated by

V(a)=s2(Z22)", (1.4)
where (v Z8)(y — 720)
Yy— L)y — Lo

§% = AT (1.5)

Occasionally the degrees of freedom correction is omitted and o2 is estimated by the ML
estimator 62 = (y — Z&)'(y — Z&)/T. The coefficient variance estimator 62(Z'Z)~* disregards
finite sample considerations. R

Note that the derivation of moments such as E (&), V (&) and E[V (&)] is non-trivial, because
Z is stochastic and depends linearly on u, whereas & depends nonlinearly on Z, so these are
moments of expressions which are all highly nonlinear in u. Below in Section 2 we first rewrite
Z in such a way that its dependence on u becomes fully explicit, and next we produce for
the various moments of interest expansions consisting of individual terms whose expectations
can be obtained analytically upon using some basic results which are collected in Appendix A.
From these we obtain approximations to the MSE (mean squared error) and the true variance
of & in the general ARX(1) model, and also to the expectation of estimators of this variance.
Even though we do not have an explicit representation for the true variance (but only a higher-
order asymptotic approximation), these results can be used to develop a bias correction to the
standard asymptotic variance estimator. In Section 3 we examine the first and second moments
of an implementation of a bias corrected estimator, which is unbiased to order 7. In Section 4
we specialize the general results and examine their implications for the specific case of a simple
AR(1) model with an unknown intercept. Some remarkably simple analytic results on the
scope for bias reduction and efficiency gains are obtained. In Section 5 we verify the numerical
magnitude of the bias of alternative coefficient and variance estimators and their effects on
test size by Monte Carlo simulation for a range of particular cases. Finally, in Section 6, we
summarize our main conclusions. Proofs can be found in a series of Appendices.

2. Bias of variance estimators in ARX(1) models
The starting point for our analysis is summarized as follows.

Assumption 2.1: In the first-order dynamic regression model y = A\y_1 + X3 + u, where the
scalar X and the K x 1 vector [ are unknown coefficients, we have: (i) stability, i.e. |\ < 1;
(ii) stationarity, i.e. the matriv Z = (y_1,X) is such that Z'Z = O,(T); (iii) the T x (K +1)
matriz Z has rank(Z) = K + 1 with probability one; (iv) the regressors in X are strongly
ezogenous; (v) the disturbances follow u ~ N(0,0%Ir), with 0 < 02 < oo; (vi) the start-up
value has yo ~ N(Zo,w?a?), with 0 < w < oo; (vii) yo and u are mutually independent.

Note that w = 0 represents the fixed start-up case. For any w # 0 the start-up is random,
and if w? = (1 — X*)~! then {y,} has a constant variance. Also note that (ii) excludes a
linear trend or any I(1) regressors. However, the presence of such variables will not change
our approximation formulas as such, as is shown in KP (1998a), but will only render them



more accurate, because it reduces their order of magnitude and also the order of the remainder
terms.

In order to distinguish the fixed and zero-mean stochastic elements of the regressor matrix
Z, we decompose Z = Z + Z, where Z is defined as the mathematical expectation of Z
conditional on X and 7 , i.e.

= E(2) = [E(y-1), X] = (-1, X)
= Z—-Z=y1—79-1,X —X)=(9-1,0) = J_1€],

N N
—~
oo
DN =

where e; = (1,0, ...,0)" is a unit vector of K + 1 elements. It follows directly from model (1.1)
that

1 0O - - -0 o
A1 : x4
2 . . /
R R (23)
. .0 .
) | v .

where X’ = (21, ..., 77), and hence we find that Z is determined by: X, %o, 8 and \. Defining
v = (ug, ug, ..., ur)" such that

v ~ N(0,0%Ir+1) with yo = 7o + wuo, (2.4)

and introducing the T' x (7" + 1) matrix G such that

1 0O - - - -0
A 1 0
2 .
G=wFC), wihF=| ~ |,c=| * 1O | (2.5)
AT A2 o a1 0
one can easily verify that .
g-1=Gv and = Z = Gue]. (2.6)

Note, that in the fixed start-up case (w = 0), we simply have Z = Cue}. In the derivations to
follow we shall stick to the more general case where the value of w is arbitrary.
We find

E(Z'Z) E(Z + Guve}) (Z + Guel) (2.7)

7'7 + o*tr(G'G)ese]

and we shall denote the inverse of E(Z'Z) by @, whereas ¢; denotes the first column of @), and
q11 the first element of ¢1, hence:

Q= [E(Z’Z)]‘l, ¢ = Qe1, quu = 6/1Q€1- (2.8)
Using the same notation the following result has been proved in KP (1998a).

Theorem 2.1: Under Assumption 2.1 the bias of the least-squares estimator (1.3) can be
approximated to first order as

E(@ —a) = —o?[tr(QZ'CZ)qu + QZ'CZqy + 20%qu1 tr (GG'C) qu] + o(T™1).

4



In fact, KP (1998a) presents a more accurate and complicated second order approximation to
the bias of & However, for our present purposes the O(T ) bias approximation of Theorem
2.1 suffices. In order to obtain such an approximation one has to find an expansion (in this
particular case of the estimation error) in such a form that successive terms are of decreasing
order so that the order of the remainder term is known, whereas the individual terms in the
expansion have an expectation which can be derived analytically. Irrespective of whether
one wants to approximate (the bias in) the first or the second moment of estimators for
the coefficients (or for the disturbance variance), the typical expansion will involve terms in
which particular types of expressions occur frequently. For many of these typical expressions
Appendix A provides their expectation.

We shall present results now that are relevant in order to obtain further insight into matters
of interest regarding (the estimation of) the second moment of the full vector of least-squares
coefficient estimators. In Appendix B we derive:

Theorem 2.2: Under Assumption 2.1 we find for the variance of the estimator & the approx-
imation V(&) = E{[& — E(&)][& — E(&)]'} =

Q)

+o{[tr(QZ'GG'Z) — 2t1(QZ'CCZ) + tx(QZ'CZQZ'CZ)|quqy
+QZ(GG' — OC — 20'C — C'C"Y Zayd, + 1d, Z' (GG — CC — 20'C — C'C')ZQ
+QZ'CZuq1Z'CZQ + QZ'(C + C"Zqugy Z'C' ZQ
+q i Z'(C+ CNZQZ'CZQ + 14, Z'C'ZQZ'(C + C") ZQ
+QZ'(C+C"NZQZ'CZqq, + QZ'C'ZQZ' (C + CZquqy
+tr(QZ'C2)(quy Z2'CZQ + QZ'C' Zquqy) + (1 2'CZq1)QZ' (C + CZQ
+qultr(QZ'C2)Q7(C + C')2Q + QZ(GG' — CC — C'CYZQ

YQZ'CZQZ'CZQ + QZ'C'ZQZ'C'ZQ))

+20%{6¢,Z2'C Zq1 tr(GG'O)quq]
+qutr(GG'GE) — 4tr(GG'CC) — 26:(GE'C'C) + 2tr(GG'C) tr(QZ'CZ)and,
+qu tr(GG'C)(2QZ' CZquqy + 211 Z2'C' ZQ + 3QZ'C' Zangh + 311 Z'CZQ)
1+, tr(GG'C)QZ(C + CZQ}

+200% ¢, [tr(GG'C)*qud

+o(T732).

Next we shall examine how closely the above rather complex approximation to the actual
variance of the coefficient estimator corresponds to the expectation of the usual estimator for
the true variance. In Appendix C we prove:

Theorem 2.3: Under Assumption 2.1 we find for the expectation of the usual estimator of

~

V(&) given in (1.4) the approzimation E[V(&)] = E[s?(Z'Z)7Y] =

a?Q

+o {[tr(QZ'GG'Z) — 2T tx(C'O)|quqy + QZ'GG' Zawdy + (quqy + Q) Z2'GG' ZQ}
+20°q11 tr(GG'GG ) quqy

+o(T72).

Note that the approximation to order T~* (the leading term) of both V(&) and E[V(a)] is
simply 02Q. However, the second-order approximations of V(&) and E[V(&)] differ markedly

5



with respect to contributions of order T72. Note that Theorem 2.3 implies that the first-order
approximation to E[6%(Z'Z)~Y], the estimator which omits a degrees of freedom correction, is
given by 0@ too; selfevidently, the degrees of freedom correction does not affect the leading
term. Since the second-order approximation to E[6?(Z’Z)!] equals the expression given in
Theorem 2.3 plus the term — K *152() we find that this differs from both the expressions given
in Theorems 2.2 and 2.3. Whether or not these differences have an actual magnitude that
is worth bothering about has to be found out by numerical evaluation of these expressions
for given values of X, %, w, @ and o2 at relevant sample sizes T, and by comparing these
approximative expressions with estimates of the true variance which can be obtained from
Monte Carlo experiments. If these differences can be substantial it would seem interesting to
develop a corrected estimator of V(&), say V(&), which adds particular terms to the standard
estimator V(&), such that E[V(&)] is equivalent to second order to V(é&). We shall elaborate on
the issue of bias reduction of variance and of coefficient estimators in the next section.

A more focussed comparison of the above analytical results on variance matrices is possible
if we limit ourselves to the simpler scalar results for the single lagged dependent variable
coefficient A. From Theorem 2.1 one easily obtains:

Corollary 2.1: Under Assumption 2.1 the bias of the least-squares estimator A can be
approximated to first order as

~

EO\ =)\ = —0?[qutr(QZ'CZ) + ¢, Z'CZq + 20%¢2, tr(GG'C)] + o(T71).
From Theorem 2.2 we obtain after pre- and postmultiplication by e;:

Corollary 2.2: Under Assumption 2.1 we find for the variance of the estimator \ the
approzimation V() = E[A — E(\)]2 =

o?qn
+0*{5(¢4 Z'C Zq)?

+Q11[6QQZ,CZQZ/CZ(]1 + 4in/C,ZQZ,CZq1

+¢1Z'(3GG" — 6CC — AC'C) Zqy + 41 Z'CZq tr(QZ'C 7))

+@[tr(QZ'GG'Z) — 2t1(QZ'CCZ) + tr(QZ'CZQZ'CZ)|}
+20%{18¢4,q1 7' C Z g1 tr(GG'C)

+@3 [tr(GG'GG) — 4tr(GG'CC) — 2tr(GG'C'C) 4 2tr(GG'C) tr(QZ'C 2]}
+2008%¢3, [tr(GG'C)]?
+o(T72).

From Theorem 2.3 we obtain:

Corollary 2.3: Under Assumption 2.1 the expectation of the usual estimator of the variance
of the estimator \ can be approzimated as EN(X)] = E[s%€¢}(Z'Z) tes] =

o’qu + o* 3qu (¢ Z'GG' Zqr) + ¢4 [tr(QZ'GG' Z) — 2T 1 tr(C'C)|}
+20°@, tr(GG'GG) + o(T72).
Again we note that the two approximations given in Corollaries 2.2 and 2.3 differ substantially

with respect to their order 772 terms, which_may be an indication that there is scope for
developing a second-order unbiased estimator V() for V().



3. The efficiency of bias corrected coefficient estimators

The approach already laid out in the foregoing section consists of three stages: (i) assess the
second moment of a coefficient estimator to second order and next, (ii) obtain to second order
the expectation of a variance estimator of that coefficient estimator in order to, (iii) exploit
these results to correct the variance estimator such that it will become unbiased to second
order. This can also be applied to a bias corrected least-squares estimator in which the result
of Theorem 2.1 has been exploited such that the corrected estimator is unbiased to order 71.
For the expression & — B, with

B, = —0?[tr(QZ'CZ)q1 + QZ'CZq1 + 20%qu tr (GG'C) qi] (3.1)

it is obvious that this has expectation o + o(T1), but it is not an operational estimator,
because 02, Q, Z, C, G, w and fjp are unobservable. However, consider the operational corrected
ordinary least-squares (COLS) estimator defined as

~

& = & - Ba, with (3.2)
Bo = —s[tr(PZ'CZ)py+ PZ'CZpy + 25°pu tr(CC'Cpal,

where & and s? are the usual least-squares estimators, P = (Z’'Z)~1, which has first column p;
with first element p11, Z = (F vo+CXB, X ) and C corresponds to C (as F' corresponds to F )
with the unknown X replaced by A. In Appendix D we show that the difference between the
corresponding terms in the non-operational and operational forms of the COLS estimator are
of stochastic order T%/2; hence both estimators have the same expected value to order T1.
Thus we have:

~

Theorem 3.1: Under Assumption 2.1 the COLS estimator & = & — B, given in (3.2) is
unbiased to order T, i.e. E(&) = a+ o(T71).

For this bias corrected estimator & we obtain in Appendix E:

Theorem 3.2: Under Assumption 2.1 we find for the variance of the bias corrected estimator
& giwven in (3.2) the approzimation V(&) = E{[a — E(&)][a — E(®)]'} =

a?Q
+o{[tr(QZ'GG'Z) +tr(QZ'CZQZ'CZ)]q1qy
+QZ'GC' Zqd, + W, Z'GG'ZQ + QZ' CZquqg, Z'C' ZQ
+QZ'CZQZ'CZqq, + g, Z'C'ZQZ'C' ZQ + quQZ' GG ZQ)}
+20°%{2¢, 7' C Zu tr(GG'C)quq; + qui tr(GG'GG ) quq)
+qu tr(GG'O)QZ' CZq1qs + 1y Z2'C'ZQ)}
+40° gy [tr(GG'C)Pqrqy
+o(T72).

It is noteworthy that the expression for the second order contribution to the variance of the
corrected estimator is in fact substantially simpler than for the uncorrected least-squares esti-
mator given in Theorem 2.2.

From the results in Theorems 2.3 and 3.2 it follows that the variance of the COLS estimator
V(&) can be estimated unbiasedly to order T by V(&) = s?(Z'Z)~! = s?P, i.e. the standard
OLS estimator, because V(&) and E[s?(Z'Z)~!] have both leading term 02Q. However, from



the same Theorems it also follows (proof in Appendix F) that an estimator which is unbiased
to the order of T2 can be constructed as follows.

Theorem 3.3: Under Assumption 2.1 the estimator \7(@) of the bias corrected estimator &
given in (8.2) has EV(&) — V(&)] = o(T2), and hence is almost unbiased, if we define:

V(a) = 2P
+s4[tr(PZ'CZPZ'CZ) 4 2T tx(C'C)|pap}
+PZ'CIZpp,2'C'ZP + PZ'CZPZ'C Zpypy + prp 2'C' ZP 7' C' Z P}
+25° tr(CC'C)2(py Z'C Zpr)paph + pua(PZ'C Zpap) + pup Z'C' ZP)]
+458p2, [tr(CC'C) )2 paph.

From (3.1) and (3.2) we easily find By and )\, for which we have:

Corollary 3.1: Under Assumption 2.1 the COLS estimator A for X defined as \ = A+
S2[ph Z'CZpy + putr(PZ'CZ) + 25%p2, tr(CC'C)] is unbiased to order T1.

Corollary 3.2: Under Assumption 2.1 we find V(\) = E[A\ — E(\)]? =

UZQM +

o (2 CZq1)? + qu(2¢,2'CZQZ'C Zqy + 3¢, 2 GG’ Zay)
+A[(QZ' GG Z) + t(QZ CZQZ CZ)]}

+20° (41101 7' C Z g1 tr(GG'C) + g3, tr (GGG Q)]

0% [tr(GG'C) P

+o(T72).

and

Corollary 3.3: Under Assumption 2.1 the variance estimator \7(5\) of the corrected estima-
tor X\ is unbiased to second order for its true variance V() when defining:

~ o

V(A) = s°pu +
S (L2 C o) + 2o (2 C LIPS C )
+ph[te(PZ'CZPZ'CZ) + 2T L tr(C'C)]}
+85°p}pt 2'C Zpy tr(CC'C)
+455pt [tr(CC'C))?.

In deriving Theorem 3.2 and its Corollary 3.2 we have also obtained an approximation for the
MSE of the corrected estimator, because the variance and MSE are equivalent up to the order
of the approximation. Comparison of these with the MSE of the uncorrected estimator, which
of course differs from the variance in the O(T~?) terms due to the O(T~!) coefficient bias,
yields information on any possible efficiency gains or losses through bias correction.

It is relatively easy now to obtain, in the same spirit as the result of Theorem 3.3, an
operational bias corrected estimator V(&) for the variance of the uncorrected OLS estimator.
In the next sections we shall just encounter its element V(A), and for the sake of completeness
we simply present therefore (without further derivations) its formula

\7(;\) = s°pu+ (3.3)
+5* {5(p 2'C Zp1)?



+pul6p Z'CZPZ'C Zpy + 4py Z2'C' ZPZ'C Zp,
—6p, 2'CC Zpy — A, 2'C'C Zpy + 4 Z'C Zpy tr(P
+p2,[tr(PZ'CZPZ'CZ) — 2tr(PZ'CCZ) + 2T L tr(C"
+58{36p2,p, Z'C Zpy tr(CC'C)
—p}1[8tr(CC'CC) + 4tr(CC'C'C) — 4txr(CC'C) tr(PZ'CZ))}
+20s%p3, [tr(CC'C) 2.

C2)]

PZ
)

4. Results for the AR(1) model with intercept

In this section we focus on the variance of the OLS and COLS estimators for the lagged
dependent variable coefficient A in the model of Assumption 2.1 with an intercept as the one
and only exogenous regressor, hence

Ye = Aye—1 + 0+ us. (4.1)

In order to obtain specific results for this special model from our general formulas given in the
earlier sections, it is helpful to rescale the model. Defining

1 g

and substituting in (4.1), we obtain y; = A\y;_; + u,/0, indicating that general results for the
AR(1) model with unknown intercept and arbitrary start-up are obtained by taking in fact a
unit disturbance variance and a zero intercept, but with start-up mean value

Yo = (17 (yo - %) (4.3)

Note that when go = 5/(1 — A), i.e. the mean start-up value is right on the mean-stationary
track, all results are invariant with respect to # and o.

