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Measurement Bias in Multilevel Data

Suzanne Jak, Frans J. Oort, and Conor V. Dolan
University of Amsterdam, The Netherlands

Measurement bias can be detected using structural equation modeling (SEM), by testing mea-
surement invariance with multigroup factor analysis (Joreskog, 1971; Meredith, 1993; Sorbom,
1974), MIMIC modeling (Muthén, 1989), or restricted factor analysis (Oort, 1992, 1998).
In educational research, data often have a nested, multilevel structure, for example when data
are collected from children in classrooms. Multilevel structures might complicate measurement
bias research. In 2-level data, the potentially “biasing trait” or “violator” can be a Level 1 vari-
able (e.g., pupil sex), or a Level 2 variable (e.g., teacher sex). One can also test measurement
invariance with respect to the clustering variable (e.g., classroom). This article provides a step-
wise approach for the detection of measurement bias with respect to these 3 types of violators.
This approach works from Level 1 upward, so the final model accounts for all bias and sub-
stantive findings at both levels. The 5 proposed steps are illustrated with data of teacher—child

relationships.

Keywords: cluster bias, measurement invariance, multilevel structural equation modeling

In the presence of measurement bias, systematic differences
between observed test scores are not completely attributable
to true differences in the trait(s) that the test is supposed to
measure. Suppose given male and female respondents have
the same score on a latent trait. In the absence of bias, the
expected observed test scores of these respondents (condi-
tional on their common latent trait score) are equal. In the
presence of sex bias, this does not hold and we consider
the test to lack measurement invariance with respect to sex.
Sex is a nominal variable, but measurement bias can be
tested with respect to any variable. Measurement bias can be
detected using structural equation modeling (SEM), by test-
ing measurement invariance with multigroup factor analysis
(MGFA; Joreskog, 1971; Meredith, 1993; Soérbom, 1974),
MIMIC modeling (Muthén, 1989), or with restricted factor
analysis (RFA; Oort, 1992, 1998).

With multilevel data structures, the investigation of mea-
surement bias is not straightforward. For instance, consider
the case of pupils nested in classes. First, the standard SEM
approaches need to be adjusted to account for the multi-
level structure. Second, the variable with respect to which
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measurement bias is to be investigated might be defined at
different levels. For example, a Level 1 variable could be sex
of the pupils; a Level 2 variable could be sex of the teachers.
The biasing variable might also be class itself (i.e., the clus-
tering variable, which we view as a special kind of Level 2
variable).

Here, we propose a five-step procedure to investigate
measurement bias (or to establish measurement invariance)
in the two-level case. First, we give a short description
of multilevel SEM and the investigation of measurement
invariance. Then, we describe the situations in which mea-
surements are biased with respect to a Level 1 variable, a
Level 2 variable, or with respect to the clustering variable
itself. We present our five-step procedure to detect bias in
these three situations, and illustrate the procedure with an
analysis of data of teacher—pupil relationships.

MULTILEVEL SEM

In educational and psychological research, cluster sampling
methods are often used. Cluster sampling refers to randomly
selecting higher level units, and consequently selecting lower
level units within these higher level units. Common multi-
level data structures are two-level structures, for example,
children nested in classrooms or employees nested in teams.
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Individuals who are members of the same group share
group-level characteristics, and might therefore be more sim-
ilar to members of their own group than to members of
different groups. Multilevel models take into account the
dependence of observations in nested data sets (see Bryk
& Raudenbush, 1992; Goldstein, 1995; Longford, 1993;
Snijders & Bosker, 1999).