Corollary 2.1 easily reduces for this AR(1) model to the well-known Kendall (1954) ap-
proximation (proofs for all results in this section can be found in Appendix G)

EA—)\) = —% (1+3\) +o(T ). (4.4)

Hence, this approximation proves to be valid irrespective of 3, o and the nature of the start-up
value 1. From Corollary 2.2 we find for the true variance

U e T T G [ D Y PO »
V=~ (4% +w)—T+o(T ), (4.5)
where the leading term (1 — A2)/T is simply the asymptotic variance of . Notice that the
variance V(A) decreases the larger the variance of the initial value w? and also the more o
deviates from the mean-stationary track /(1 — A). Obviously, by adding to V()) the square
of the first-order bias, we obtain

MSE()) = +0o(T2). (4.6)

1=X 1=X 5 5y A10+23))
T 7 (0 )+ T



For the expectation of the standard variance estimator, which is here
-1

U0y = s = 2 | E (oL 84} 4
=58P =35> |Y-1 Ttglyt—l ; (4.7)

t=1

we find, using Corollary 2.3,

+o(T72). (4.8)

~ o 1-X 1-) 2 + 2\ + 5N
EV()] = —— = —— (07 +f) + ———

It is obvious that \7(5\) is unbiased to order T, but biased to order 772, since its second
order term differs from the corresponding one of (4.5). So, even though we do not know V(\)
exactly, we find from its approximation that the standard estimator is biased to second order,

V1Z.

~

EV() — V(i) = 222229

T2
implying that V()) overstates (omitting o(72) terms) whenever —0.699 < A < 0.477 and

understates otherwise. Employing the same type of reasoning as in Section 3 we can obtain
an almost unbiased estimator of V(\), viz.

+0o(T7?), (4.9)

V(A) =V — = : (4.10)
which is unbiased to O(T2), and is a special case of (3.3).
For the simple model (4.1) our implementation of COLS leads to
| o T3 1
/\:/\+T(1+3)‘)_ T A+T. (4.11)
Specializing now the result of Corollary 3.2 for this AR(1) model we obtain
. 1—X 1-X, ., 5+4r+8)\ L
V) = - (4 +w>+T+0(T ) (4.12)

= V(A +6 (1 ;f) +o(T72).

Note that this reflects the fact that correcting an estimator for bias will invariably lead to an
increase in variance. However, from (4.6) and (4.12), which is a second order approximation
to MSE()) too, it also follows that

5— 6\ — 15)\2

MSE(}) = MSE()) + =

+0o(T7?), (4.13)
from which a rather precise result follows, viz.:

Theorem 4.1: In the AR(1) model with intercept the OLS estimator X\ is more efficient than

the bias corrected estimator )\vonly when —0.811 < X < 0.411, because to order T2 such \
values imply MSE(X) < MSE()), and the reverse otherwise.

Hence, if A > 0.411 it seems always beneficial to use the COLS estimator in this model. In
a similar way, it can be derived that in the AR(1) model with no (or known) intercept bias
correction yields a MSE reduction when |A| > 0.707.
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An asymptotically valid estimator for the variance V() is provided by \7(5\), but an esti-
mator unbiased to order T2 follows simply from (4.12) and (4.9), viz.

~

. 2
o 342i43A
V() = V() 4 2EEA A

. (4.14)

although the correction could also be evaluated in A. Note that \7(5\) is negatively biased for
V(X) to second order, because 3 + 2\ + 3X2 > 0.

Bias correction of AR(1) models has been entertained in the literature in many studies, see
inter alia Copas (1966), Orcutt and Winokur (1969), Rudebusch (1992) and MacKinnon and
Smith (1998). All these studies based their bias correction on the Kendall (1954) approximation
to the bias (4.4), although, instead of using (4.11), all the studies just referred to used a bias
corrected estimator A which is obtained by solving

- .1 )
A=A—=(1 A).
=(1+3))

This yields an estimator which slightly differs from (4.11), viz.

A= A+ (4.15)

leading to the following relationships:

Theorem 4.2: In the AR( ) model with intercept the corrected estimators A and X\ are both
unbiased to order O(T~Y), but \ has uniformly (for any |\ < 1) smaller second order bias
than X, whereas the latter is uniformly more efficient than X\ because MSE(X) < MSE()) to
order T2,

Note that there is no straightforward generalization of A for general ARX models unless one
is willing to solve highly non-linear equations. In the next section we shall examine the actual
numerical significance and accuracy of all the above analytical findings.

5. Numerical results

We shall examine the estimators A, A and ), their actual bias and efficiency, the accuracy of the
approximations to their first two moments and the qualities of their respective (bias corrected)
variance estimators for three types of models, viz.: (i) model (4.1), i.e. the AR(1) model with
intercept; (ii) the AR(1) with both intercept and linear trend; and (iii) the autoregressive
model with an intercept and one strongly exogenous regressor generated by an AR(1) process
itself. For that purpose we perform various numerical evaluations and execute a series of Monte
Carlo experiments in which we shall also examine the effects on test size when bias corrected
coefficient or variance estimators are used.

In what follows we simply write V()) for what in fact is the Monte Carlo estimate of V().
Because we generated a great number of replications (10°) for each design the Monte Carlo
estimates will be very close to the actual population characteristics. Also for the mean over
the Monte Carlo replications of A we simply write E()\) and likewise for A and \. For the mean
over the simulations of V(\) we write E[V())], and similarly for the estimated expectations of
V(A) and V(}). Often the results are given as ratios. Self-evidently, when E[V(A)]/V(A) is unity
this indicates unbiasedness of V()\) and values smaller (greater) than one are found in case of
negative (positive) bias, whereas the ratio MSE())/ MSE()) indicates an efficiency gain due
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to bias correction if it is smaller than unity, and so on. In accordance with Assumption 2.1
we restrict ourselves to |A| < 1 in all experiments, with an emphasis on positive values. As we
also want to explore in particular where in the parameter space the (higher-order) asymptotic
approximations break down (what they naturally will do in extreme cases) we examine rather
small values of the sample size T" and a range of A values including 0.99.

In the AR(1) model with intercept only, we have two versions of all asymptotic approxima-
tions, viz. the general formulas of Sections 2 and 3 after substituting X = ¢, which we call the
untrimmed expressions, and those of Section 4, which we call the trimmed expressions, because
all higher-order terms have been eliminated here. Regarding the first-order approximation to
the bias of A the trimmed expression is the Kendall formula, i.e. By = —(1 4 3))/T, and
its untrimmed counterpart follows from the first element of (3.1) upon substituting 7o = ¥,
B=00=1ie Z = (g@F) and Q = [Z'Z + tr(G'G)esej] L. In Tables 1 through 7
we examine the mean-stationary AR(1) model with intercept, hence 5 = 0, Z = (0,¢) and
qu = [tr(G'G)] ™, g2 = T7! and q12 = g21 = 0. In Tables 1 and 2, where w = 0 and
w? = (1 /\2)_l respectively, we examine whether we find any systematic differences in accu-
racy between trimmed and untrimmed expressions, not only regarding B, but also regarding
approximations and estimators of V(X). We write V1()) for the leading term of the asymp-
totic variance of A, i.e. for the trimmed expression we have Vi(A) = (1 — A?)/T and for the
untrimmed expression Vi(A) = [tr(G'G)]L. The latter also includes some (but certainly not
all) o(T1) contributions. The second-order asymptotic approximation to V() is denoted as
V(). For the trimmed expression we have from (4.5)

1= 1N 1— 4 — 14X
Va(A) = T T2 (?732 + 2) I R

(5.1)

and the untrimmed expression for V() is found from Corollary 2.2. Apart from the bias in
V(;\) we also examine the bias of two alternative estimators of V(/\), viz. Vo(A) and V().
By Vg()\) we denote the estimator obtained by replacing A_by A in either the trimmed or
untrimmed expressions for V(). The trimmed version of V()) is given by (4.10) and the
untrimmed version by (3.3).

In Table 1 we find for the mean-stationary fixed start-up model (i.e. yg = 0) the following.
The actual bias of A, its variance and the bias in the standard estimator V(/\) are given in
columns (2) through ( ) respectively, for various values of A and 7. Column (2) shows that at
the very small sample size of T' = 10 the least-squares estimator is generally badly biased (at
least -40% for positive A). In relative terms the bias is especially serious for small values of A,
and in absolute terms the situation is worst for large positive A. When T" = 20 the coefficient
bias is smaller but still large (for positive A about -25%) and also at 7" = 50 it is still substantial
(about -10% for A > 0.2). Note that for substantial A the bias of X is about of equal magnitude
to the standard deviation of A\. The Kendall formula suggests that the bias changes sign at
A = —0.33. The actual bias results are found to be in agreement with that, and as a matter of
course the bias is small around A = —0.3. From column (10) of this table we also see that the
Kendall formula for the bias, evaluated at the true (but in practice unknown) value of A, is
rather accurate at T' = 50 for negative and non-extreme positive values of A. For A close to one
it understates the actual bias, but oddly enough it is more accurate for positive A when T is
smaller. From column (5) we see that as a rule the untrimmed approximation is less accurate,
especially for small T' and when A is large. Column (3) shows how V()) changes with A and
T. Columns (6) and (11) show that the first-order asymptotic approximations (evaluated for
the true A values), both untrimmed and trimmed, are very inaccurate, especially at extreme
A values, also at T' = 50. However, from columns (7) and (12) we see that the second-order
approximations are much better, and especially the trimmed version is very good at T' = 50. At
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much smaller sample size both seriously overstate the actual variance when A is not very close
to zero. Column (4) shows that, in agreement with our conclusions from (4.9), the standard
estimator for V()) systematically overstates for moderate and negative (but not extremely
negative) A values, whereas it is much too optimistic for positive substantial values of A and
even more so at 7' = 50 than at smaller sample sizes. Columns (9) and (14) show that at very
small sample size the trimmed version of our corrected estimator V(A) is much better than its
untrimmed counterpart. At 7' = 50 the trimmed version of V() is in fact almost unbiased, also
for extreme values of A, and even for smaller values of 7" it behaves adequately, though slightly
conservative. From columns (8) and (13) we see that the alternative estimator V() is less
satisfactory for extreme A values. Hence, Table 1 shows that in this model the trimmed version
of V() is a much better variance estimator than the standard expression V(}). However, for
correcting the bias in ) itself, the situation seems less promising, because even when evaluated
at the true X\ value both the trimmed and untrimmed approximations show some defects, and

especially for large A and T" = 50 results are not as accurate as regarding \7(5\)

Table 1: Simulations and evaluations for mean-stationary AR(1) model with unknown intercept and fixed start-up

standard OLS results untrimmed approximations trimmed approximations
N N EVQR B vi(x VoA ENV2(X EVQ B vi(x VoA EV2(X EVQ
A EA =2 V) \D/Q(X))] G- v1<(i)) v2<(i)) D\//§X(>)] \D/Q(X))] G- v1<(i)) v2<(i)) D\//§X(>)] \D/Q(X))]
@) @ 3 4) ©) (6) O ®) O (10 1) a2 (13) (14)
T=10
-0.9 0.100 0.063 1.01 1.22 0.57 1.51 4.13 3.50 1.70 0.30 1.38 1.38 1.29
-0.6 0.039 0.075 1.29 1.82 1.02 1.14 2.66 2.30 2.04 0.86 1.08 111 1.21
-0.3 -0.034 0.086 1.39 0.40 1.19 0.99 1.37 1.22 0.30 1.06 0.95 0.99 1.17
0 -0.112 0.094 1.39 0.90 1.18 0.99 0.99 0.90 0.90 1.07 0.96 0.96 1.15
0.2 -0.167 0.097 1.35 0.94 1.10 1.06 1.14 1.02 0.96 0.99 1.02 0.98 1.14
0.4 -0.227 0.099 1.28 0.93 0.96 1.18 1.53 1.34 0.97 0.85 1.13 1.03 1.13
0.6 -0.294 0.099 1.19 0.88 0.76 1.36 2.05 1.77 0.95 0.64 1.29 1.11 1.12
0.8 -0.368 0.097 1.06 0.76 0.51 1.58 241 2.04 0.92 0.37 1.52 1.22 1.10
0.9 -0.400 0.096 0.96 0.66 0.37 1.54 2.35 1.95 0.93 0.20 1.66 1.30 1.08
0.99 -0.412 0.096 0.82 0.55 0.24 1.25 2.10 1.71 0.96 0.02 1.75 1.35 1.03
T=20
-0.9 0.067 0.023 0.89 1.13 0.57 1.26 2.13 1.80 1.27 0.42 1.16 1.25 1.09
-0.6 0.030 0.035 1.12 1.29 0.99 1.04 131 1.23 1.34 0.91 1.03 1.04 1.05
-0.3 -0.011 0.043 1.18 0.52 111 1.00 1.01 1.02 0.45 1.05 0.99 0.97 1.04
0 -0.053 0.048 1.18 0.94 111 1.01 0.95 0.97 0.94 1.05 1.00 0.97 1.04
0.2 -0.082 0.048 1.15 0.96 1.05 1.03 1.01 1.01 0.97 1.00 1.02 0.99 1.04
0.4 -0.113 0.047 111 0.95 0.96 1.06 1.14 1.08 0.97 0.90 1.05 1.04 1.04
0.6 -0.148 0.044 1.03 0.91 0.79 111 1.35 121 0.95 0.73 1.10 1.10 1.04
0.8 -0.193 0.040 0.91 0.81 0.53 1.18 1.61 1.36 0.88 0.46 1.16 1.20 1.03
0.9 -0.221 0.036 0.82 0.70 0.35 1.22 1.71 1.39 0.84 0.26 1.22 1.28 1.02
0.99 -0.235 0.033 0.68 0.51 0.18 0.95 1.65 1.27 0.84 0.03 1.28 1.37 0.98
T =50
-0.9 0.031 0.006 0.89 1.06 0.69 1.07 1.38 1.19 1.09 0.61 1.05 1.17 1.03
-0.6 0.015 0.013 1.04 1.05 0.99 1.01 1.05 1.04 1.06 0.96 1.01 1.02 1.01
-0.3 -0.002 0.018 1.07 0.96 1.05 1.00 0.99 1.00 0.92 1.02 1.00 0.99 1.01
0 -0.020 0.020 1.07 1.01 1.05 1.00 0.98 1.00 1.01 1.02 1.00 0.99 1.01
0.2 -0.032 0.019 1.06 1.00 1.02 1.01 1.00 1.01 1.00 1.00 1.01 1.00 1.01
0.4 -0.044 0.018 1.03 0.99 0.97 1.02 1.04 1.02 0.99 0.95 1.02 1.02 1.01
0.6 -0.058 0.015 0.99 0.96 0.88 1.03 111 1.04 0.97 0.85 1.02 1.07 1.01
0.8 -0.074 0.011 0.89 0.90 0.67 1.03 1.24 1.08 0.92 0.63 1.03 1.15 1.00
0.9 -0.087 0.009 0.79 0.80 0.46 1.02 1.35 111 0.85 0.41 1.02 1.22 0.99
0.99 -0.103 0.007 0.63 0.51 0.16 0.83 1.45 1.07 0.77 0.06 1.01 1.38 0.97

In Table 2 similar results are presented for the model with a random start-up where the
y; series is both mean and covariance stationary. This increases the variance of the initial
observations of the series substantially, in comparison to the fixed start-up model, for A\ away
from zero. Columns (2) and (3) show that X is slightly less biased and marginally more efficient
now, whereas V() has similar shortcomings as in Table 1. The approximations based on the
trimmed and untrimmed formulas have about the same relative qualities as in Table 1.
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Table 2: Simulations and evaluations for fully-stationary AR(1) model with unknown intercept and random start-up

standard OLS results untrimmed approximations trimmed approximations
N N EVQG B e VoA E[V2 (A EVO B e VoA E[V2 (A EVO
A EQ -2 V) \[>/((/\))] E(Ai/\) Vl((/\)) \/2((/\)) Q//é(\) 2 \[>/((/\))] E(Ai/\) Vl((/\)) \/2((/\)) Q//é(\) 2 \[>/((/\))]
@ @ 3 4) () (6) O ®) O (10 a1 @z (13) (14)
T=10
-0.9 0.084 0.041 0.97 1.03 0.46 1.26 3.39 2.78 2.01 0.46 1.84 1.83 1.38
-0.6 0.040 0.065 1.26 1.59 0.99 111 2.32 2.03 2.00 0.99 1.09 1.13 1.15
-0.3 -0.027 0.078 1.35 0.41 1.17 0.99 1.27 1.17 0.37 1.17 0.92 0.95 1.10
0 -0.100 0.086 1.35 0.90 1.16 1.00 0.97 0.91 1.00 1.16 0.93 0.92 1.08
0.2 -0.151 0.090 1.31 0.93 1.07 1.05 1.10 1.01 1.06 1.07 1.00 0.95 1.08
0.4 -0.206 0.092 1.24 0.91 0.92 1.13 1.43 1.28 1.07 0.92 1.12 1.02 1.08
0.6 -0.264 0.093 1.13 0.84 0.69 1.21 1.80 1.59 1.06 0.69 1.28 1.10 1.08
0.8 -0.331 0.094 0.98 0.65 0.38 1.14 1.91 1.68 1.03 0.38 1.46 1.18 1.06
0.9 -0.369 0.095 0.89 0.44 0.20 0.83 1.73 1.54 1.00 0.20 1.56 1.22 1.05
0.99 -0.407 0.097 0.81 0.06 0.02 0.09 1.46 1.31 0.98 0.02 1.64 1.25 1.03
T=20
-0.9 0.058 0.018 0.89 1.07 0.54 1.17 1.94 1.61 1.48 0.54 1.36 1.46 1.15
-0.6 0.028 0.032 111 1.27 0.99 1.04 1.28 1.21 1.41 0.99 1.04 1.05 1.04
-0.3 -0.010 0.041 1.17 0.52 1.10 1.00 1.00 1.02 0.49 1.10 0.98 0.96 1.02
0 -0.051 0.046 1.17 0.94 1.10 1.01 0.95 0.97 0.99 1.10 0.99 0.96 1.02
0.2 -0.078 0.046 1.15 0.96 1.05 1.02 1.01 1.00 1.02 1.05 1.01 0.99 1.03
0.4 -0.108 0.044 1.10 0.95 0.95 1.05 1.13 1.08 1.02 0.95 1.05 1.04 1.03
0.6 -0.139 0.041 1.02 0.90 0.78 1.08 131 1.18 1.01 0.78 111 111 1.03
0.8 -0.177 0.037 0.88 0.77 0.49 1.07 1.50 1.28 0.96 0.49 1.18 1.22 1.02
0.9 -0.202 0.035 0.78 0.60 0.27 0.91 1.48 1.23 0.92 0.27 1.21 1.27 1.01
0.99 -0.230 0.033 0.67 0.11 0.03 0.14 1.28 1.05 0.86 0.03 1.21 1.31 0.98
T =50
-0.9 0.029 0.005 0.90 1.06 0.69 1.06 1.36 1.17 1.19 0.69 111 1.24 1.06
-0.6 0.015 0.013 1.04 1.05 0.99 1.01 1.05 1.04 1.10 0.99 1.01 1.02 1.01
-0.3 -0.002 0.017 1.07 0.96 1.05 1.00 0.99 1.00 0.94 1.05 1.00 0.99 1.01
0 -0.019 0.019 1.07 1.01 1.04 1.00 0.98 1.00 1.03 1.04 1.00 0.99 1.01
0.2 -0.031 0.019 1.06 1.00 1.02 1.01 1.00 1.01 1.03 1.02 1.01 1.00 1.01
0.4 -0.043 0.017 1.03 0.99 0.97 1.02 1.04 1.02 1.02 0.97 1.02 1.02 1.01
0.6 -0.056 0.015 0.99 0.96 0.88 1.02 111 1.04 1.00 0.88 1.03 1.07 1.01
0.8 -0.070 0.011 0.89 0.89 0.67 1.02 1.23 1.07 0.97 0.67 1.05 1.17 1.01
0.9 -0.081 0.009 0.78 0.78 0.44 0.96 131 1.08 0.92 0.44 1.05 1.25 1.00
0.99 -0.098 0.007 0.60 0.23 0.06 0.28 1.19 0.92 0.81 0.06 0.97 1.31 0.95

Note that all results for the mean-stationary AR(1) model given here are invariant with
respect to 3 and o. For both fixed and random start-up we found that V(S\) can be badly biased,
that the first-order asymptotic approximation Vl(;\) is even worse, but that our corrected
estimator V(A), especially when based on the trimmed approximations, is very satisfactory
when 7' is not very small. However, \ itself is badly biased when T is small or moderate,
hence having an almost unbiased estimator for its variance seems cold comfort. Therefore we
proceed to examine a bias correction of A

In Table 3 results are presented for the model with fixed start-up. Columns (3) and (7)
show that the bias corrected estimator X is much less biased than ), in general. Using the
Kendall formula instead of the untrimmed formula seems only beneficial for large positive A
values. From columns (5) and (10) we see that efficiency gains (losses) can be substantial
when A is 0.8 or larger (0.2 or smaller); this is in close agreement with the first-order results
of Theorem 4.1. Surprisingly, for larger T" the potential efficiency losses decrease, whereas the
potential gains increase. Next we examine whether we have an adequate estimator of V()).
From column (4) we see that the untrimmed estimator according to Corollary 3.3 improves for
larger T, but understates the variance where efficiency gains are made. Column (8) shows that
the trimmed estimator (4.14) tends to have a negative bias, but the quality difference between
the trimmed and untrimmed in estimating V(\) is much smaller than we found in Tables 1

A~

and 2 with respect to bias corrected estimation of V(A). In column (9) we tried an estimator,

denoted \7()\)*, which slightly differs from (4.14), because we evaluated the correction term in A
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rather than in A (as is also done in the untrimmed variance estimator). Although equivalent to
second order, we see that this leads to more satisfactory results here. Note that in finite sample
there is a non-zero probability that | A |> 1. The frequency of such occurrences is reported in
column (2). In practice one has a single sample and one might be tempted to adjust such an
estimate in one way or another, in order to satisfy the stationarity assumption. This would
of course not only affect the bias: The resulting distribution would be truncated and have a
correspondingly different variance. In Tables 3 and 4 we did not use any such adjustments.
Note that Theorem 3.1 holds because A = A+ O,(T~/2), with |A| < 1, which does not exclude
the occurrence of | A |> 1 in the substitution (3.2) that generates A. From columns (6) and
(11) we see that values of A in the non-stationarity region occur very frequently, especially
when ) is extreme and 7' is small, and even more so when the trimmed formula is applied.

Table 3: Simulations for mean-stationary AR(1) model with unknown intercept and fixed start-up

untrimmed approximations trimmed approximations
N EG-A EV(X MSE(X X EG—A EV(X EVOO* MSE(X 3
Y Pz B ORE Wes P2t B N N wee P2t
€9 @ ©) Q) &) (6) (1 ® &) (10) @an
T=10
-0.9 0.186 -0.32 1.22 1.54 0.479 -0.40 0.89 0.94 1.48 0.507
-0.6 0.022 -1.25 1.23 1.79 0.140 -0.74 0.95 0.97 1.67 0.123
-0.3 0.004 1.30 1.19 1.68 0.023 1.00 1.03 1.04 1.68 0.023
0 0.001 0.36 1.11 1.52 0.007 0.41 1.01 1.03 1.51 0.009
0.2 0.001 0.26 1.04 1.40 0.021 0.34 0.95 0.97 1.34 0.013
0.4 0.002 0.25 0.98 1.28 0.060 0.33 0.87 0.90 1.15 0.036
0.6 0.006 0.29 0.92 1.13 0.130 0.35 0.79 0.84 0.96 0.094
0.8 0.017 0.39 0.87 0.94 0.210 0.38 0.76 0.83 0.79 0.201
0.9 0.031 0.45 0.85 0.84 0.252 0.38 0.78 0.86 0.72 0.280
0.99 0.059 0.49 0.81 0.78 0.315 0.34 0.80 0.92 0.69 0.392
T=20
-0.9 0.063 -0.10 1.06 1.14 0.337 -0.12 0.94 0.96 111 0.346
-0.6 0.001 -0.39 1.06 1.32 0.009 -0.19 0.98 0.99 1.29 0.006
-0.3 0.000 0.95 1.06 1.31 0.000 0.70 1.02 1.03 1.32 0.000
0 0.000 0.19 1.04 1.24 0.000 0.21 1.02 1.02 1.25 0.000
0.2 0.000 0.14 1.02 1.18 0.000 0.18 0.99 1.00 1.16 0.000
0.4 0.000 0.14 0.98 1.09 0.001 0.18 0.95 0.97 1.05 0.001
0.6 0.000 0.18 0.94 0.98 0.022 0.21 0.89 0.92 0.90 0.013
0.8 0.003 0.28 0.88 0.82 0.134 0.27 0.83 0.87 0.72 0.113
0.9 0.012 0.37 0.85 0.71 0.224 0.31 0.82 0.87 0.62 0.229
0.99 0.044 0.44 0.81 0.63 0.337 0.31 0.85 0.91 0.56 0.400
T =50
-0.9 0.003 -0.04 1.01 1.00 0.057 -0.03 0.97 0.98 0.97 0.054
-0.6 0.000 -0.06 1.02 111 0.000 -0.00 1.00 1.00 111 0.000
-0.3 0.000 0.33 1.02 1.12 0.000 0.14 1.01 1.01 1.12 0.000
0 0.000 0.05 1.01 1.10 0.000 0.05 1.01 1.01 1.10 0.000
0.2 0.000 0.05 1.01 1.07 0.000 0.06 1.00 1.01 1.07 0.000
0.4 0.000 0.06 1.00 1.02 0.000 0.07 0.99 1.00 1.01 0.000
0.6 0.000 0.08 0.99 0.94 0.000 0.09 0.98 0.98 0.92 0.000
0.8 0.000 0.15 0.95 0.80 0.005 0.14 0.93 0.95 0.77 0.004
0.9 0.001 0.24 0.91 0.68 0.086 0.21 0.91 0.92 0.64 0.084
0.99 0.029 0.39 0.88 0.53 0.335 0.29 0.93 0.96 0.50 0.380

Table 4 shows similar results for the covariance stationary model, although here we find
that using \ for evaluating V()), i.e. employing V(\)*, often increases the bias slightly. From
the MSE ratio’s in Tables 3 and 4 we see that, although the magnitude of bias is smaller
in larger samples, a larger sample size offers in fact more scope for relative efficiency gains
through coefficient bias correction, because then the bias assessment is more accurate. Hence,
it is not the case that bias correction is called for only when biases are huge. A better effect
on efficiency is obtained when we correct for bias in cases where the bias is more moderate, so
that the bias approximation is reasonably accurate, and therefore more effective. Note that a
MSE reduction of 40%, which is possible at substantial A values, implies a reduction of some
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25% in terms of root mean squared errors (or standard errors). This seems quite attractive
against the risks faced when A is smaller than anticipated, provided one uses the correction
only for relatively large .

Table 4: Simulations for fully-stationary AR(1) model with unknown intercept and random start-up

untrimmed approximations trimmed approximations
N EG-A EV(X MSE(X 3 EG—A EV(X ENVOO* MSE(X e
YRz 5 SE e Mzt B SN N8 e Pzt
€3] @ 3 Q) &) (6) ) ® &) (10) a1
T=10
-0.9 0.129 -0.10 1.26 1.25 0.380 -0.71 1.24 1.33 1.52 0.533
-0.6 0.013 -0.87 1.21 1.64 0.092 -0.70 1.04 1.06 1.66 0.102
-0.3 0.003 1.29 1.17 1.61 0.013 0.93 1.07 1.09 1.68 0.016
0 0.001 0.34 1.10 1.47 0.004 0.30 1.05 1.07 1.52 0.006
0.2 0.001 0.25 1.04 1.36 0.013 0.24 1.00 1.03 1.36 0.011
0.4 0.002 0.25 0.99 1.23 0.045 0.23 0.94 0.98 1.17 0.036
0.6 0.006 0.31 0.94 1.06 0.105 0.24 0.89 0.95 0.99 0.105
0.8 0.022 0.43 0.90 0.87 0.188 0.27 0.89 0.99 0.82 0.241
0.9 0.039 0.52 0.87 0.79 0.226 0.30 0.94 1.06 0.75 0.324
0.99 0.061 0.60 0.84 0.74 0.256 0.32 1.00 1.14 0.69 0.402
=20
-0.9 0.042 -0.02 1.13 1.02 0.240 -0.33 1.15 1.18 1.13 0.342
-0.6 0.000 -0.35 1.07 1.29 0.004 -0.26 1.02 1.02 1.29 0.005
-0.3 0.000 0.93 1.06 1.29 0.000 0.66 1.04 1.04 1.32 0.000
0 0.000 0.19 1.04 1.23 0.000 0.16 1.03 1.04 1.25 0.000
0.2 0.000 0.15 1.02 1.17 0.000 0.13 1.01 1.02 1.17 0.000
0.4 0.000 0.15 0.99 1.08 0.001 0.13 0.98 0.99 1.05 0.001
0.6 0.000 0.19 0.95 0.96 0.016 0.15 0.93 0.96 0.91 0.013
0.8 0.003 0.29 0.90 0.79 0.106 0.19 0.91 0.96 0.73 0.123
0.9 0.015 0.40 0.88 0.68 0.196 0.23 0.94 0.99 0.64 0.265
0 99 0.047 0.53 0.84 0.62 0.282 0.29 1.00 1.08 0.56 0.415
=50
-0.9 0.002 -0.03 1.04 0.96 0.027 -0.13 1.05 1.05 0.98 0.046
-0.6 0.000 -0.06 1.02 1.10 0.000 -0.04 1.01 1.01 111 0.000
-0.3 0.000 0.32 1.01 1.12 0.000 0.12 1.01 1.01 1.12 0.000
0 0.000 0.05 1.01 1.10 0.000 0.03 1.01 1.01 1.10 0.000
0.2 0.000 0.05 1.01 1.07 0.000 0.03 1.01 1.01 1.07 0.000
0.4 0.000 0.05 1.00 1.02 0.000 0.04 1.00 1.00 1.01 0.000
0.6 0.000 0.08 0.99 0.94 0.000 0.06 0.99 0.99 0.93 0.000
0.8 0.000 0.15 0.96 0.80 0.002 0.09 0.97 0.98 0.77 0.004
0.9 0.001 0.24 0.94 0.66 0.061 0.14 0.97 0.99 0.65 0.089
0.99 0.035 0.46 0.90 0.52 0.292 0.25 1.06 1.09 0.51 0.410

The sharp increase of the frequency of values of )\ in the non-stationarity region in compar-
ison to this happening with the OLS estimator A is slightly worrying. This increase is due to
the fact that \ values which are large in absolute value, induce A values that are even farther
away from zero after bias correction. Although asymptotically valid in general, the estimation
of our correction terms is really meant for A values which are absolutely smaller than one.
These asymptotic properties are not jeopardized, however, if we redefine A and V()\) such that
the corrections of A and V()) they involve are only performed when | A |< 1 and hence leav-
ing A and V() unchanged otherwise. In Table 5 we have done so for both the models with
fixed and random start-up. We have omitted the frequencies of estimators X and A falling
into the non-stationarity region as these are unaffected, also for A, because the only effect of
this re-definition is that when \ is already in the non-stationarity region, the correction is
not pushing it into non-stationarity any further. Self-evidently this adapted procedure has an
effect for extreme \ values only, where | A |> 1 actually occurs, and then it leads, as we see, to
a slightly less successful bias correction of the coefficient, but also to slightly less bias in the
variance estimator (again V(\)* worked markedly better for the fixed start-up model) and to
a minor improvement in MSE.
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Table 5: Recalculation of Tables 3 and 4 for redefined X and V()) estimators (no correction when | A |> 1)

fixed start-up random start-up
untrimmed trimmed untrimmed trimmed
A E(X—)) E[V(OD] MSE(X) E(X—)) EV()*] MSE(X) E(X—)) E[V(N)] MSE(X) E(X—)) EVO)] MSE(\)
EQ—\) Z8S) MSE(N) EQ—N) Z6S) MSE(N) EQ—\) v MSE(N) EQ—\) Z8S) MSE(X\)
® (2 3 4 ©) (6) ) () ©) (10) (11) (12) (13)
T =10
-0.9 -0.14 1.27 1.41 0.02 0.92 1.12 -0.05 1.29 1.21 -0.38 1.25 1.19
-0.6 -1.22 1.24 1.77 -0.62 0.97 1.58 -0.86 1.22 1.63 -0.63 1.06 1.61
-0.3 1.30 1.19 1.68 0.98 1.04 1.66 1.29 1.67 1.60 0.91 1.09 1.67
0 0.36 1.11 1.52 0.40 1.03 1.50 0.34 1.10 1.47 0.30 1.07 1.52
0.2 0.26 1.04 1.40 0.35 0.97 1.33 0.25 1.04 1.36 0.25 1.03 1.35
0.4 0.25 0.98 1.28 0.34 0.91 1.14 0.25 0.99 1.23 0.23 0.98 1.16
0.6 0.30 0.92 1.12 0.36 0.84 0.94 0.31 0.94 1.06 0.25 0.95 0.96
0.8 0.40 0.88 0.93 0.40 0.83 0.75 0.43 0.90 0.87 0.30 0.98 0.77
0.9 0.46 0.87 0.83 0.41 0.86 0.68 0.52 0.88 0.79 0.34 1.03 0.69
0.99 0.51 0.83 0.77 0.40 0.91 0.62 0.61 0.86 0.74 0.39 1.10 0.62
T=20
-0.9 -0.05 1.09 1.11 -0.02 0.96 1.02 -0.01 1.14 1.01 -0.25 1.17 1.05
-0.6 -0.39 1.06 1.32 -0.19 0.99 1.29 -0.35 1.07 1.29 -0.26 1.02 1.29
-0.3 0.95 1.06 1.31 0.70 1.03 1.32 0.93 1.06 1.29 0.66 1.04 1.32
0 0.19 1.04 1.24 0.21 1.02 1.25 0.19 1.04 1.23 0.16 1.04 1.25
0.2 0.14 1.02 1.18 0.18 1.00 1.16 0.15 1.02 1.17 0.13 1.02 1.17
0.4 0.14 0.98 1.09 0.18 0.97 1.05 0.15 0.99 1.08 0.13 0.99 1.05
0.6 0.18 0.94 0.98 0.21 0.92 0.90 0.19 0.95 0.96 0.15 0.96 0.91
0.8 0.28 0.88 0.82 0.27 0.87 0.71 0.29 0.90 0.79 0.19 0.95 0.72
0.9 0.37 0.86 0.71 0.32 0.87 0.61 0.40 0.88 0.68 0.25 0.99 0.62
0.99 0.45 0.83 0.63 0.35 0.91 0.53 0.54 0.85 0.62 0.33 1.06 0.53
T =50
-0.9 -0.04 1.01 0.99 -0.03 0.98 0.97 -0.03 1.04 0.96 -0.12 1.05 0.98
-0.6 -0.06 1.02 1.11 -0.00 1.00 1.11 -0.06 1.02 1.10 -0.04 1.01 1.11
-0.3 0.33 1.02 1.12 0.14 1.01 1.12 0.32 1.01 1.12 0.12 1.01 1.12
0 0.05 1.01 1.10 0.05 1.01 1.10 0.05 1.01 1.10 0.03 1.01 1.10
0.2 0.05 1.01 1.07 0.06 1.01 1.07 0.05 1.01 1.07 0.03 1.01 1.07
0.4 0.06 1.00 1.02 0.07 1.00 1.01 0.05 1.00 1.02 0.04 1.00 1.01
0.6 0.08 0.99 0.94 0.09 0.98 0.92 0.08 0.99 0.94 0.06 0.99 0.93
0.8 0.15 0.95 0.80 0.14 0.95 0.77 0.15 0.96 0.80 0.09 0.98 0.77
0.9 0.24 0.92 0.68 0.21 0.93 0.64 0.24 0.94 0.66 0.14 0.99 0.65
0.99 0.40 0.90 0.53 0.31 0.97 0.48 0.46 0.91 0.52 0.28 1.08 0.48

To really avoid large frequencies of corrected estimators in the non-stationarity region, we
could be more drastic in our re-definition of 5\\,1 viz. not correcting ) if the correction would
lead to a non-stationary value. The estimator V() of such a A estimator could then be taken
as either the original formula when A is corrected and V(A) otherwise?. We have examined
this procedure in Table 6, again omitting the frequencies of estimators in the non-stationarity
region, because for this A these conform to the original frequencies for )\ in Tables 3 and 4.
Table 6 shows that now there is as a rule again less bias reduction in the coefficient estimator,
but the variance estimator is always conservative and actually very good, even for very small
sample size and for the untrimmed formula, whereas there is a substantial improvement again
in the MSE ratio’s. An obvious attraction of this correction procedure is that it does not
aggravate but neither precludes the occurrence of estimators in the non-stationarity region,
which after all are a natural phenomenon for least-squares in finite samples as this technique
does not impose the stationarity restriction.