Multilevel SEM allows for different models for variances
and covariances of within-group differences and between-
group differences (Muthén, 1994). We limit our presentation
to two-level structures of individuals (Level 1 or the within
level) in groups (Level 2 or the between level). Consider the
multivariate response vector y;;, with scores from subject i in
group j, which is decomposed into a group mean (), and an
individual deviation from the group mean (n;):

Y =W + 0y, ()

where p; and y;; are independent. The overall covariances of
¥ii (XtotaL) can be written as the sum of the covariances of
W; (Zgerween) and the covariances of M;; (ZwitaHv):

Y TOTAL = XBETWEEN + ZWITHIN (2)

One can postulate separate models for the within (Level 1)
and between (Level 2) matrices. The within model describes
the covariance structure within groups and the between
model describes the covariance and mean structure between
groups. For example, these might be common factor models:

Ygerween = Ap @ A’ + Op, 3)
WBETWEEN = TB + AB KB, 4
Twithin = Aw ®w Aw' + O, (5)

Here, ®5 and ®\ are covariance matrices of the common
factors at the between and within level, respectively; ®g
and Oy are (diagonal) matrices with variance of the resid-
ual factors at the between and within level, respectively;
kg 1S a vector with common factor means at the between
level; Ag and Aw are matrices with factor loadings at the
between and within level, respectively; and tg is a vector
with intercepts at the between level. As within-level scores
are deviations from the group mean, there is no mean struc-
ture at the within level. The dimensions of the matrices and
the parameter estimates can differ across levels. For exam-
ple, one could combine a three-factor model at the within
level with a single-factor model at the between level.

MEASUREMENT BIAS IN SINGLE-LEVEL SEM

We define measurement bias as a violation of measurement
invariance (Mellenbergh, 1989). Consider some unobserved
trait (7)), which is assumed to be measured with observed

indicators (X). Measurements are invariant with respect to
some variable (V), if V is associated with the observed indi-
cators (X) only indirectly via the trait (7') that X is supposed
to measure. Measurement invariance holds if the conditional
distribution of X given values of 7" and V is equal to the con-
ditional distribution of X given values of T but for different
levels of V:

HXIT=1V=v)=HLX|T=1). (6)

Note that given this formal definition, we can distinguish two
kinds of bias (Mellenbergh, 1989). If the violator V has a
direct relationship with any indicator X, then this is called
uniform bias: a main effect of V on X. The second kind of
bias involves a direct effect of an interaction of the violator
V and the trait 7 on the indicator X. This is called nonuni-
form bias. Throughout this article we adopt the terminology
of Oort (1991), and call V a (potential) violator, because it is
a variable that possibly violates measurement invariance.

In the definition of measurement bias, X, 7, and V could
be nominal, ordinal, interval, or ratio variables, they could
be latent or manifest, and their relationships could be lin-
ear or nonlinear. The choice of a statistical technique to
detect measurement bias partly depends on the distribu-
tion of the observed scores. With discrete observed scores,
multigroup item response theory (IRT) models are obvious
choices to test the equality of discrimination and difficulty
parameters across groups (Meade & Lautenschlager, 2004;
Raju, Laffitte, & Byrne, 2002). Across-group differences
in difficulty parameters indicate uniform bias, and addi-
tional across-group differences in discrimination parameters
indicate nonuniform bias (Mellenbergh, 1989).

Here we use SEM to detect measurement bias. Within
SEM, X is typically observed continuous, but can also be
ordinal (Flora & Curran, 2004; Joreskog & Moustaki, 2001;
Millsap & Tein, 2004); T is a continuous unobserved com-
mon factor; and V can be continuous, ordinal or nominal, and
observed or unobserved. One possible way of testing mea-
surement invariance in the case of a nominal variable V (e.g.,
sex) is through MGFA. In MGFA, measurement invariance is
tested by determining whether factor loadings and intercept
are equal across the groups. Violations of the equality (over
groups) of intercepts are interpreted as uniform bias, and vio-
lations of the equality (over groups) of the factor loadings
and intercepts are interpreted as nonuniform bias. Equality
of residual variances over groups can be tested as well, but
is not required for correct comparisons of common factor
means across groups. As explained in conceptual terms in
Dolan, Roorda, and Wicherts (2004), these constraints can
be shown to follow from Equation 6. For an overview of
the use of MGFA for measurement invariance testing, see
Vandenberg and Lance (2000), Millsap and Everson (1991),
Millsap and Tein (2004), and Little (1997).

Another, more flexible approach is the use of the RFA
model (Oort, 1992, 1998) or the MIMIC model (Muthén,



1989). These models differ only in the treatment of the vio-
lator V. In the MIMIC model, T is regressed on V, whereas
in the RFA model, the violator V is correlated with 7.
Measurement bias is detected by testing the significance of
direct effects of the violator V on the measurements X.

Advantages of the RFA method over MGFA are that
with RFA, continuous violators can be incorporated with-
out the need to create groups, whereas multigroup analysis
needs a split of the continuous variable into subgroups.
Bias investigation with respect to several violators simul-
taneously is also more straightforward with RFA. With
MGFA, testing more violators involves creating more sub-
groups with smaller sample sizes, whereas in RFA, it only
involves the addition of covariates. A disadvantage of the
RFA method is that the detection of nonuniform bias is
less straightforward. However, recent developments using
latent interaction terms or moderated factor analysis pro-
vide a viable method to investigate nonuniform bias in the
RFA framework (Barendse, Oort, & Garst, 2010; Barendse,
Oort, Werner, Ligtvoet, & Schermelleh-Engel, 2011; see also
Molenaar, Dolan, Wicherts, & van der Maas, 2010).

In this article, we apply the RFA method, and restrict
ourselves to testing uniform measurement bias only. Testing
uniform bias is the first step in testing measurement bias with
the RFA or MIMIC method and the power to detect nonuni-
form bias is generally lower than for uniform bias (Barendse
et al., 2010; Woods, 2009).

MEASUREMENT BIAS IN TWO-LEVEL SEM

In our two-level SEM procedure for bias detection, we con-
sider a potential violator at Level 1 or Level 2. In the latter
case, one possibility is that the Level 2 violator is the cluster
identifier itself (i.e., a nominal variable with as many values
as there are groups or classes). We treat the cluster identi-
fier as a special type of violator. The different levels of the
violator variable require different models for bias detection.

Violator Is a Level 1 Variable

The violator is a Level 1 variable if it has variance within
clusters. If data come from children within classrooms,
possible Level 1 violators are all variables that vary over chil-
dren within classes. Examples are children’s sex, children’s
ethnicity, or education level of the parents.

Violator Is the Clustering Variable

We call measurement bias with respect to the clustering vari-
able cluster bias (Jak, Oort, & Dolan, 2013). If data come
from children within classrooms, cluster bias means that the
test does not measure the same construct in all the classes.
In this case, two pupils from different classrooms with iden-
tical values of the latent trait might differ with respect to

MEASUREMENT BIAS IN MULTILEVEL DATA 33

their expected observed test score. The presence of cluster
bias can be tested by imposing specific constraints in the
models for Xwirav and X gerween. These constraints ensure
that differences between the cluster means are exclusively
attributable to differences in the common factor means.

Cluster bias can only be caused by Level 2 variables.
Therefore, if cluster bias is not present, we can assume that
there is no measurement bias with respect to any Level 2 vari-
able. Testing for cluster bias thus serves as a first step before
the investigation of bias with respect to specific Level 2
variables.

Violator Is a Level 2 Variable

Violators at Level 2 have variance between clusters. Level 2
violators can be aggregates of Level 1 violators, such as the
proportion of boys in the class, the proportion of children
from a minority group, or average socioeconomic status.
Level 2 violators can also be specific to Level 2, such as
teacher sex, teacher age, or number of pupils in a class.
These violators can only violate measurement invariance at
the between level, as they do not vary within clusters. For
example, children in classes with a male teacher might show
different response behavior to a certain test than children in
classes with a female teacher. Teacher sex has no direct influ-
ence on the within level, because children within the same
class have the same teacher.