2In the latter instance one could also take \7(5\), but some initial experimentation showed that this will yield
a heavily biased variance estimator when A values are close to the unit circle.
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Table 6: Recalculation of Tables 3 and 4 for redefined X and V(}) estimators (no correction of A when | X |> 1)

fixed start-up random start-up
untrimmed trimmed untrimmed trimmed

A E(X—)) E[V(OD] MSE(X) E(X—)) EVO)] MSE(\) E(A—X) E[V()] MSE(X) E(X—)) ENV()] MSE(X)
EQ—N) Z8S) MSE(N) EQ—-N) V() MSE(\) EQ—N) 78S MSEQN) EQ—\) V(%) MSE(X\)

€)) @ ©) O] ®) (©) ) (®) (©) (10) (1) (12) (13)

T=10

-0.9 0.69 1.23 0.94 0.59 1.23 0.94 0.60 1.24 0.90 0.47 1.32 0.86
-0.6 -0.14 1.33 1.31 -0.18 1.22 1.40 -0.17 1.28 131 -0.25 1.24 1.43
-0.3 1.09 1.22 1.57 0.89 1.09 1.60 1.14 1.19 1.54 0.84 111 1.63

0 0.38 1.14 1.47 0.41 1.04 1.47 0.35 1.12 1.44 0.31 1.07 1.49
0.2 0.33 1.13 1.27 0.37 1.05 1.28 0.30 1.10 1.27 0.27 1.07 1.31
0.4 0.40 1.15 1.03 0.38 1.10 1.05 0.37 111 1.04 0.29 111 1.07
0.6 0.53 1.19 0.83 0.46 1.19 0.82 0.50 1.13 0.84 0.38 1.18 0.82
0.8 0.67 1.19 0.73 0.57 1.25 0.66 0.65 111 0.73 0.53 1.21 0.64
0.9 0.72 1.15 0.71 0.62 1.24 0.62 0.71 1.06 0.72 0.61 1.18 0.61
0.99 0.76 1.05 0.72 0.68 1.15 0.61 0.77 1.00 0.73 0.68 1.12 0.61

T=20

-0.9 0.46 1.17 0.85 0.37 1.16 0.82 0.35 1.19 0.84 0.23 1.23 0.79
-0.6 -0.34 1.08 1.29 -0.17 1.00 1.28 -0.32 1.07 1.27 -0.25 1.03 1.28
-0.3 0.95 1.06 1.31 0.70 1.02 1.32 0.93 1.06 1.29 0.66 1.04 1.32

0 0.19 1.04 1.24 0.21 1.02 1.25 0.19 1.04 1.23 0.16 1.03 1.25
0.2 0.15 1.02 1.18 0.18 0.99 1.16 0.15 1.02 117 0.13 1.01 117
0.4 0.15 0.99 1.09 0.18 0.96 1.04 0.15 0.99 1.08 0.13 0.98 1.05
0.6 0.23 0.99 0.91 0.22 0.96 0.87 0.22 0.99 0.91 0.16 0.98 0.88
0.8 0.45 1.06 0.68 0.38 1.07 0.62 0.42 1.03 0.68 0.32 1.08 0.62
0.9 0.59 1.08 0.62 0.50 1.13 0.53 0.57 1.04 0.62 0.48 111 0.52
0.99 0.69 1.03 0.62 0.63 1.10 0.52 0.69 0.97 0.63 0.63 1.06 0.52

T =50

-0.9 0.05 1.06 0.93 0.04 1.03 0.92 0.01 1.07 0.93 -0.06 1.07 0.93
-0.6 -0.06 1.02 111 -0.00 1.00 111 -0.06 1.02 1.10 -0.04 1.01 111
-0.3 0.33 1.02 1.12 0.14 1.01 1.12 0.32 1.01 1.12 0.12 1.01 1.12

0 0.05 1.01 1.10 0.05 1.01 1.10 0.05 1.01 1.10 0.03 1.01 1.10
0.2 0.05 1.01 1.07 0.06 1.00 1.07 0.05 1.01 1.07 0.03 1.01 1.07
0.4 0.06 1.00 1.02 0.07 0.99 1.01 0.05 1.00 1.02 0.04 1.00 1.01
0.6 0.08 0.99 0.94 0.09 0.98 0.92 0.08 0.99 0.94 0.06 0.99 0.93
0.8 0.15 0.96 0.79 0.14 0.95 0.76 0.15 0.97 0.79 0.10 0.97 0.77
0.9 0.32 1.02 0.61 0.28 1.03 0.57 0.30 1.01 0.62 0.22 1.04 0.57
0.99 0.61 1.11 0.52 0.58 1.16 0.46 0.60 1.04 0.53 0.58 1.10 0.46

In Table 7 we present results for the alternative bias corrected estimator A. Theorem 4.2
predicts that this estimator is less biased than X, but less efficient too, neglecting the effects
of higher order terms. We find at the sample sizes examined (and for versions of A and X that
have been corrected in all replications) that the first regularity generally holds except for A
close to —1. Especially for moderate values of A estimator A has much less bias and it even
overcorrects when the start-up is random. It is remarkable that ) is also a bit more efficient
than A when )\ is large positive, but this goes with a higher probability to produce estimates
in the non-stationarity region. Because it is computationally cumbersome to generalize A for
models with more regressors, we will stick here to the type of correction as performed in .
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Table 7: Two alternative trimmed bias corrections in AR(1) with intercept

fixed start-up random start-up
EQ)-A  MSE(A ] EQ)—A  MSE(A ]
A EE)\;—)\ MSEE)\; | A|>1 EE)\;—)\ MSEE)\; |A|>1
T=10 -09 0.75 1.01 0.600 2.03 1.35 0.633
-0.6 2.49 1.14 0.193 2.06 1.23 0.161
-0.3 0.93 1.18 0.041 0.97 1.21 0.028
0.0 0.36 1.18 0.019 -0.02 1.20 0.013
0.2 0.23 1.15 0.034 -0.35 1.20 0.029
0.4 0.29 1.10 0.084 -0.44 1.19 0.080
0.6 0.47 1.01 0.185 -0.34 1.18 0.196
0.8 0.66 0.90 0.330 -0.14 1.15 0.366
0.9 0.74 0.85 0.421 -0.01 1.12 0.455
0.99 0.80 0.82 0.531 0.11 1.09 0.528
T=20 -09 0.61 0.98 0.422 1.72 1.08 0.396
-0.6 2.32 1.05 0.011 1.90 1.05 0.007
-0.3 0.91 1.05 0.000 0.90 1.05 0.000
0.0 0.29 1.05 0.000 0.00 1.05 0.000
0.2 0.16 1.04 0.000 -0.25 1.05 0.000
0.4 0.19 1.04 0.002 -0.25 1.04 0.002
0.6 0.36 1.02 0.027 -0.07 1.04 0.022
0.8 0.66 0.96 0.173 0.23 1.03 0.172
0.9 0.80 0.91 0.311 0.41 1.01 0.330
0.99 0.88 0.89 0.489 0.56 0.98 0.482
T=50 -09 -1.94 1.00 0.103 1.59 1.01 0.054
-0.6 2.92 1.01 0.000 2.05 1.01 0.000
-0.3 0.85 1.01 0.000 0.85 1.01 0.000
0.0 0.16 1.01 0.000 -0.13 1.01 0.000
0.2 0.10 1.01 0.000 -0.28 1.01 0.000
0.4 0.19 1.01 0.000 -0.18 1.01 0.000
0.6 0.38 1.01 0.000 0.07 1.01 0.000
0.8 0.63 1.00 0.009 0.43 1.00 0.005
0.9 0.82 0.98 0.132 0.63 1.00 0.105
0.99 0.95 0.95 0.464 0.81 0.98 0.436

Next we present a few results for the AR(1) model with intercept and trend

Yt = Ayr—1 + O1 + Bot + (5.2)
which we rescale by defining
1 1 A 1
= - — — — ——05t t=0,..1T. .

Substitution yields y; = Ay;_; + u;/o, indicating that general results are obtained by taking
a unit disturbance variance and a zero intercept and zero trend coefficient, but with start-up
mean value

1 1 A
ik = — Uy — —— —_— . 54
Yo=— % =7 514‘1_)\52 (5.4)
We examine the mean-stationary fixed start-up case, with w = 0 and g5 = 0 ie. @ =

[B1 + AB5/(1 — A)]/(1 — N), hence all the results are invariant with respect to (;, 8, and
o. We found that in models with more regressors our original correction procedures work
only reasonably well for moderate values of A and T' not too small. However, if correction is
performed only conditional on either A or A not in the non-stationarity region, then results of
practical interest are also obtained in more extreme cases.

From Table 8 it is seen how badly biased )\ is in the model with trend when 7 is small.
It is also seen that V() has serious shortcomings which (initially) aggravate for increasing
T, whereas the variance estimator V()) already works pretty well for T = 50. The first order
bias approximation By (calculated for the true parameter values) is not very accurate for small
T, especially not for large ), and consequently the estimator A shows still substantial bias.
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Nevertheless it is more efficient than OLS for A > 0.4, whereas its variance can be assessed
remarkably well by V()). Column (11) shows with what probability the corrected estimator
would have obtained values in the non-stationarity region if we had not assured that this does
not happen more often than for A

Table 8: ARX(1) model with intercept and trend; mean-stationary fixed start-up (no correction if | X > 1)

S SN EVQA EVQG B EQ)-X  ENQ MSE(X < <
A E() —A V() E/((X))] E/((X))] E(X)/\—)\ EEX;_,\ E/(()\))] MSEEX; [Alz21 A1
® 5 (&) (©) @ ®) (O] () ® © (10 (11)
T =1
-0.9 0.072 0.055 1.22 4.42 1.50 0.72 1.38 1.04 0.212 0.494
-0.6 -0.012 0.066 1.54 2.84 -2.79 2.87 1.49 1.46 0.031 0.153
-0.3 -0.110 0.078 1.63 1.43 0.67 0.75 1.34 1.55 0.007 0.028
0.0 -0.217 0.088 1.60 1.02 0.82 0.54 1.21 1.25 0.003 0.010
0.2 -0.294 0.094 1.54 1.11 0.82 0.54 1.16 1.03 0.002 0.019
0.4 -0.379 0.099 1.44 1.30 0.78 0.59 1.14 0.86 0.002 0.038
0.6 -0.472 0.105 1.32 1.42 0.69 0.67 1.12 0.77 0.004 0.062
0.8 -0.580 0.112 1.17 1.35 0.54 0.75 1.07 0.75 0.008 0.079
0.9 -0.647 0.116 1.11 1.26 0.42 0.79 1.04 0.76 0.011 0.082
0.99 -0.723 0.118 1.07 1.19 0.30 0.82 1.01 0.78 0.012 0.076
T =20
-0.9 0.057 0.021 0.98 1.94 1.21 0.47 1.22 0.92 0.070 0.340
-0.6 0.007 0.033 1.22 1.28 2.68 -2.33 1.12 1.41 0.001 0.009
-0.3 -0.048 0.041 1.27 1.04 0.81 0.46 1.09 1.34 0.000 0.000
0.0 -0.105 0.047 1.26 1.00 0.90 0.29 1.04 1.16 0.000 0.000
0.2 -0.146 0.048 1.21 1.04 0.89 0.28 1.00 1.04 0.000 0.000
0.4 -0.191 0.049 1.15 1.11 0.86 0.32 0.95 0.89 0.000 0.003
0.6 -0.244 0.048 1.06 1.18 0.78 0.41 0.94 0.73 0.000 0.020
0.8 -0.310 0.047 0.93 1.18 0.63 0.57 0.94 0.62 0.001 0.066
0.9 -0.355 0.046 0.86 1.09 0.49 0.66 0.92 0.63 0.003 0.088
0.99 -0.417 0.047 0.80 0.98 0.29 0.74 0.88 0.66 0.007 0.092
T =50
-0.9 0.029 0.006 0.93 1.21 1.09 0.04 1.07 0.98 0.003 0.057
-0.6 0.007 0.013 1.08 1.04 1.19 -0.27 1.02 1.16 0.000 0.000
-0.3 -0.016 0.0017 1.10 1.01 0.96 0.15 1.02 1.14 0.000 0.000
0.0 -0.040 0.020 1.09 1.00 0.98 0.10 1.01 1.08 0.000 0.000
0.2 -0.057 0.020 1.07 1.01 0.96 0.11 1.00 1.01 0.000 0.000
0.4 -0.074 0.018 1.03 1.02 0.94 0.13 0.98 0.92 0.000 0.000
0.6 -0.094 0.016 0.97 1.04 0.89 0.18 0.95 0.79 0.000 0.000
0.8 -0.120 0.013 0.85 1.04 0.78 0.30 0.91 0.62 0.000 0.006
0.9 -0.141 0.012 0.76 1.00 0.64 0.45 0.91 0.53 0.000 0.047
0.99 -0.180 0.011 0.65 0.87 0.30 0.64 0.89 0.54 0.005 0.106

Now we shall perform some experiments for the stationary autoregressive model with in-
tercept and one strongly exogenous regressor, which itself is stationary and first-order autore-
gressive, i.e.

Yo = ANyr—1 + By + By + o0&y,
(5.5)
Ty = pri1 + &,

Here ¢; and &, are both mutually independent i.i.d. N(0, 1) series. In addition to |A| < 1 we
assume |p| < 1 and the strong stationarity implies

1 ) Ba 14 Mp

In our simulations we shall only compare models with parameter values such that they have
all equivalent signal-to-noise ratio

(5.7)



and thus, normalizing 0? = 1, we chose

_ 2 2 1= Ap
f = | lsN (-3 - ¥l - 21 3
which requires > < SNR/(SNR +1). We will fix SNR = 19 (i.e. the population R? = 0.95)
and therefore have to restrict our calculations to |A| < 0.975. For the series x; we chose p = 0.95
so that a relatively smooth time-series results. We generated only one arbitrary x; series, which
has been used in all Monte Carlo replications (numbering again 10°). Hence our results do not
pertain to the whole family of models (5.5), but only to a very particular case. Note that, in
agreement with this, all our theorems are about moments of coefficient estimators conditional
on X.

In Table 9 we show results for A > 0 only, but also include 7" = 100. Note that the bias is
again substantial in small samples, that for substantial A values V(S\) is negatively biased, but
so is V(S\), although this behaves significantly better. The first order bias approximation B) is
reasonably accurate (if A is not very large whilst T very small) thus A shows substantial bias
reduction, especially for larger 7' and moderate . Therefore A is much more efficient than ;\,
especially for larger A values. Even when T" = 100 and the least-squares bias is not very large
(although note that it is not much smaller than the standard deviation of ;\) still substantial

efficiency gains are achieved by bias correction. However, V(\) underestimates the variance

when there is an efficiency improvement, though it is less biased than \7()\) and \7()\) are. The
final column shows that leaving OLS uncorrected did not occur very often for larger 7'

Table 9: ARX(1) model with AR(1) regressor; mean-stationary random start-up (no correction if | X [> 1)

< < EVQ EVQ B EQD-XA  ENVO MSE(X N N
A E) -2 V() E/((X))] E/((X))] E(X)/\—A EEX;—A E/(()\))] MSEEX; [Alz1 [Alz1
(€9) . (&) ©) (&) ®) ®) (0] ® (O] (10 (11
T =1
0.0 -0.061 0.039 0.98 0.89 1.39 0.27 0.93 1.09 0.000 0.001
0.2 -0.077 0.042 0.94 0.90 1.31 0.25 0.92 1.03 0.000 0.001
0.4 -0.099 0.048 0.88 0.90 1.20 0.29 0.90 0.95 0.001 0.004
0.6 -0.134 0.059 0.79 0.89 1.02 0.41 0.88 0.84 0.005 0.026
0.8 -0.207 0.088 0.68 0.82 0.76 0.62 0.82 0.75 0.038 0.110
0.9 -0.306 0.119 0.66 0.79 0.48 0.73 0.79 0.75 0.080 0.180
0.95 -0.420 0.140 0.70 0.82 0.24 0.79 0.80 0.77 0.080 0.172
T =20
0.0 -0.018 0.013 1.06 1.00 1.20 0.07 1.01 1.09 0.000 0.000
0.2 -0.032 0.015 1.08 1.00 1.26 0.09 1.01 1.07 0.000 0.000
0.4 -0.050 0.016 1.06 1.01 1.28 0.13 1.01 0.99 0.000 0.000
0.6 -0.075 0.018 0.94 0.99 1.23 0.21 0.97 0.85 0.000 0.001
0.8 -0.118 0.026 0.70 0.84 0.97 0.40 0.87 0.67 0.003 0.027
0.9 -0.171 0.037 0.58 0.73 0.66 0.58 0.79 0.63 0.026 0.109
0.95 -0.236 0.045 0.59 0.72 0.37 0.68 0.78 0.65 0.047 0.156
T =50
0.0 -0.009 0.005 1.03 1.00 0.92 0.02 1.01 1.03 0.000 0.000
0.2 -0.014 0.006 1.03 1.00 0.91 0.03 1.00 1.02 0.000 0.000
0.4 -0.020 0.005 1.03 1.01 0.89 0.05 1.00 0.99 0.000 0.000
0.6 -0.029 0.005 0.99 1.01 0.84 0.08 1.00 0.91 0.000 0.000
0.8 -0.044 0.005 0.84 0.96 0.75 0.17 0.95 0.72 0.000 0.000
0.9 -0.065 0.006 0.66 0.84 0.67 0.32 0.88 0.58 0.001 0.014
0.95 -0.099 0.009 0.58 0.76 0.53 0.52 0.86 0.53 0.014 0.096
T =100
0.0 -0.004 0.003 1.01 1.00 0.98 0.02 1.01 1.01 0.000 0.000
0.2 -0.006 0.003 1.02 1.01 0.98 0.02 1.00 1.01 0.000 0.000
0.4 -0.010 0.003 1.02 1.01 0.98 0.02 1.00 1.00 0.000 0.000
0.6 -0.016 0.003 1.00 1.01 0.97 0.04 1.00 0.95 0.000 0.000
0.8 -0.024 0.002 0.92 1.00 0.91 0.10 0.99 0.81 0.000 0.000
0.9 -0.034 0.002 0.79 0.95 0.85 0.19 0.95 0.67 0.000 0.000
0.95 -0.044 0.003 0.67 0.88 0.73 0.34 0.92 0.56 0.001 0.033
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Finally we examine how bias correction of either or both coefficient and variance estimators
affects test size. We consider various one-sided tests of Hp : A = A\g both against the left-hand
and against the right-hand side alternative, all at nominal significance level 5%. First we
examine again the AR(1) model with intercept only and try the crude asymptotic test statistic
N = (A=X0)/[V1(Xo)]¥/2, which is asymptotically standard normal under the null. This can be
adapted in the following ways. Correcting only the numerator yields N° = [A+ (14 3Xo)/T —
Xo]/[V1(Xo)]2, and correcting only the denominator leads to Ng = (A—Xg)/[Va(Xo)]Y/2, whereas
correcting both gives N9 = [A+(1+43X0)/T — Xo]/[V2(Xo)]/2. We shall also examine tests which
have the same asymptotic distribution, though we shall use them with critical values from the
Student distribution with 7' — 2 degrees of freedom. They are the habitual test statistic

()\ - /\0)/[V()\)]1/2, and the corrected statistics 1° = [A + (1+3Xg) /T — /\0]/[V(5\)]1/2,
to =(\— Xo)/ [V ()\) (3 — 2 o — 9A3)/T?)2, and 3 [)\ + (14 3X) /T — Xo|/[V ()\) (3 —
200 — 9X3)/T?]*/2. Furthermore, we shall also examine test statistics where the corrections are
not evaluated under the null but where the estimators A, V(A) and V()) are exploited, i.e.
£ = (A= 20)/[VM2, . = (A= Xo) /N2 amd £ = (A — Do) /[N(V]V2.