THE FIVE-STEP PROCEDURE

To facilitate the practice of bias investigation with respect
to the three types of violators, we propose a five-step proce-
dure for the investigation of measurement bias in two-level
data. This procedure includes the detection of measurement
bias with respect to Level 1 violators and Level 2 viola-
tors, among which is the cluster identifier. The five steps we
propose are the following:

Test whether there is Level 2 variance and covariance.
Establish a measurement model at Level 1.
Investigate bias with respect to Level 1 violators.
Investigate cluster bias.

Investigate bias with respect to Level 2 violators.

S

In this procedure, Step 3 also comprises the findings
from Step 2, and Step 5 also comprises the findings from
Step 4. Of course, there are other conceivable procedures.
For example, one could test for cluster bias first, and subse-
quently investigate bias with respect to the Level 1 violators.
Alternatively, one could investigate bias with respect to the
Level 2 violators with a saturated Level 1 model. However,
a convenient property of this five-step approach is that the
final model from Step 5 includes all relevant results from
the previous steps. Starting the analysis at Level 1 and
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then working upward to Level 2 is in line with Bryk and
Raudenbush’s (1992) two-phase approach in ordinary mul-
tilevel regression, and with the stepwise modeling approach
of multilevel mediation effects of Preacher, Zyphur, and
Zhang (2010).

If the interest is in Level 1 violators only, one can stop
the analysis after Step 3. If the interest is in Level 2 variables
only, one can limit the modeling to the X ggrwgpN covariance
matrix, and specify a saturated model for X wryiN-.

After explaining the five steps in the next subsections, we
illustrate the approach with data of teacher—child relationship
research.

Step 1: Test Whether There Is Level 2 Variance
and Covariance

Multilevel modeling is only required if there is variance at
Level 2. Fitting structural equation models to Level 2 is only
relevant if there is covariance on Level 2. The intraclass cor-
relation (ICC) of a given variable gives the proportion of
the variance that can be attributed to Level 2. A common
rule of thumb is that ICCs over .05 indicate the necessity
of multilevel analysis. One might also want to statistically
test whether the Level 2 variance deviates significantly from
zero. The significance of the Level 2 variance and covariance
can be tested by fitting a null model (Xggrwreny = 0) and
independence model (Xggprwegn is diagonal) to the between
covariance matrix, while specifying a saturated model for
Twirnin (Hox, 2002; Muthén, 1994). If the x2 test statis-
tic of the null model is significant, we conclude that there
is significant Level 2 variance. If the x? test statistic of the
independence model is significant, we conclude that there is
significant Level 2 covariance. Testing significance of vari-
ances and covariances in this manner is common, but not
strictly correct (Stoel, Garre, Dolan, & van den Wittenboer,
2006). Correct testing requires the derivation of an asymp-
totic distribution of the likelihood ratio test statistic, which
can be a complex mixture of multiple different x? distribu-
tions. As this is beyond the scope of this work, we accept that
the testing procedure is not correct, and keep in mind that it
leads to an overly conservative test. That is, the conclusion
will too often be that the Level 2 variance or covariance is
not significant.

If there is no Level 2 variance, single-level techniques
could be used. If there is Level 2 variance, but no Level 2
covariance, Step 2 can still be performed using the pooled
within covariance matrix, with the sample size set equal to
M — N, where M is the total number of subjects and N is
the number of clusters (Muthén, 1994). Steps 3, 4, and 5 are
redundant in this case.

Step 2: Establish a Measurement Model at Level 1

In the second step, we establish a measurement model for
Y wITHIN, leaving X ggrwgeen unconstrained. So, both levels

are analyzed simultaneously while specifying a saturated
model at the between level.

Step 3: Investigate Bias With Respect to Level 1
Violators

In Step 3, we take the measurement model that we estab-
lished in Step 2, and using this model, we investigate bias
with respect to Level 1 violators. In this step, we still do
not model the Level 2 covariance matrix; that is, the Level 2
model remains saturated.