Table 10 contains results for the model with random start-up for the standard uncorrected
N and t test statitics and for the statistics where the trimmed corrections are evaluated under
the null. The latter exist here because there are no nuisance parameters in the mean-stationary
AR(1) model with just an intercept. First focussing on testing against H; : A < Ao we see from
Table 10 that a sample of T' = 50 is still much too small for the crude asymptotic test and the
habitual ¢-test to work well. Their actual size is strongly dependent on A\g and is too small for
Ao substantially negative, and far too large for A\ towards one. Correcting just the numerator

Table 10: Test size in mean-stationary AR(1) model with intercept, random start-up

left-hand alternative right-hand alternative
Ao N N t v to 9 N  NJ t v to 9
=10
-0.9 0.02 0.01 0.03 0.23 0.00 0.02 0.19 0.02 0.04 0.01 0.02 0.01
-0.6 0.01 0.02 0.03 0.07 0.05 0.09 0.08 0.05 0.03 0.02 0.03 0.02
-0.3 0.03 0.05 0.04 0.04 0.09 0.08 0.04 0.06 0.02 0.02 0.03 0.03
0.0 0.08 0.05 0.06 0.03 0.10 0.06 0.02 0.06 0.01 0.02 0.02 0.04
0.2 0.12 0.05 0.07 0.03 0.10 0.04 0.01 0.05 0.01 0.03 0.02 0.05
0.4 0.19 0.05 0.09 0.03 0.10 0.03 0.01 0.03 0.01 0.04 0.01 0.04
0.6 0.29 0.04 0.12 0.03 0.10 0.02 0.01 0.02 0.00 0.05 0.00 0.03
0.8 0.48 0.04 0.18 0.03 0.10 0.02 0.01 0.01 0.00 0.07 0.00 0.02
0.9 0.65 0.04 0.24 0.04 0.11 0.02 0.01 0.01 0.00 0.09 0.00 0.01
0.99 0.88 0.03 0.32 0.04 0.11 0.01 0.03 0.00 0.00 0.10 0.00 0.00
T=20
-0.9 0.01 0.00 0.03 0.17 0.00 0.04 0.18 0.04 0.06 0.02 0.04 0.01
-0.6 0.01 0.02 0.04 0.06 0.05 0.07 0.09 0.06 0.04 0.03 0.04 0.03
-0.3 0.03 0.04 0.05 0.05 0.07 0.06 0.05 0.06 0.03 0.03 0.04 0.04
0.0 0.07 0.05 0.06 0.04 0.08 0.05 0.03 0.05 0.02 0.04 0.03 0.05
0.2 0.10 0.05 0.07 0.04 0.09 0.05 0.01 0.04 0.02 0.04 0.02 0.05
0.4 0.14 0.06 0.09 0.04 0.09 0.04 0.01 0.03 0.01 0.05 0.01 0.05
0.6 0.21 0.06 0.11 0.04 0.10 0.03 0.00 0.02 0.01 0.06 0.00 0.05
0.8 0.36 0.06 0.17 0.04 0.12 0.03 0.00 0.01 0.00 0.08 0.00 0.03
0.9 0.52 0.06 0.23 0.05 0.14 0.03 0.00 0.00 0.00 0.09 0.00 0.02
0.99 0.86 0.07 0.38 0.06 0.17 0.03 0.02 0.00 0.00 0.11 0.00 0.01
=50
-0.9 0.00 0.00 0.03 0.11 0.01 0.06 0.15 0.06 0.06 0.03 0.05 0.03
-0.6 0.02 0.03 0.04 0.06 0.05 0.06 0.08 0.06 0.05 0.04 0.05 0.04
-0.3 0.04 0.04 0.05 0.05 0.06 0.06 0.05 0.06 0.04 0.04 0.04 0.05
0.0 0.06 0.05 0.06 0.05 0.07 0.05 0.03 0.05 0.03 0.05 0.04 0.05
0.2 0.08 0.05 0.07 0.04 0.07 0.05 0.02 0.05 0.03 0.05 0.03 0.05
0.4 0.10 0.06 0.08 0.04 0.08 0.04 0.02 0.04 0.02 0.05 0.03 0.06
0.6 0.14 0.06 0.09 0.04 0.09 0.04 0.01 0.03 0.02 0.06 0.02 0.06
0.8 0.23 0.07 0.13 0.05 0.11 0.04 0.00 0.01 0.01 0.08 0.00 0.05
0.9 0.34 0.07 0.18 0.05 0.13 0.04 0.00 0.00 0.00 0.09 0.00 0.03
0.99 0.79 0.09 0.38 0.08 0.20 0.05 0.01 0.00 0.00 0.11 0.00 0.01
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or denominator of N helps but does not lead to satisfactory results (not presented in the table)
whereas correcting both, though extremely effictive, does not either. A similar pattern emerges
for the t°, o and 3 tests, where the latter behaves quite well for all Ay vlues when T = 50.
Achieving size control through bias correction proves to require larger samples when testing
against Hy : A > Ao.

In Table 11 we examine for the same model the tests where the trimmed correction terms
have been estimated instead of evaluated under the null. Against left-hand side alternatives we
notice that it is better to correct both numerator and denominator instead of just one, and that
the tail probabilities of the test statistics do not improve when corrections are only performed
when they do not involve or yield coefficient estimates in the non-stationarity region. Also,
test t* seems certainly to be at least as good as test t3, as far as size control is concerned.
Similar conclusions apply to the tests against right-hand side alternatives except when very
close to the unit root. Because it seems more difficult to achieve size control here, it could be
useful for practitioners to know that the test t* seems to provide a conservative test (actual
size larger than nominal level), whereas ¢ proves to be liberal if \g is not extremely negative.

Table 11: Test size in mean-stationary AR(1) model with intercept, random start-up

left-hand alternative, corrected: right-hand alternative, corrected:
always if | X]<1 always if | X< 1
o & [ [ * [ t* Ts [ t* [
T=10
-0.9 0.25 0.00 0.01 0.03 0.03 0.03 0.06 0.02 0.03 0.02
-0.6 0.11 0.00 0.04 0.06 0.03 0.04 0.05 0.03 0.04 0.03
-0.3 0.09 0.04 0.05 0.08 0.05 0.05 0.03 0.03 0.05 0.03
0.0 0.08 0.08 0.05 0.08 0.05 0.05 0.01 0.03 0.05 0.03
0.2 0.08 0.11 0.06 0.08 0.06 0.05 0.00 0.02 0.05 0.02
0.4 0.08 0.14 0.06 0.08 0.06 0.06 0.00 0.02 0.03 0.01
0.6 0.09 0.17 0.07 0.09 0.07 0.07 0.00 0.01 0.01 0.00
0.8 0.10 0.22 0.07 0.10 0.07 0.08 0.00 0.01 0.00 0.00
0.9 0.11 0.26 0.08 0.11 0.08 0.09 0.00 0.01 0.00 0.00
0.99 0.13 0.30 0.09 0.14 0.10 0.09 0.00 0.01 0.00 0.00
T=20
-0.9 0.18 0.00 0.03 0.03 0.03 0.04 0.06 0.03 0.04 0.03
-0.6 0.09 0.02 0.05 0.09 0.05 0.04 0.05 0.04 0.04 0.04
-0.3 0.07 0.05 0.05 0.07 0.05 0.05 0.04 0.04 0.05 0.04
0.0 0.06 0.08 0.05 0.06 0.05 0.05 0.02 0.04 0.05 0.04
0.2 0.06 0.09 0.05 0.06 0.05 0.06 0.02 0.04 0.06 0.04
0.4 0.06 0.11 0.05 0.06 0.05 0.06 0.01 0.04 0.06 0.04
0.6 0.07 0.13 0.05 0.07 0.05 0.07 0.00 0.03 0.07 0.03
0.8 0.08 0.17 0.06 0.08 0.06 0.08 0.00 0.02 0.01 0.00
0.9 0.09 0.21 0.07 0.09 0.07 0.09 0.00 0.01 0.00 0.00
0.99 0.12 0.27 0.08 0.13 0.09 0.10 0.00 0.01 0.00 0.00
T =50
-0.9 0.12 0.00 0.05 0.10 0.04 0.04 0.06 0.03 0.04 0.03
-0.6 0.07 0.04 0.06 0.07 0.06 0.05 0.05 0.04 0.05 0.04
-0.3 0.06 0.06 0.05 0.06 0.05 0.05 0.04 0.05 0.05 0.05
0.0 0.06 0.07 0.05 0.06 0.05 0.06 0.04 0.05 0.06 0.05
0.2 0.06 0.08 0.05 0.06 0.05 0.06 0.03 0.05 0.06 0.05
0.4 0.05 0.08 0.05 0.05 0.05 0.06 0.02 0.05 0.06 0.05
0.6 0.05 0.10 0.05 0.05 0.05 0.07 0.01 0.05 0.07 0.05
0.8 0.06 0.12 0.05 0.06 0.05 0.09 0.00 0.04 0.09 0.04
0.9 0.06 0.15 0.05 0.06 0.05 0.10 0.00 0.03 0.02 0.00
0.99 0.10 0.24 0.07 0.10 0.07 0.11 0.00 0.01 0.00 0.00

Table 12 presents results for the mean-stationary AR(1) model with intercept and trend and
fixed start-up. Hence, only untrimmed corrections are available now, and we only examined
test statistics where the corrections were estimated. Note that for both alternative hypotheses
the size distortions for the standard t-test are extremely severe. Correcting just the numerator
(shifting the location of the distribution) does mitigate the problems against right-hand side
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alternatives and for positive )y also against left-hand-side alternatives. Correcting just the
denominator (adjusting the scale of the distribution) does not help much to cure the size
problems. The results for ¢ show that adjusting both leads to a test that converges faster
to an exact test, especially for moderate and negative values of \g. Performing the correction
always seems beneficial for the tail probabilities.

Table 12: Test size in mean-stationary AR(1) model with intercept and trend, fixed start-up

left-hand alternative, corrected: right-hand alternative, corrected:
always if | X]<1 always if | X]<1
Ao t t* T tr t* tr t t* tx tr t* tr
T=10
-0.9 0.03 0.15 0.02 0.03 0.03 0.03 0.01 0.02 0.03 0.02 0.02 0.02
-0.6 0.04 0.11 0.03 0.04 0.05 0.04 0.01 0.02 0.02 0.01 0.02 0.01
-0.3 0.06 0.10 0.05 0.05 0.08 0.05 0.00 0.02 0.01 0.01 0.02 0.01
0.0 0.09 0.10 0.12 0.07 0.10 0.07 0.00 0.03 0.00 0.01 0.02 0.01
0.2 0.12 0.11 0.18 0.09 0.11  0.09 0.00 0.03 0.00 0.00 0.01 0.00
0.4 0.16 0.14 0.23 0.12 0.14 0.12 0.00 0.03 0.00 0.00 0.00 0.00
0.6 0.23 0.18 0.29 0.16 0.18 0.16 0.00 0.02 0.00 0.00 0.00 0.00
0.8 0.36 0.26 0.40 0.24 0.26 0.24 0.00 0.01 0.00 0.00 0.00 0.00
0.9 0.46 0.32 0.48 0.30 0.32 0.30 0.00 0.00 0.00 0.00 0.00 0.00
0.99 0.57 0.40 0.57 0.37 0.40 0.37 0.00 0.00 0.00 0.00 0.00 0.00
T=20
-0.9 0.03 0.14 0.02 0.03 0.03 0.03 0.04 0.04 0.05 0.03 0.04 0.03
-0.6 0.04 0.09 0.04 0.05 0.09 0.05 0.02 0.04 0.04 0.03 0.04 0.03
-0.3 0.06 0.08 0.07 0.06 0.08 0.06 0.02 0.04 0.03 0.03 0.04 0.03
0.0 0.09 0.08 0.13 0.07 0.08 0.07 0.01 0.04 0.01 0.03 0.04 0.03
0.2 0.11 0.08 0.16 0.07 0.08 0.07 0.01 0.05 0.00 0.02 0.05 0.02
0.4 0.15 0.10 0.19 0.09 0.10 0.09 0.00 0.05 0.00 0.02 0.05 0.02
0.6 0.21 0.12 0.23 0.11 0.12 0.11 0.00 0.04 0.00 0.01 0.02 0.01
0.8 0.34 0.18 0.34 0.16 0.18 0.16 0.00 0.02 0.00 0.00 0.00 0.00
0.9 0.47 0.25 0.44 0.22 0.25 0.22 0.00 0.01 0.00 0.00 0.00 0.00
0.99 0.67 0.37 0.60 0.32 0.37 0.33 0.00 0.00 0.00 0.00 0.00 0.00
T =50
-0.9 0.03 0.11 0.01 0.05 0.08 0.04 0.06 0.04 0.06 0.03 0.04 0.03
-0.6 0.05 0.07 0.05 0.06 0.07 0.06 0.04 0.04 0.04 0.04 0.04 0.04
-0.3 0.06 0.06 0.07 0.05 0.06 0.05 0.03 0.05 0.03 0.04 0.05 0.04
0.0 0.08 0.06 0.09 0.06 0.06 0.06 0.02 0.05 0.02 0.04 0.05 0.04
0.2 0.09 0.06 0.10 0.06 0.06 0.06 0.02 0.06 0.02 0.04 0.06 0.04
0.4 0.11 0.06 0.12 0.06 0.06 0.06 0.01 0.06 0.01 0.04 0.06 0.04
0.6 0.15 0.07 0.15 0.06 0.07 0.06 0.01 0.06 0.00 0.04 0.06 0.04
0.8 0.23 0.10 0.21 0.08 0.10 0.08 0.00 0.05 0.00 0.02 0.05 0.02
0.9 0.36 0.14 0.30 0.12 0.14 0.12 0.00 0.03 0.00 0.01 0.00 0.00
0.99 0.68 0.29 055 0.24 0.29 0.24 0.00 0.00 0.00 0.00 0.00 0.00

Table 13 presents similar results for the model with an exogenous AR(1) regressor. Again
we find huge size distortions of the standard ¢-test. And again convergence of the actual null
distribution of the test statistics to Student’s seems most rapid as well as monotonic for the
t: test, which fully exploits the second-order asymptotic findings of this paper.
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Table 13: Test size in mean-stationary ARX(1) model with intercept and AR(1) regressor, random start-up

left-hand alternative, corrected: right-hand alternative, corrected:
always if|\|<1 always if | x|<1
Ao t t* te tr t* tr t t* e tr t* tr
T=10
0.0 0.08 0.07 0.09 0.06 0.07 0.06 0.03 0.04 0.03 0.04 0.04 0.04
0.2 0.09 0.07 0.10 0.07 0.07 0.07 0.02 0.04 0.02 0.04 0.04 0.04
0.4 0.10 0.08 0.11 0.08 0.08 0.08 0.02 0.04 0.02 0.03 0.04 0.03
0.6 0.13 0.09 0.13 0.09 0.09 0.09 0.02 0.03 0.02 0.03 0.03 0.03
0.8 0.18 0.13 0.18 0.13 0.13 0.12 0.01 0.02 0.01 0.02 0.01 0.01
0.9 0.25 0.18 0.25 0.18 0.18 0.17 0.01 0.01 0.01 0.01 0.01 0.01
0.95 0.33 0.24 0.33 0.24 0.24 0.23 0.00 0.01 0.00 0.00 0.00 0.00
T=20
0.0 0.07 0.06 0.07 0.06 0.06 0.06 0.03 0.05 0.03 0.04 0.05 0.04
0.2 0.07 0.06 0.08 0.06 0.06 0.06 0.03 0.05 0.03 0.04 0.05 0.04
0.4 0.09 0.06 0.10 0.06 0.06 0.06 0.02 0.05 0.02 0.04 0.05 0.04
0.6 0.11 0.07 0.12 0.06 0.07 0.06 0.02 0.05 0.01 0.04 0.05 0.04
0.8 0.18 0.10 0.17 0.09 0.10 0.09 0.01 0.04 0.01 0.03 0.03 0.02
0.9 0.27 0.14 0.24 0.13 0.14 0.13 0.01 0.01 0.01 0.01 0.01 0.01
0.95 0.37 0.21 0.34 0.19 0.21 0.19 0.00 0.01 0.00 0.00 0.00 0.00
T =50
0.0 0.06 0.05 0.06 0.05 0.05 0.05 0.04 0.05 0.04 0.05 0.05 0.05
0.2 0.07 0.05 0.07 0.05 0.05 0.05 0.03 0.05 0.03 0.05 0.05 0.05
0.4 0.08 0.05 0.08 0.05 0.05 0.05 0.03 0.05 0.03 0.05 0.05 0.05
0.6 0.09 0.05 0.10 0.05 0.05 0.05 0.02 0.06 0.02 0.05 0.06 0.05
0.8 0.14 0.06 0.13 0.06 0.06 0.06 0.01 0.06 0.01 0.05 0.06 0.05
0.9 0.22 0.09 0.18 0.08 0.09 0.08 0.01 0.05 0.01 0.03 0.04 0.03
0.95 0.34 0.14 0.27 0.12 0.14 0.12 0.00 0.01 0.00 0.01 0.00 0.00
T =100
0.0 0.06 0.05 0.06 0.05 0.05 0.05 0.04 0.05 0.04 0.05 0.05 0.05
0.2 0.06 0.05 0.06 0.05 0.05 0.05 0.04 0.05 0.04 0.05 0.05 0.05
0.4 0.07 0.05 0.07 0.05 0.05 0.05 0.03 0.05 0.03 0.05 0.05 0.05
0.6 0.08 0.05 0.08 0.05 0.05 0.05 0.03 0.05 0.03 0.05 0.06 0.05
0.8 0.11 0.05 0.10 0.05 0.05 0.05 0.02 0.06 0.01 0.05 0.06 0.05
0.9 0.15 0.06 0.13 0.06 0.06 0.06 0.01 0.06 0.01 0.04 0.06 0.04
0.95 0.22 0.08 0.18 0.07 0.08 0.07 0.01 0.05 0.00 0.02 0.03 0.01

For models such as those examined here Rudebusch (1992, 1993) suggests tests which mimic
t*. From the above we conclude that a much more successful finite sample correction of test
statistics will be achieved not just by applying bias correction to parameter estimators but
also to the associated variance estimators, and the required bias approximation to the variance
of the already bias corrected coefficient estimator has been derived here for any first-order
autoregressive model.

6. Conclusions

By adapting and extending techniques we employed in some recent papers to approximate to an
accuracy of order O(T2) the bias of the least-squares estimators for all the parameters (both
coefficients and disturbance variance) in linear regression models with a lagged dependent ex-
planatory variable, we find here an approximation to the same order for the mean squared error
and for the true variance of the least-squares coefficient estimator. For the latter approximation
we find that its algebraic expression differs substantially from an approximation to the same
order of accuracy for the expectation of the expression that is usually employed to estimate the
variance on the basis of standard asymptotic reasoning. This means that the usual estimator,
although asymptotically valid, has a bias in finite samples which can be reduced by employing
alternative estimators derived in this paper. We employed similar techniques to approximate
the variance of bias corrected coefficient estimators and to develop bias corrected estimators
for the variance of such bias corrected coefficient estimators. The analytic results presented
in this paper may be illuminating as such (showing how complicated basic notions such as
variance and its estimation are in a simple linear dynamic regression model), but should be of
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use primarily for improving the accuracy of inference in finite samples of dynamic regression
models. We undertook in this study some numerical and simulation analysis to produce insight
into the seriousness of the finite sample inaccuracies of first-order asymptotic expressions for
first and second moments of estimators and also into the ability of the higher-order asymp-
totic analytical approximations to assess and to correct such discrepancies and to improve the
control over type I errors in inference.

Our bias corrected coefficient and variance estimators are found to work surprisingly well
in the AR(1) model with intercept, even for extremely small sample sizes, but less so close
to the unit circle. In models with an extra explanatory variable, such as a linear trend or
an arbitrary strongly exogenous AR(1) regressor, we still find surprisingly accurate results,
especially when the sample size is not too small. However, it is also found that there may
be some adverse effects on the accuracy of higher-order approximations due to the occurence
of estimates of the autoregressive parameter close to or outside the stationarity region, but
we show how these effects can be mitigated. Note that it might be possible to achieve even
better results by slightly adapting the implementations of our versions of A, V()) and V(}),
by not taking C in the respective formulas, but by iterating at least once and using C' (the
same for Z ). Also 02 could be re-estimated on the basis of residuals obtained by employing A
and 3. Whether such modifications have further positive effects on accuracy and efficiency has
not been explored here. Regarding potential efficiency gains or losses due to bias correction
we find strong analytical evidence for AR(1) models and the simulation experiments show
that exploiting our higher-order asymptotic findings can substantially reduce bias, enhance
efficiency and almost resolve test size problems. More particularly we found that bias correction
may be more effective from an efficiency point of view when the sample size is moderate rather
than in smaller samples, where the coefficient bias is usually much larger but harder to assess
accurately due to larger variances.
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A. Some auxiliary results

To prove the results of this paper, we have to obtain the expectation of numerous expressions
of various forms, which involve products of up to four quadratic forms in normal variables. In
this appendix we state some basic results which are used repeatedly in the subsequent analysis.

Let A be a symmetric T' x T' matrix and B; and B, arbitrary T" x T  matrices. Let the
T x 1 random vector € be such that € ~ N(0,0?I7), then the following results hold:

E[(¢'Bie)(¢'Bae)] = o*[tr(By) tr(By) + tr(B1By) + tr(B1By)); (A1)
E[e’Ae — 0?tr(A)](¢'Bie) = 20* tr(ABy); (A.2)
E(ee'Biec’) = E(¢/ Big)ee’ = o*[tr(By)Ir + By + Bj); (A.3)
E{[("Ae) [Ti=1(¢'Bye)l} = (A.4)

o°[tr(A) tr(By) tr(B,) + tr(A) tr(ByBy) + tr(A) tr(B1B))
+2tr(By) tr(ABy) + 2 tr(Bz) tr(ABy) + 2 tr(AB,B;)
+2tr(AB,By) + 2tr(AB1By) + 2tr(AB1Bj)];

E{[e'Ae — 0 tr(A)] [[5=1(¢'Bje)} = (A.5)
20°[tr(By) tr(AB,) + tr(B,) tr(AB)
+tr(AB;By) + tr(AB;B1) 4 tr(AB1B,) + tr(AB1 By)];

E{[e'As — o®tr(A)](ec' Biec’)} = (A.6)
20°[tr(AB1) I + tr(B1)A + ABy + B1A + AB] + B A];

E{[¢'Ae — o2 tr(A)2(¢' Bie)} = 0®[2 tr(By) tr(AA) + 8tr(AABy)]; (A7)
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E{[¢'Ae — o?tr(A)]?ec’} = 0®[2tr(AA) + 8AA]; (A.8)

E(ce’ Biee' Byee') = (A.9)
o®{[tr(By) tr(By) + tr(B1Bz) + tr(ByBy)] It
+ tr(B1) B, 4 tr(B1) B, + tr(B;) By + tr(B,) B
+B1B; + B1B, + B1B; + BB,
+By By + ByB1 + By By + ByB };

E[(¢'Ag)?(¢'Bie)?] = (A.10)
o8{[tr(A)2[tr(BLBy) + tr(BLB))]
+tr(By)[tr(A) tr(A) + 2tr(AA)]
+4tr(A)[2tr(AB1By) + tr(AB1B;) + tr(AB; By )]
+8tr(By)[tr(A) tr(AB1) + 2tr(AAB;)]
+2tr(AA)[tr(B1By) + tr(ByB1)] + 8[tr(ABy))?
+16tr(AABLBy) + 8 tr(AAB,By) + 8 tr(AAB, B))
+8tr(AB1AB1) + 8tr(AB1AB)) };

E{[cAc — 0®tr(A)]?(¢'B1e)?} = (A.11)
208 {8 tr(By) tr(AAB;)
+tr(AA)[tr(By) tr(By) + tr(ByBy) + tr(B;By)]
+4[tr(AB,))? + 8tr(AAB; By) + 4 tr(AAB; By)
+4tr(AABB)) + 4tr(AB1ABy) + 4 tr(AB1AB)) }.

Most of these results are also given in KP (1998a, 1998b). Result (A.1) is obtained upon
substituting e’ Bye = ¢/[3(B, + Bj)]e = €' Aze, where A, is symmetric, in (A.1) of KP (1998a).
This substitution also enables to prove (A.4) from KP (1998a, A.5), and (A.9) from KP
(1998a, A.8) and (A.10) from KP (1998a, A.11). Result (A.2) follows from (A.1) and from
E(e’Bie) = tr(B1). The proof of (A.3) is given in KP (1998a). Result (A.5) follows easily
from (A.4). Results (A.6), (A.7) and (A.8) can be found in KP (1998a). Finally (A.11) follows
easily from (A.10).

B. An approximation to V(&)

For the variance V(&) of the least-squares estimator & we have

V(@) = Ela-E(@)][a-E@)] (B.1)
= Eld—a—-E(@—-a)[d—a—-E@-a)
= Ela—affd—af - [()— H()—a]-

We want to approximate this to the order of O(T~2). We shall make use of

Z'v = Z'u+Z'u (B.2)
= Z,(O, IT)U + €1U/G,(O, IT)U
= Z'(0,Ip)v + (vV'Hv)e; = Op(Tl/Z),
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where H is the non-symmetric matrix

H = G'0,Ir). (B.3)
For H we find the useful results

tr(H) = tr[(0,I7)'G] = tr[G(0,Ir)"] = tr(C) =0 (B.4a)
tr(HH) = 0 (B.4b)
tr(H'H) = tr(G'G) (B.4c)
G(H + H')(0,I7) = GG +CC. (B.4d)

The first term of (B.1) is MSE(&). For this we find
E(a@—a)(a—a) =E(Z2'2) ' Zwi/Z(Z'Z) . (B.5)

We first develop an expansion of (Z'Z)~*. Referring to (2.7) and (2.8) we have E(Z'Z) =
Q1=2Z+EZ'Z),and so

77 = (Z+2)(Z+2) (B.6)
= E(Z'2)-E(Z'2)+2Z+7'Z+2'Z
= {Ixn+(Z'Z2+2'2)Q+2'Z —E(Z2))Q}Q*
Hence,
(2'2) = QU+ (Z2+ Z'2)Q + [2'Z —E(Z'2)|Q} (B.7)
where the stochastic terms (Z'Z + Z'2)Q and [Z'Z — E(Z'Z)]Q are both O,(T~%?). The

inverse matrix of the form [I,, + A]™!, with A = O,(T l/ 2) an n X n matrix, may be expanded
in I, — A+ A% — A3+ ], whereby successive terms are of decreasing order in probability. The
expansion retains terms up to a certain order and in this way an expansion is obtained which
includes terms up to any desired order. For an expansion of (Z'Z)~! to order T-2 we require

(Z22)" = Qxn—(Z2+72'2)Q-12'Z2-E(Z'2)Q (B.8)
HZZ+22)QZ'Z+2'2)Q+(Z'Z+2Z'Z)Q|Z'Z - E(Z'Z))Q
+HZ'Z -E(Z'2)Q(Z'Z+ Z'2)Q +[2'Z —E(Z'2)|Q|Z'Z - E(Z'2)|Q}

—i—op(T_z),

3/2

whereas the expansion to order 7~°/¢ amounts to

(Z22)"=Q-Q(Z '2)Q = QIZ'Z ~E(Z'2)|Q + 0)(T /%), (B.9)

and to order 7! we simply have
(Z'2) 7t =Q +0,(TH). (B.10)
The expansion (B.8) for (Z'Z)~! can be written as
(Z'2)7t = QUUgsr — Wi — Wo + WiW1 + WiWy + Wo Wy + WoWa) + 0,(T72) (B.11)
where we introduced some further shorthand notation, viz.
Wi=(Z2'Z+2'2)Q = Z'Gug, + et/ G'ZQ = O,(T~*?) (B.12)
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and
Wo=1[2'Z —E(Z'2)]Q = [v'G'Gv — ¢ tr(G'G)]esqy = O,(T~Y?). (B.13)

Note that after premultiplication by () we have seven terms in (B.11). Of these the first is
O(T~1), the second and the third are O,(T~%/2), and the remaining four are all O,(T~2). This
yields the following expansion for the squared estimation errors:

(a—a)a—a) = (Z2)*Zuwl'Z2(Z' 7)™ " (B.14)
= QZ'uu'ZQ — QW1 + Wy — (Wi + Wa)? | Z'uu' ZQ
—QZ'wd' ZWy + Wy — (W] + W5)?]Q
+Q(Wy + W) Z'utd Z(W, + W3)Q + 0,(T2)
= QZ'w'ZQ — QW1 Z'uwi/ ZQ — QW Z'ud ZQ 4+ Q(W1 + Wo)2Z'uu' ZQ
—QZ'u ZW]Q — QZ'wi' ZW)Q + QZ'u Z(W] + W3)?Q
+QW1Z"uu' ZW{Q + QW1 Z'u ZW5Q + QWL Z'uu' ZW,Q
QWL Z'ud ZW3Q + 0,(T2).

Note that

Z'w'Z = [Z'(0,Ir)v + (v Hv)ei[v'(0, I7) Z + (v Hv)el] (B.15)
= Z'(0,Ip)vv' (0, I7) Z + Z'(0, I7)v(v' Hv)e}
+(' Hv)ey' (0, It)' Z + (v Hv)?es€}.

We now derive the expectation of the eleven terms of (B.14). For the first one we obtain

E(QZwi'ZQ) = EQZ(0,Ir)v'(0,17)'ZQ + EQ(v' Hv)?e1e,Q
= 0?’Q7'Z2Q + o*tr(G'G) Qe Q
= 5%Q.
For the expectation of the second term of (B.14) we find

E(QW1Z'ud'ZQ) (B.16)
= E[QZ'GuvqiZ'(0, Ir)v(v'Hv)qy] + E[QZ'Gugy (v Hv)eyd' (0, Ir)' Z Q)]
+E[qv'G'ZQZ' (0, Ir)v(v' Hv)qy] + E[pv'G'ZQ (v Hv)eyv' (0, I7) Z Q)]
= QZ'GE(vv'Hv')(0,Ir)' Zq1qy, + qu1QZ'GE(vv' Huv') (0, I1)' ZQ
+EW'G'ZQZ' (0, I7)v] (v Hv)q1qy + q1g1 2" GE(vv' Huv')(0, I7) ZQ
= 0"QZ'G(H + H')(0,Ir) Zaqiq + 0*quQZ'G(H + H')(0, I)' ZQ
+UACI1(JQZ,G(H +H')(0,I)' ZQ + ot tr[G'ZQZ'(0, Ir) (H + H'))q1qy
= 0*Q7' (GG’ + CO) Zqwqy + 0*quQZ (GG’ + CC) ZQ
+o'qqi 7' (GG +CC) ZQ + o* t1(QZ'CC Z)quq; + o' tr(QZ' GG Z) quq;.
The expectation of the third term of (B.14) is

E(QWLZ'uu'ZQ) (B.17)
= EW'G'Gv — d?tr(G'G) |y Z' (0, Ir)v' (0, I1) ZQ

+E['G'Gv — 0? t1(G'G)]quqy (v Hv)?e16,Q
= 20%qq, Z'(0,Ir)G'G(0, I1) ZQ

+20%q11 [2tr (G'GHH) + tr (G'GH'H) + tr ('GHH")] 1¢},
— 2%l Z'C'CZQ + 205qu 2t (GG'CO) + tr (GE'C'C) + tr (GG'GE)] qud,.

30



For the fourth term of (B.14) we have

E[QWy + W22 2w/ ZQ] = E(QWiWLZ'wi/ZQ) + E(QWiW,Z'wi/ZQ)  (B.18)
+E (QWzVVlZ’uu’ZQ) + E (QW2W2ZIUU/ZQ) .

We examine these four terms separately. First we have

E(QWiW1Z'ud' ZQ)

= E[Q(Z'Guvdy + e1v'G'ZQ)(Z'Gudy + e1v'G' ZQ) Z'uu! Z Q)]

= E[QZ'Gu'G' Zquqy Z' (0, Ir)vv' (0, Ir) ZQ] + quE[QZ'Gu (v Hv)*v' G’ Z ]
+quE[QZ'Gu'G'ZQZ' (0, Ir)vv' (0, I1)' ZQ) + quE[QZ'Gv(v Hv)*'G' Z 1 ¢}
+E[@v'G'ZQZ'Gug, Z' (0, Ip)vv' (0, I1) ZQ) + quuE[qv'G' ZQZ' Gu(v' Hv)? ¢}
+E[pd, Z'Gu' G’ ZQZ' (0, Ir)vv' (0, I1) ZQ] + E[q1qy Z'Gu(v' Hv)*v' G’ Zq1q)]

= oM@ 2'CZq)QZ'CZQ + o*QZ'GG' ZqwqyZ2'ZQ + 0*QZ'CZwqy Z2'CZQ
+20°%qu tr (G'G) QZ'GG' Zangy + 40°quQZ' GG'C'C' Zan,y
+40%q11QZ'GOGC' Zquqy + 40°011QZ' GG'GG' Zqrq, + 46°qu1QZ'CCGG' Zq1q]
Lot 1(QZ'C2)QZ'CZQ + 0 qnQZ' GG Z2QZ' 2Q + 0 4uQ 7' CZQZ'CZQ
+0*t1(QZ' GG 2\ gy Z' 2Q + 20* g, Z'C' ZQ 7' C ZQ
+08qu tr(QZ'GG' Z) tr(G'G) g, + 40°qui tr(QZ'CCGG' Z)quq;
+20%q11 tr(QZ'GCGC' Z) quqy, + 20°qu1 tr(QZ'GG'GG' Z) quq))
+0*tr(QZ'CZ)ugy Z'CZQ + o* i Z'GG' ZQZ' Z2Q + o quqy Z'CZQZ' C ZQ
+0% (1 Z' GG Zqn) tr (G'G) ugy + 40°(1 Z'CCGG Zan)qudh
+20%(, Z'GCGC' Zqr)qu gy + 20°(1 Z' GG'GG' Z ) qug.-

Various terms are o(T~2) here. Removing these and using Z'ZQ = I — 02 tr(G'G)e1q, gives

E(QWAW1 Z'ud' ZQ) = (B.19)
‘74(6112,02611)@2'02@ + UAQZ/GG/ZC]ﬂJi + 0'4@2/02(116]12/02@
+otqutr(QZ'C2)QZ'CZQ + 0*quQZ'GG' ZQ + o*quQZ' CZQZ'CZQ
+0*tr(QZ'GG' Z)quqy + o* t1(QZ'C2)quqy Z'CZQ + o*uqy 7/ GG' ZQ
120y 2'C'ZQZ'CZQ + o* gy Z'CZQZ'CZQ + o(T72).