MGFA is not suitable for bias investigation with respect
to Level 1 violators. This is because by creating groups based
on a Level 1 violator, part of the clustering structure in the
model is lost. For example, if we split children in classes
into a group with boys and a group with girls, we disregard
that some boys and girls have the same teacher. Considering
this, the RFA method is better suited to investigate bias at
the within level. Therefore, the Level 1 violators of interest
are added as covariates, and the direct effects of the viola-
tors on the indicators are tested. All direct effects that are
considered significant and relevant should be added to the
model. The significance of direct effects could be tested one
by one by likelihood ratio tests of models with and with-
out the estimated direct effect. Alternatively, modification
indexes of the (fixed) direct effects in the most constrained
model could be used (Sorbom, 1989). Modification indexes
reflect the expected decrease in the model’s chi-square,
if the associated parameter (direct effect) would be freely
estimated.

Step 4: Investigate Cluster Bias

The fourth step involves establishing measurement invari-
ance with respect to the cluster variable by the imposition
of appropriate constraints in the two-level model. We refer
to measurement bias with respect to the cluster variable as
cluster bias. Cluster bias is caused by one or more Level 2
variables. These variables could be measured or unmeasured,
perhaps even unknown, but cluster bias can still be investi-
gated. Investigation of cluster bias can thus be seen as an
overall test for measurement bias with respect to all possi-
ble Level 2 violators. As explained in Jak et al. (2013), in
the absence of cluster bias, the following two-level model
holds:

Ygerween = A Pg A/
and
Twithin = A ®w A’ + Oy (6)
that is, a model with the same factor loadings at Level 1 and

Level 2, and no residual variance at Level 2. If the factor
loadings are not equal over levels, the common factors do



not have the same interpretation over levels (Muthén, 1990;
Rabe-Hesketh, Skrondal, & Pickles, 2004), so the Level 2
common factor scores cannot be interpreted as the simple
cluster means of the Level 1 common factor scores. If the
residual variance of a given indicator variable is found to
be greater than zero, then the indicator is affected by cluster
bias. If cluster bias in several indicators is caused by the same
(possibly unobserved) violator, then the residual factors at
Level 2 will covary.

Three issues about the model specification in the test of
cluster bias require attention. The first concerns the scaling
of the common factors. With freely estimated factor loadings
at both levels, the common factors on Level 1 and Level 2 can
be given a metric by fixing their variances at unity. With
equality constrained factor loadings, and the factor variances
at Level 1 fixed at unity, the factor variances at Level 2 are
identified by the equality constraints on the factor loadings
and can be freely estimated.

The second issue concerns correlated residuals. The test
for cluster bias is based on the factor structure established
in Step 2. If this factor model includes correlated residuals,
the model should be reparameterized. The reason is that in
the test of cluster bias, the residual variance on Level 2 has
to be zero, and the same structure is imposed on the within
and between level (Equation 6). Instead of correlated residu-
als, an additional common factor can be introduced. With the
two factor loadings fixed at 1, the estimate of the common
factor’s variance is equal to the (possibly negative) estimate
of the covariance between the residuals. Note that this com-
mon factor should be uncorrelated to the other factors in the
model, and its variance should be estimated at both levels.

The third issue concerns testing the significance of the
Level 2 residual variance. Because variances are on the
boundary of the parameter space under the hypothesis that
they are zero, the omnibus likelihood ratio test could be a
complex mixture of x? distributions (Stoel et al., 2006). This
pertains to the same problem as in Step 1. However, in the
test of cluster bias we can simplify the distribution of the
likelihood ratio statistic by testing a single variance param-
eter at a time. The distribution of this likelihood ratio is a
simple 50/50 mixture of a x? distribution with 0 df (so half
of the area under the curve equals zero) and a x? distribution
with 1 df. When testing whether a single residual variance
equals zero, the likelihood ratio test requires only a simple
adjustment of the chosen alpha level. In this case alpha is
multiplied by two, which is similar to the procedure in one-
sided instead of two-sided testing. For example, with 1 df,
the critical x? value associated with an alpha level of .05 is
3.84 for a two-sided test and 2.71 for a one-sided test.

Step 5: Investigate Bias With Respect to Level 2
Violators

The model we propose to use in Step 5 is the final model of
Step 4 with all Level 1 and Level 2 violators as covariates.
At Level 1, this corresponds to the final RFA model from
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Step 3. If the factor loadings are still equal across Level 1 and
Level 2, the common factor(s) have the same interpretation
at both levels.

With respect to Level 2 violators, the pros and cons of
MGFA and RFA (or the MIMIC model) coincide with those
of single-level analysis. We apply the RFA method, because
it facilitates the investigation of uniform bias with respect to
all aggregated Level 1 violators and the specific Level 2 vio-
lators simultaneously. See Muthén, Khoo, and Gustafsson
(1997) and Spilt, Koomen, and Jak (2012) for examples of
MGFA with Level 2 violators.

If bias with respect to Level 2 violators has been found,
it can be tested whether all cluster bias is explained by the
Level 2 violators. This implies testing cluster bias again, but
now controlling for the detected bias at Level 2.

ILLUSTRATION

Data

The Closeness scale of a Dutch translation of the Student—
Teacher Relationship Scale (STRS; Koomen, Verschueren
& Pianta, 2007; Koomen, Verschueren, van Schooten, Jak,
& Pianta, 2011; Pianta, 2001) includes 11 items. Closeness
refers to the degree of warmth and open communication. The
closeness items are given in the Appendix. Data of 1,493 stu-
dents (Level 1) were gathered from 659 primary school
teachers (Level 2; 182 men, 477 women) from 92 regular
elementary schools. One hundred eighty-two male teachers
reported on 242 boys and 227 girls; 477 female teachers
reported on 463 boys and 561 girls. The children were in
Grades 1 through 6. Responses were given on a 5-point scale
ranging from 1 (definitely does not apply) to 5 (definitely
does apply).

Statistical Analysis

Measurement bias was investigated with respect to pupil sex
(Level 1) and teacher sex (Level 2). For simplicity, we treat
the item responses as continuous, although in fact they are
ordinal. For examples of fitting multilevel models to ordi-
nal item responses we refer to (among others) Grilli and
Rampichini (2007), Ansari and Jedidi (2000), and Goldstein
and Browne (2005). We used robust maximum likelihood
estimation (MLR) in Mplus (Muthén & Muthén, 2007) to
obtain parameter estimates. This estimation method provides
a test statistic that is asymptotically equivalent to the Yuan—
Bentler T2 test statistic (Yuan & Bentler, 2000), and standard
errors that are robust for nonnormality. A correction factor
for the chi-squares is used to calculate chi-square differences
between nested models (Satorra & Bentler, 2001).

In addition to the adjusted x? statistic, the root mean
square error of approximation (RMSEA; Steiger & Lind,
1980) and the comparative fit index (CFI; Bentler, 1990)
were used as measures of overall goodness of fit. RMSEA
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values smaller than .05 indicate close fit, and values smaller
than .08 are still considered satisfactory (Browne & Cudeck,
1992). CFI values over .95 indicate reasonably good fit (Hu
& Bentler, 1999).

We used RFA (Oort, 1992, 1998) to investigate measure-
ment bias with respect to pupil’s sex and teacher’s sex. Sex
was entered as an exogenous variable that is correlated with
the common factor, and that has no direct effects on the item
scores. Direct effects were added if the modification index
was significant at a Bonferroni corrected level of significance
(two-sided « = .05 /number of possible effects). When test-
ing cluster bias, we started with a fully constrained model,
and freed parameters if needed. We tested the residual vari-
ances one by one at a Bonferroni corrected one-sided level
of significance of .05 (i.e., .10 two-sided) divided by the
number of constrained variances at the between level. The
equality of factor loadings across levels was tested at o« = .05
divided by the number of constrained factor loadings.