For the second term of (B.18) we find (we immediately remove terms of small order)

E (QWAWaZ'uid ZQ) (B.20)
= E{Q(Z'Guqy + e1v'G'ZQ)[W'G'Gv — d? tr(G'G) ey Z' (0, Ir)v(v' Hv) g,
+E{Q(Z'Guvg, + e1v/ G’ ZQ)[V'G'Gv — 0? t1(G'G)]erq, (v Hv)er' (0, Ir) ZQ}
= quE{QZ'G[W'G'Gv — o?tr(G'G)] (v Hv)vv' (0, I7)' Zq1qy }
+E{q1 Z'G[v'G'Gv — ? tr(G'G)] (v Ho)wo' (0, Ir) Zaug,
+¢E{QZ'GW'G'Gv — o® tr(G'G) | (v Hu)v' (0, I) ZQ}
+quE{q ¢, Z'GV'G'Gv — o® tr(G'G)| (v Hu)wv' (0, Ir) ZQ}
= 20%q1 tr(GG'CYQZ'C Zqudy + 20° tr(GG'C) (¢, Z'C Z ) ud
+20°%¢2, tr(GG'CYQZ'CZQ + 20°qu1 tr(GG' C)uy Z'CZQ + o(T™2).
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Next we examine the third term of (B.18) and find

E (QWo Wi Z'ud! 2Q) (B.21)
= E{[V'G'Gv — o tr(G'Q) |1, (Z'Gug, + erv' G’ ZQ) Z'(0, Ir)v(v Hv) g, }

+E{[v'G'Gv — d® tr(G'Q)|quqy(Z' Gug), + e G’ ZQ) (v Hv)ey' (0, I7) ZQ}
= E{[V'G'Gv — o tr(G'G)|q1¢, Z' Gugy Z' (0, Ir)v(v' Hv) g, }

+E{[V'G'Gv — d? tr(G'Q)|qudherv' G’ ZQZ' (0, I )v(v' Hv)qy }

+E{[V'G'Gv — 0® tr(G'Q)|qudy, Z' Gugy (v Hv) e (0, I7) ZQ}

+E{[V'G'Gv — d? tr(G'Q)|qudhe1v' G’ ZQ (v Hv)ey' (0, I+) ZQY
= E{qqiZ'Gv'G'Gv — o* tr(G'G)|(v' Hv)w' (0, It) Zawdy }

+quE{[v'G'Gv — o? tr(G'G) WG’ ZQZ' (0, Ip)v(v' Hv) gy

201 E{q1y Z'G[v'G'Gv — o? tr(G'G)] (v Hv)vo' (0, I7) ZQ}
= 20°te(GG'ON G Z' CZq1)qudy + 20°q tr(GG'C) tr(QZ'CZ) sy

+40%q11 tr(GG'C)quqy Z'CZQ + o(T2).

For the fourth term of (B.18) we obtain

E (QW,WaZ'ud ZQ) (B.22)
= quE{qg 20, I7)[v'G'Gv — o® tr(G'G) 2o’ (0, Ir) ZQ}
+ @ E{[V'G'Gv — o? tr(G'G))? (v Hv)* } quq}
= 201 t1(G'GGC'Q)uy Z' 2Q + 80°quuny 7' C'GG'CZQ
+208¢2, tr(G'G) tr(G'GG' Q) qugy + 8082, tr(GG'O) tr(GG'C)qugy + o(T~2)
= 20%u tr(G'GG'G)ng, Z2' ZQ + 208, tr(G'G) tr(G'GG' G quqy
+808¢2, tr(GG'O) tr(GG'C)qugy + o(T?)
= 20%q11 t1(G'GG'G)quqy + 80%¢3, tr(GG'C) tr(GG'C)qudy + o(T73).

Collecting the four terms of (B.18), i.e. the expectation of the fourth term of (B.14), we get

E[Q(W: + W)2 Z'ued Q)] (B.23)
= oM Z'CZq)QZ'CZQ + 0c*QZ'GG Zqug, + 0*QZ'CZndy 7'CZQ

+0*qutr(QZ'C2)QZ'CZQ + o*quQZ' GG’ ZQ + 0*quQZ'CZQZ'CZQ

+0*t1(QZ' GG Z)quq, + o* tr(QZ'C2)quq, Z'CZQ

120ty Z2'C'ZQZ'CZQ + oy Z' GG ZQ + o*wdy Z'CZQZ'CZQ

+20°%q11 tr(GG'C)QZ'CZquqy + 40° tr(GG'C)N Gy Z'CZq1) qug,

+20°¢2, tr(GG'CVQZ'CZQ + 60°quy tr(GG'C)u 1 Z'CZQ

+20°%q11 tr(GG'O) tr(QZ'C Z)qudy, + 20°qua tr(G'GG'G)ud

+808¢2, tr(GG'O) tr(GG'C)quqy + o(T?).

For the expectation of the fifth term of (B.14) we find
E(QZ'wi/ZW,|Q) = E(QW1 Z'uu' ZQ)', (B.24)

which is just the transpose of the result for the second term (B.16). For the sixth term of
(B.14) we find
E(QZ'uu'ZW;Q) = E(QWaZ'uu' ZQ)’, (B.25)
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which follows easily from (B.17). Likewise the expectation of the seventh term of (B.14) equals
the transpose of (B.23), hence

E[QZ'wu' Z(W] + W3)?Q] = E[Q(W1 + Wa)?Z'uu' Z(). (B.26)
The expectation of the eighth term of (B.14) is

E(QW1Z'uwi' ZW[Q)

= E[Q(Z'Gvd) + e1v'G'ZQ)Z' (0, Ir)vv' (0, It)' Z (1’ G' Z + QZ'Gve}) Q)]
+E[Q(Z'Gud, + env'G' ZQ) (v Hv)?er¢) (quv'G' Z + QZ'Gvel) Q]

= E[QZ'GuqiZ' (0, Ir)vv' (0, It) Zquv'G' ZQ)
+E[QZ'Guq1 Z'(0, Ir)v' (0, I7) ZQZ' Gugy)
+E[@qv'G'ZQZ'(0, Ir)v' (0, I1) Zq1v'G' Z Q)]
+E[@v'G'ZQZ'(0, Ir)v' (0, I1) ZQZ' Gugy]
+@E[QZ'Go(v Hv)*v'G'ZQ)] + quE[QZ'Gv(v' Hv)?q1 Z' Gugy]
+quE[qiv' G’ Zqu (v Hu)*'G' ZQ) + E[q1v' G’ Z (v Hv)?q1qy Z' Gy

= E[QZ'Gv/(0,I7) Zq1q1Z' (0, I7)vv'G' Z Q)
+E[QZ'Gvv'(0,Ir)' ZQZ'Guv' (0, Ir) Zq1qy]
+E[q1q. Z' (0, I)v' G’ ZQZ' (0, IT)v'G' ZQ)
+EW'G'ZQZ (0, I7)v' (0, I7) ZQZ'Guqiqy]
+¢E[QZ'Go(v Hv)*v'G'ZQ] + quE[QZ'Gu(v' Hv)*V'G' Z g1 q})
+q11E[q1q1 Z'Go(v Hv) W' G’ ZQ) + E[q1¢, Z'Gv(v Hv)*v' G’ Z qu.q3)

= M2 20)QZ' GG ZQ + 20*QZ'CZquqy Z'C'ZQ + o* t1(QZ'C2)QZ'CZ v,
+0'QZ2'CZQZ'CZqq) + 0c*QZ'GG' ZQZ' Zquq, + o*tr(QZ' CZ)ngy Z'C' ZQ
+o'qq) Z2'C'ZQ7'C'ZQ + o' 1qi 7' ZQ 7' GG ZQ + ot tr(QZ'C2) tr(QZ'CZ)qug,
+0*tr(QZ' ZQZ' GG Z)qugy + o* tr(QZ'CZQZ'CZ)quq)
+0°¢, t1(G'G)QZ' GG ZQ + o®quu tr(G'G)QZ'GG' Zquq;,
+0%qu tr(G'G) i Z' GG ZQ + 0® tr(G'G) (1 Z' GG Zqr)quy + o(T~2).

Substituting QZ'Z = I — o2 tr(G'G)quey and ¢, 2" Zq1 = qu1 — 0°¢3, tr(G'G) this yields

E (QW1Z'udd ZW!Q) (B.27)
= 0*quQ7'GG'ZQ +20*Q7'CZqwqy 7'C'ZQ + o* tr(QZ'CZ)QZ'C Zquq;

+0'QZ2'CZQZ'CZquq) + 0*QZ'GG' Zquqy + oc* tr(QZ'CZ)quq, Z'C' ZQ

40l Z2'C'2Q72'C'ZQ + oty Z’ GG’ ZQ + ot tr(QZ'C2) tr(QZ' CZ) g,

+0*tr(QZ'GG' Z)quq, + o*tr(QZ'CZQZ'CZ)qudy + o(T?).

For the expectation of the ninth term of (B.14) we find

E(QW1Z"ud' ZW,Q) (B.28)
= E{Q(Z'Gvqy + exv'G'ZQ)Z'(0, I7)v(v' Hv)el [v'G'Gv — a? tr(G'G) | qud }
+E{Q(Z'Gug| + e1v/ G’ ZQ) (v Hv)eyv' (0, Ir) Z[v'G'Gv — o? t1(G'G)]q1q} }
= quE{QZ'Gvg,Z'(0, I7)v(v' Hv)[V'G'Gv — a? tr(G'G)] gy }
+quE{v'G'ZQZ' (0, I7)v(v' Hu)[v'G'Gv — o tr(G'G) | quq;
+quE{QZ'Guv(v' Hu)v' (0, I7) Z[v'G'Gv — o? tr(G'G) |y
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+E{qv'G' Zq (v Hu)v' (0, Ir) Z[W'G'Gv — 0 tr(G'G) | qudy }

= 2quE{QZ'Guvv' (v Hv)[v'G'Gv — o? tr(G'G)](0, Ir) Zqudy }
+quE{v'G'ZQZ' (0, Ir)v(v' Hv)['G'Gv — o? tr(G'G)|qud;
+E{q1 ¢, Z' Gov' (v Ho) [v' G'Gv — o? tr(G'G)](0, Ir) Zquqy }

= 40%qu tr(GG'C)QZ'CZquqy + 20°qu1 tr(QZ'C Z2) tr(GG'Cqug;
+20°tr(GG'O) (1 Z' CZ a1 )y + o(T72).

We obtain for the expectation of the tenth term of (B.14)
E(QW2Z'ud/ ZW,Q) = E(QW1Z'uu/ ZW3Q)’, (B.29)

which is just the transpose of the former term. The expectation of the eleventh and final term
of (B.14) is

E (QW>Z'ud ZW4Q) (B.30)
= E{qudi Z'(0, Ip)v[v'G'Gv — o* tr(G'G) ]2V (0, Ir) Zaudy}

+@E{[V'G'Gv — o? tr(G'G))? (v Hv)* quq }
= 20°tr(G'GG'G) @ Z' Zqr) quq) + 202, tr(G'GG'G) tr(G'G) qug;

+808¢2, tr(GG'O) tr(GG'C)qugy + o(T™?)
= 20°%qu1 tr(GG'GGqud; + 80843, tr(GG'C) tr(GG'C)qugl, + o(T~2),

where we used ¢1Z2'Zq1 = qu1 — 02¢%, tr(G'G).
We may now assemble the various contributions to the mean squared error, and obtain
after some simplification

MSE(&) = E[(& — a)(a — a)] = (B.31)
o?Q +

+0*Q7 (GG — CC —20'C — C'C") Zaud,

+o*qdy 7' (GG — CC —20'C — C'C") ZQ

+0*quQZ (GG — CC — C'C'Y 2Q + o* t1(QZ' GG Z)qud, + o*[tx(QZ'C2)Pard,
+0*tr(QZ'CZQZ'CZ)quqy — 20* t1(QZ'CCZ)quq]

+0tqutr(QZ'C2)QZ (C + CYZQ + o (¢} Z'CZq))QZ'(C + CZQ
+0*QZ'CZq1qy 7' (C + C"ZQ + o*QZ'(C + C"Zquqy Z'C' ZQ

ot Q2 CZ2Q7'CIQ + Q2 C' 2QZ'C' ZQ

+0*tr(QZ'C2)quq1 Z'(C + CYZQ + o* t1(QZ'C2)QZ' (C + CZquqy
+o'q i Z'(C+CYZQZ'CZQ + o* qwy Z2'C'ZQZ' (C + C') ZQ

+0*QZ'(C+ CZQZ'CZq1q, + 0*QZ'C'ZQZ' (C + C") Z w4,

+60°%q11 tr(GG'C)QZ' (C + C') Zquq) + 60°qu1 tr(GG'C)qng, Z' (C + C) ZQ
+20°%¢2, tr(GG'CYQZ'(C + CZQ

+120°%¢4 2'C Zq1 tr(GG'C)qudy, + 80°quu tr(GG'C) tr(QZ'CZ) qug],

+0%q1 [2tr (GG'GG") — 8tr (GG'CC) — 4tr (GG'C'C)| qudy

+240%¢5, tr(GG'C) tr(GG'C)qudy + o(T72).

From Theorem 2.1 we easily find for the squared bias, the second term of (B.1):
[E(a) — o][E(a) — af (B.32)
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= o'tr(QZ'C2) )+ QZ'CZqy + 202 qu1 tr (GG'C) qa] x
(tr(QZ'CZ2)qu + QZ'CZqy + 20%qui tr (GG'C) q1] + o(T?)
= oM{[tr(QZ'C2)Pqudy + QZ'CZqwd, Z'C' ZQ
+t1(QZ'C2)QZ' CZqvqy + g1 Z2'C' ZQ)}
+0%{4q11 tr (GG'C) tr(QZ'CZ) quqy
+2qu tr (GG'C) [QZ'CZq1qy + 11 Z'C'ZQl}
+0°{4qqy[tr (GG'C)Pqrqr} + o(T72).

This result has to be subtracted from the MSE approximation (B.31) to find the required
approximation to V(&) of Theorem 2.2.

C. An approximation to E[s?(Z'Z)7!]
For the numerator of the estimator s2, given in (1.5), we have, upon using (B.10),
(y—Z&)(y— Za) = vu—uZ(Z2'2) Z'u (C.1)
= wu—u(Z+2)QZ + Z)u+o0,(1).

First we shall examine an approximation to the expectation of the coefficient variance estimator
6%(Z'Z)~t, where 6% = (y — Z&)'(y — Z&)/T and (C.1) yields

& =T uu—uZQZ'v —u'ZQZu — v ZQZ'v — ' ZQZ'u) + 0,(T7Y). (C.2)
An order T2 approximation to
El6*(Z'Z) ] = E[(6° — o) (Z2'2) "] + 0°E[(2'Z) 7Y (C.3)

is now obtained by employing (C.2) and an expansion for (Z’Z)~! to an appropriate order,
upon noting that (6% — 02) = O,(T~*?). The first right-hand term of (C.3) amounts to:

(67 — 0)(22) Y (C.4)
= E[(Tu— o) (Z2'2)7Y
—TE[(WZQZ' v+ ZQ7u+ ' ZQZ"w + W' ZQZ'u)(Z'Z) 7] + o(T?)
= —ET"Wu-0)Q[ZZ-E(Z'2)Q-T'EWZQZu+vZQZu)Q + o(T?)
= —E(T%u—d®)QNG'Gv— d*tr(G'G)e1e}Q
~TEW ZQZ'u + v/ GueyQerv/ G'u)Q + o(T~?)
= —E(T % u—oc®)(VGGv)qd, — TEW' ZQZ u + g1t/ Gov' G'u)Q + o(T?)
= T 120 t2(C'C)uqy + 0 tr(QZ' 2)Q + quio* tr(G'G)Q] + o(T?)
= —T7Yo*(K +1)Q + 20" tr(C'C)quq}] + o(T72).

An approximation for the second right-hand term of (C.3) can be obtained from (B.8).
Note that of the terms in curly brackets the second and the third term have zero mean, while
the fifth and sixth term involve factors with zero mean and products of an odd number of
zero-mean normal random variables. Hence, when expected values are taken these terms may
be ignored. We then have

E(Z2)7] = Q+EQ

19 (C.5)
—|—E{Q[Z, !
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The second term of (C.5) is

EQZZ+Z'2)Q(Z'Z + Z'Z)Q) (C.6)
= E[Q(Z'Gve} + e1v'G'2)Q(Z'Guey + e1v'G'Z)Q)
= E[QZ'GveiQZ'GveiQ) + E[QZ'Gue Qerv'G' Z Q)]
+E[Qe1v'G'ZQZ' Guey Q] + E[Qe1v' G’ ZQerv'G' Z Q)]
= E[QZ'Guv'G'ZQe1e,Q] + quE[QZ'Gui'G' ZQ)
+E[qv'G'ZQZ'Gugy] + E[q1e,QZ'Guv'G' ZQ)
= ?[QZ'GG' Zqd, + quQZ' GG ZQ + tr(QZ' GG Z)quq, + gy Z'GG' ZQ).

The third term of (C.5) is

E{QIZ'Z —E(Z'2)QIZ'Z —E(Z'2))Q} (C.7)
E{Q[VG'Gv — 0 tr(G'G)]e1e,Q[v'G'Gv — o? tr(G'G)]e1e, Q}

1 [E(V'G'Gu/'G'Gv) — 20° tr(G'G)E(W'G'Gv) + o* tr(G'G) tr(G'G) | d

20%qu1 tr(GG'GG)qug;.

Gathering terms yields the result

cE[(Z'2)7Y = o*Q (C.8)
+0*[tr(QZ'GG' Z)quq; + QZ'GG Zquqy + (s + quQ) Z'GG'ZQ)
+20%q11 tr(GG'GG ) quqy + 0,(T72).