Results

Step 1: Test whether there is Level 2 variance
and covariance. The ICCs for the closeness items varied
between .13 (for Item 8) and .28 (for Items 3 and 5). The
Level 2 variance and covariance was significant, indicated
by a significant x? for the null model, x*(66) = 702.16,
p < .05, RMSEA = .080, CFI = .87; and for the indepen-
dence model, x2(55) = 178.35, p < .05, RMSEA = .039,
CFI = .98. Although the RMSEA and the CFI of the inde-
pendence model indicate satisfactory fit, the XZ indicates that
there is significant covariance.

Step 2: Establish a measurement model at the
within level. A one-factor model fitted closely to the
Level 1 covariance matrix, x2(44) = 111.15, p < .05,
RMSEA = .032, CFI = .99.

Step 3: Investigate measurement bias with respect
to pupil's sex. The RFA model with pupil’s sex as an
exogenous variable fitted well, x2(54) = 174.91, p < .05,
RMSEA = .039, CFI = .98. However, modification indexes
suggested direct effects of pupil’s sex on Item 2 and Item 3.
Adding these direct effects significantly improved model
fit, A X2(2) = 34.96, p < .05. The correlation between the
common factor closeness and pupil’s sex was positive and
significant (r = .25, p < .05). As boys were scored 0 and
girls 1, this means that teachers experience more closeness
with girls than with boys. The standardized direct effects on
Item 2 and Item 3 were both positive (8 = .10), indicating
that for equal levels of closeness, girls obtained higher scores
than boys on these items.

Step 4: Test for cluster bias (are we measuring
the same over teachers?). The model with equal fac-
tor loadings at the within and between level and no residual

variance at the between level did not fit the data satisfacto-
rily, x2(109) = 831.67, p < .05, RMSEA = .067, CFI = .85.
One by one freeing of the Level 2 residual variance of
the indicators with the highest modification indexes resulted
in a model with all Level 2 residual variances estimated.
This model fitted satisfactorily, x2(98) = 322.77, p < .05,
RMSEA = .039, CFI = .95. However, for three indicators,
the factor loadings could not be considered equal across
Level 1 and Level 2. Therefore, the factor loadings of Item 5,
Item 8, and Item 10 were freely estimated. This resulted
in a very good fitting model, x2(95) = 275.23, p < .05,
RMSEA = .036, CFI = .96. Items 5 and 10 were more
indicative (i.e., had higher factor loadings) of closeness at
Level 2, and Item 8 was more indicative of closeness at
Level 1. Therefore, the Level 2 common factor cannot simply
be interpreted as the aggregated version of the Level 1 factor.

The presence of cluster bias in all closeness items shows
that there are other factors than teacher’s closeness with
pupils that cause differences on the closeness items. Teacher
sex could be one explanation for these differences.

Step 5: Investigate measurement bias with respect
to teacher’s sex. An RFA model with teacher’s sex
and the proportion of boys in the classroom as exoge-
nous variables at the between level and the final RFA
model from Step 3 at the within level fitted the data well,
x%(123) = 351.36, p < .05, RMSEA = .035, CFI = .96.
In this model, all factor loadings, except for Items 5, 8, and
10 were constrained to be equal across Level 1 and Level 2,
and all residual variance at Level 2 was estimated. Step-by-
step inspection of modification indexes pointed to teacher
sex bias in Items 2 and 3. Addition of two direct effects
of teacher sex on these items resulted in good model fit,
x2(121) = 330.47, p < .05, RMSEA = .034, CFI = .96.
A graphical representation with parameter estimates of this
model is given by Figure 1. The correlation between close-
ness and teacher sex is .34, indicating that female teachers
experience more closeness than male teachers. The standard-
ized direct effects were both positive, f = .17 for Item 2 and
B = .19 for Item 3.These items are thus considered more
applicable by female teachers; that is, with equal levels of
closeness, female teachers give higher scores on these items
than male teachers.