Adding up the terms (C.4) and (C.8) we obtain for (C.3) the approximation
El6*(Z'Z2)] = THT - K —1)0%Q (C.9)
+o{[tr(QZ'GG'Z) — 2T tr(C'O)|qud;
+QZ'GG' Zawh + (ngy + Q) Z'GG'ZQ}
+20°q11 tr(GG' GG ) quey + o(T72).

From this the result of Theorem 2.3 follows upon multiplying by 7'/(T — K — 1). The latter
affects the leading term, but not the remaining terms to the order of T2,

D. The bias of the COLS Estimator
The bias of the COLS estimator (3.2) is given by

E(d —a) = E(a-— ég —a) (D.1)
= E(B,—Bs+a—a—B,)
- _E(ga - Ba) + O(T_l)'

From (3.1) and (3.2) it follows that

Bo —Ba = ?tr(QZ'CZ)q — s*tx(PZ'CZ)p, (D.2)
+02QZ'CZq — SZPZ’é'Zpl
+2[0* g1 tr(GG'Cqy — s*p11 tr(CC'Cpyl.
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We shall examine the three pairs of terms of (D.2) in turn by exploiting a series of intermediate
results, which have to be developed first. We do that to a level of generality that makes these
intermediate results useful for derivations in the next Appendix as well.

From (B.9) we obtain for P = (Z'Z)~! that

P = Q+P+ Op(T—s/z)’ with (D.3)
P = —QZ'Z2+22)Q-QIZZ-EZ72)Q
= —QZ'Gugy — qv'G'ZQ — [V'G'Gv — 0?t1(G'G)|quqy = O,(T3/?).
From this, it straightforwardly follows that p; = g1 + pi + 0,(T"*/?) and py = qu1 + pi; +
0,(T~%?2), with p; = P*e; and pi; = ¢} P ey both OE(Ti?’/z)_
In order to find the leading term of Z'CZ — Z'CZ we have to produce some auxiliary

results. First note that for both C' and C' the (i,7)" element is zero for i < j and for the
elements i > j they are such that, employing a first order Taylor expansion,

(C—0)y = N7y (D.4)
= (= NN o, (T

= A=AN(i—j—DXNT 24 0,(T7Y2),

In fact, because it is easily verified that

0
—C =CC, D.5
23 (D.5)
we can simply write R )
C=C+ (A= NCC + 0, (T7V?), (D.6)
and similarly, because B%F = C'F, we have
F=F+ (A= XNCF +0,(T7?). (D.7)
Further,
Z2-7 X) = (§-1,X) (D.8)

(-
(yoF—i-C'Xﬂ X)— (goF +CXp,X)
(wF — joF + CXP— CXp)e; A

= [jo(F = F) +o(F = F+ F) + (C = C + C)X(B — B+ B) — CXpe}
Substitution of (D.7) and (D.6) yields

A

Z—7 = Z*+4o0,(T"Y?), with (D.9)
7* = [jo(A = NCF +Go(A = NCF + joF + CX(B— 8) + (A — \)CCX e,

= [C(HF +CXB)(A—=X) + CX(B = B) + GoF + fo(A — \)CFe;

= [CZ(&— )+ §oF + jo(A — N)CFle}, = O,(T7?).

Now we obtain

72'C7-72'CZ = 72'CZ—-7'CZ+7'CZ—-27'CZ (D.10)
= (Z-2)CZ+2'C(Z-2)+7Z'(C-C)Z
(Z-2)(C-C+O)NZ—~Z+2Z)
+72'(C—-C+C)Z—-2)+Z'(C - (J)Z
= A=XNZ* ’CCZ* Z9CZ 4+ (A —
(A —
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Noting that only a few of these terms are O,(T%/?) we find, using (D.9),

7'CZ = Z'CZ+ A* +0,(TY?), with (D.11)
A* = ey(a—a)Z'C'CZ+ Z'CCZ(& — a)éy+ (A= N Z'CCZ = 0,(T*?).

Next we develop a result regarding 7 = tr(GG'C) = O(T) and 7 = tr(CC’C). In KP (1998a)
it has been shown that tr(GG'C) = tr(CC'C) + w?F'CF = tr(CC'C) + O(1). From (D.5) we

find

(% tr(CC'C) = tr l%(@(}’@)] = tr(C'C'CC) + 2 t2(C'CCO), (D.12)

because

o .. [oC\ ac"C
Sicoo) = (ak)ccwc( m)

, ac" L (9C
- CCCC+C<6)\>C+CC <§>
= CCC'C+CC'C'C + CC'CC.

Since 7 = tr(CC'C) + (A — A\) & tr(CC'C) + 0,(T*?) we may write
o= T+7 4 0,(TY?), with (D.13)
7 = (A= N[tr(C'C'CC) + 2tx(C'COC)| = O,(TY?).
Next we consider s2. From KP (1998b) we have
§% = 0% + 5% + 0,(T7?), with s2 = 0,(T7/?), (D.14)
and a Taylor expansion yields
s = 0" 4+ 2(s* — 0%)o? 4 0, (T Y?) (D.15)
= 0% 4+ 25%0° + 0,(T/?).

This completes the intermediate results which allow to examine the three pairs of terms of
(D.2).
For the first pair we find

2 tr(QZ'CZ)qy — tr(PZ'CZ)p (D.16)
= o' t(QZ'CZ)q — (0® + s te[(Q + P*)(Z'CZ + A")(ar + i) + 0p(T%?)
= ?tr(QZ'CZ)q

(0 + ) (QZCL) + (P ZCT) + (@A) + te(P Ay + ) + 0p(T~?)
= —0*tr(QZ'CZ)p; — o? tr(QA" ) — o* tr(P*Z'CZ)qy — s*tr(QZ'CZ)qy + 0,(T%/?).

For the second pair we obtain

?QZ'CZq — s*PZ'CZp, (D.17)
= 0?QZ'CZq — (02 4 s2)(Q + P*)(Z'CZ + A*)(q + i) + 0,(T7%/?)
= —0°QZ'CZp; — o*QA*q — 0*P*Z'CZqy — s2°QZ'CZqy + 0,(T3/?),
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and for the third
otqu tr(GG'Cqy — s*pin tr(é’é/é)pl (D.18)
ot qu tr(GG'C)qr — (0* + 25%0%) (qu1 + piy) (T + 7) (a1 + p}) + 0,(T%?)
= —04(]117'@ —otqutta — U4pﬁ7’CI1 - 25502(]117'(]1 + Op(T_3/2)~
Upon noting that E(P*) = O, E(4*) = O(T%?), E(s2) = 0 and E(7*) = O(T™) it is now
obvious that E(B, — B,) = 0+ o(T~/2), thus (D.1) implies E(& — a) = o(T1), as stated in
Theorem 3.1.

E. The variance of the COLS Estimator

The variance V(&) and the MSE(&) of the COLS estimator are the same to order T2 since
the squared bias is o(T~2). We have
MSE(a) = E[(a@— a)(a— ) (E.1)
= E[(@—Ba—a)(@—Ba—0a)]
= E[(6—a)(d—a) +B.B, —Ba(d—a) — (& — a)B,]
— MSE(a) + E[B.B.] — E[B.(& — a)'] — E[(& — a)B).
Since E(By — Ba) = 0 + o(T1) with B, = O(T?) it is apparent that
E(B,B.,) = B.B., + o(T?). (E.2)

From

~

E[Ba(@ — )] = E[Ba(d — )] +E[(Ba — Ba)(@ — )] (E.3)
= B,B., +E[(Ba — B.)(& — )] + o(T?)

it follows that on substituting these results into (E.1) we may write

MSE(d) = MSE(a) — B,B), (E.4)

—E[(Ba — Ba)(@ — )] —E[(& — a)(Ba — Ba)] +o(T?)
= V(&) —E[(Ba — Ba)(a — )| —E[(a — @)(Ba — Ba)] + o(T7?).
An approximation for V(&) to order T2 is given in Theorem 2.2. Hence, to establish an
approximation to MSE(&), i.e. to V(&), we have to find an approximation to order T2 of
E[(Bs — Ba)(@& — )] and its transpose. Note that its two factors are O,(T~*/2) and O,(T~Y/?2)
respectively, hence we only have to obtain the expectation of the product of their leading terms.
For (& — a) these are QZ'u+ (v' Hv)qy, whereas the leading O,(T~%/2) terms of (B, — B,) have
already been obtained in Appendix D, notably in the formulas (D.16), (D.17) and (D.18).
Gathering these and regrouping we obtain
(Ba — Bu) (6 — )’ (E.5)
—[0%tr(QZ'C2)p; 4 o tr(QA™) g1 + o t1(P*Z'CZ) g1 + 2 tv(QZ'CZ) s
+0%QZ'CZp; + 0?QA*qu + 0°P*Z'CZq1 + s°QZ'CZ ¢y
+20quuTp; + 20%qu it g + 20%p T + 4s20PquTql] (& — o) + 0,(T7?)

= —oX{[tr(QZ'C2)pi + QZ'CZp; + 20%qurpi) (v’ ZQ + v'Hug})

+[tr(QA*) g1 + QA* 1| (W' ZQ + v Hug})

+[tr(P*Z'CZ)qu + P*Z'CZq1|(u' ZQ + v Hug,)

"‘[tr(QZ,CZ)(h +QZ'CZq + 402(]117'(]1]55(1/2@ +v'Hug))

+202[quqi* (W ZQ + v Hugyy) + Tqupiy (W' ZQ + v Hug))]} + 0,(T72).
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To obtain the expectation of the latter expression, we first derive a few auxiliary results.
Exploiting (D.3) we have

Elpi(v'ZQ +v'Hugy)] = —E[quQZ'Guv/'(0,Ir)ZQ + 11 Z'Gu' (0, Ir)' ZQ)
+E{quqii[v'G'Gv — o? tr(G'G)) (v Hv)}
= —0?[quQZ'CZQ + gy Z'CZQ + 20%qu1 tr(GG'C)qud}],

from which it follows that
E[p;;(v'ZQ + v'Hvq})] = —202[q11in/CZQ + 02(]%1 tr(GG'C)qy].
Using (D.11) we find

E{[tr(QA")q1 + QA q1](& — )"}
= E[r(QA")a(d — o)+ E[QA ¢ (4 — )] )
= @@ Z'(C + C")CZE[(& — a)(& — )] + tr(QZ'CCZ)GE[(A — N) (& — )]
+qgy Z'C'CZE[(& — a)(& — )] + quQZ'CCZE[(& — a)(& — )]
+QZ'CCZ@E[N — M) (& — @)']
= o} ud,Z'(CC +2C'CYZQ + quQZ'CCZQ + tr(QZ'CCZ)qudy + QZ'CCZaqnqy] + o(T72).

and again substituting (D.3)

E[tr(P*Z'CZ)q1 + P*Z'CZq1)(v' ZQ + v Huqy)
= —E{tr[QZ'GuqiZ'CZ + ' G'ZQZ'CZ\u! ZQ}
—E{[v'G'Gv — d* tr(G'G)] tr(quq, Z'C Z ) quv' Hugy }
—E[(QZ'Gugy + v'G'ZQ) Z'C Z gy ZQ)]
—E{[v'G'Gv — o tr(G'Q)|q1¢, Z'C Z qyv' Hvg) }
= —E[(1Z2'CZQZ'Gv+ VG ZQZ' CZq)quu' ZQ)
—2E{[v'G'Gv — ¢* tr(G'"G |V Hvgy Z'C Zqundy }
—E(QZ' Gy Z'CZqu' ZQ + quv' G’ ZQZ'C Zquu' Z Q)
= —E{¢|Z'CZQ7Z'Gvqiu'ZQ + VG ZQZ'CZqqu/' ZQ} — 40* ¢y Z'C Z gy tr(GG'C)quqy
—E{1Z'CZqQZ'Gvu' ZQ + q1q, Z'C' ZQZ' Gvu' ZQ}
= —E{q1diZ7'CZQ7Z'Gui'ZQ + 2q1¢, Z'C' ZQZ' G’ ZQ}
—45* ¢y Z'CZ a1 tr(GG'C)uqy — E{q1 Z'CZ1QZ' Gvu' ZQ}
= o {2 (C +20"2Q7Z'CZQ + ¢, Z'CZqQZ' CZQY — 40* ¢, Z'C Zqy tr(GG'C) qu .

With (D.14) we find

E[s>(v/ZQ + v Hvq})] = E[(s* — ¢*)(v'ZQ + v'Hvg))] + o(T™)
(T — K - 1) "E{[Wu —'Z(Z2'2)  Z'u)v'Hvgy} + o(T™)
= TE(W/w'Hov)q) + o(T™1)
= o(T™),
and employing (D.13) we obtain

E[#+*(W'ZQ + v Hug,y)] = [tr(C'C'CC) + 2tr(C'CCO)E[A — N (W' ZQ + v Hug,,)]
= ?[tr(C'C'CC) + 2tx(C'CCO)|¢, + o(1).
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Taking the expectation of (E.5) by substitution of the above results yields

E[(Ba — bB,)(& — )] (E.6)
= Mt (QZ'CZ2)quy2'CZQ + QZ'CZqwq, Z'CZQ
+d, 7' (C + 20" ZQZ'CZQ + ¢,Z'CZqQZ'CZQ
- tT(QZ/CCZ)(hCIi - QZ/CCun]i - Q1QQZ'(CC + QC/C)ZQ
+qu[tr(QZ'C2)QZ'CZQ + QZ'CZQZ'CZQ — QZ'CCZQ)\}
+20%{2¢4 7' C Zq1 tr(GG'C)qu
+qu tr(GG'O)tr(QZ' CZ)quqy + QZ'CZquqy + 3q1q1Z2' CZ Q)
—qu[tr(C'C'CC) + 2tr(C'CCO) |y + ¢ tr(GG'CYQZ' CZQ}
+808¢3, [tr(GG'O)Pquqy + o(T72).

Finally, we substitute the results of Theorem 2.2 and (E.6) in (E.4). Exploiting the equivalence
regarding their leading order T terms, as proved in KP (1998, Appendix C), of respectively
tr(C'C'CC) and tr(GG'C'C) and of tr(C'CCC) and tr(GG'CC") yields the required approxi-

mation to MSE(&) and, hence, to the variance V(&) as stated in Theorem 3.2.

F. Estimating the variance of the COLS estimator
Combining Theorems 2.3 and 3.2 we may show that

V(a) (F.1)
+o{[tr(QZ'CZQZ'CZ) + 2(1 — N*) gy
+QZ'CZuqZ'C'ZQ + QZ'CZQZ'CZqudy + dy Z'C' ZQZ'C' ZQ}

+20°%{2¢, 7' C Zqu tr(GG'C)quq, + qui tr(GG'C)[QZ'CZqrqy + ud, Z'C' ZQ]}

+40° gy [tr(GG'C) Py
is unbiased for V(&) to order T—2. However, this is not an estimator because the terms in o4,
o%and o8, which are O(T~2), are unknown. It follows that if these unknown terms are replaced
with estimates which have the same expected value to order T2, the resulting estimator will
also be unbiased to order T A_Z. Using the results of Appendix D, we find that we may replace
Q with P, Z'CZ with ZA/CZ, and 0%, 0% and 0® with s*, s®and s® respectively, tr(GG'C) with
tr(CC'C), and X\ with A such that the resulting expression, given in Theorem 3.3, will have
the same expectation to order 772.

G. Special results for the AR(1) model

Taking Z = (g3 F,¢) we can obtain
s = (1= VT4 [1 = (1= W) (52 + 63)|T2 + o(T?)
G2 = —G(1 + N2 +o(T~?) (G.1)
G2 =T +0o(T7?),

and moreover

tr(QZ'CZ)=(1-AN)"1+0(T1)
G Z'CZq = G2 AT 2 + o(T~2) = O(T72).
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Some of these results show orders smaller than expected, due to the typical nature of the first
column of Z, which has the effect that only one element of Z’Z is O(T) while the other three
are O(1).

Result (4.4) follows using tr(GG'C) = A\(1 — A*) 2T + O(1), which is proved in KP (1998b,
formula C.10). KP (1998b) also gives

tr(GG'GG") = (14 X3)(1 - X3)°T + 0(1)
tr(GG'CC) = N (1 — M\?)3T +0(1) (G.3)
tr(GG'C'C) = (1 4+ M) (1 = X)) 3T + O(1)

and in this special model we further have

G 2'GG' Zqy = o(T™1) tr(QZ'GG'Z) = (1 — \)"2 +0(1) (G.4)
@, Z2'CCZq = o(T71) tr(QZ2'CCZ) = (1 —X)"2+0(1)
@, Z2'C'CZq = o(T71) tr(QZ2'CZQZ'CZ) = (1 — N2 +0(1)

G Z2'CZQ7Z'CZq = o(T7?) qZ'C'ZQZ'CZq = o(T2).
Substituting the above in Corollary 2.2 yields

VA = (1=M)T1 1 — (1 - 2)(G2 + )72
FT72[=2(1 + M%) — 8X2 +4A(1 + ) + 200%] + o(T7?)
= (1-2)T—[1 = M) (G2 + )T 72— (1 — 4\ — 140)T 72 + o(T7?),

given in (4.5), and adding [(1 + 3A\)T ]2 yields (4.6). Evaluating Corollary 2.3 upon using
tr(C'C) = T(1— )"t + O(1) gives (4.8) from which (4.9) and (4.10) straightforwardly follow.
Evaluation of Corollary 3.2 produces (4.12) and then it is easily established that the roots of
5—6A—15X% = 0, which are 0.4110101 and 0.8110101, determine the sign of MSE()\) — MSE(})
as stated in Theorem 4.1.

In KP (1998a) we derived

() = A — %(1 +3)) — % (#) +o(T2). (@5)
This implies
EA=)\) = —% (T_T) +0o(T7?) (G.6)
and
EG - X = <1l+_6;> o(T2). (@)

Because 1+ 6\ < 4 + 3\ for any |A| < 1 estimator A has smaller second order bias. However,
since V(X) = [(T + 3)/T)2V(A) and V(A) = [T/(T — 3)]2V(}), MSE(}) < MSE(}) follows from
(T'+3)/T-T/(T—3) =-9/[T(T —3)] <0 for T > 3. Note that from (G.6) and (G.7) a
higher-order bias correction is immediately available.
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