Fixing the Level 2 residual variance at zero for the
two biased items significantly deteriorated model fit,
Ax?(2) = 185.58, p < .05. Not all cluster bias in these items,
therefore, is explained by teacher sex.

Conclusion

The bias with respect to pupil’s sex in Item 2 and Item 3
shows that the difference between boys and girls on these
items is larger than would be expected based on their com-
mon factor scores. In other words, even if the levels of
closeness were equal, girls get somewhat higher scores on
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these items. Item 2 is about the child seeking comfort when
he or she is upset. Apparently, in the perception of teach-
ers, girls seek more comfort than boys do, given equal
levels of closeness. Item 3 is about the children’s reaction
to physical affection or touch from the teacher. So, with
equal levels of closeness, girls seem to be more comfortable

with physical affection than boys (in the perception of
teachers).

Items 2 and 3 were also biased with respect to teacher
sex in the same direction. An explanation for this bias in
Item 2 is that female teachers in general experience more
comfort seeking from children. For Item 3, it is hypothesized
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that male teachers show their closeness less with phys-
ical affection or touch than female teachers do. A pos-
sible explanation could be that male teachers fear being
accused of touching children in inappropriate ways (Jones,
2004).

If one would not control for the bias in the two
items, the correlation between closeness and sex would be
slightly overestimated, (.26 instead of .24 for pupil sex, and
.36 instead of .34 for teacher sex). In all items, cluster bias
was still present, even after controlling for teacher sex bias.
Apparently, other Level 2 violators are causing differences in
the closeness items, so that not all differences between teach-
ers can be attributed to differences in the average closeness
of the teachers with their pupils.

DISCUSSION

This article proposes a five-step approach to the detec-
tion of measurement bias with respect to Level 1 violators,
Level 2 violators, and the clustering variable. We illustrated
the approach using data from teacher—child interactions. The
five steps of the approach were suggested based on the idea
of working upward from Level 1, so that the final model
accounts for all bias and substantive findings at both levels.
The five-step approach seems the most obvious approach to
us. However, we are not claiming this is the only way. The
order of Step 3 (investigating bias with respect to Level 1
violators) and Step 4 (testing cluster bias) can be reversed
without consequences for the final model in Step 5. Another
possibility could be not to work upward from Level 1, but
analyze the two levels separately, by investigating Level 2
bias with an unrestricted model at Level 1. When we ana-
lyzed our data in this way, we found no Level 2 bias. This
is probably the result of diminished statistical power. In gen-
eral, the results in a multistep analysis might depend on the
details of the procedure. In most situations, a universally
optimal procedure might not exist. We expect that different
procedures will generally identify the same items as being
biased, but the power to detect bias might vary. If one is
unsure whether the bias finding should be taken seriously,
being able to explain the bias substantively might be the
ultimate check.

In two-level data, the statistical power to detect measure-
ment bias is of importance at both levels. The sample size
at Level 1 will often be large enough for sufficient power.
The sample size at Level 2 might often be too small. In our
example there were 659 clusters, but data sets with just
100 clusters are very common. According to Maas and Hox
(2005), parameter estimates and statistical tests are accu-
rate from 100 clusters. Concerning the test of cluster bias,
50 clusters appeared to be sufficient to detect cluster bias of
medium size (Jak et al., 2013). According to Maas and Hox,
the number of Level 1 units within Level 2 units is not very
influential in the results.

In our application, we do not test the absence of
nonuniform measurement bias with respect to the Level 1
and Level 2 violators. As pointed out in the introduction,
there are ways within RFA to test for nonuniform measure-
ment bias (Barendse et al., 2010; Barendse et al., 2011;
Molenaar et al., 2010). However, these methods have yet
to be evaluated in multilevel models. Until these methods
are available in multilevel situations, MGFA can be used
to investigate nonuniform bias with respect to Level 2 vio-
lators. When applying MGFA to our data, we did not find
nonuniform bias with respect to teacher sex, whereas the
same uniform bias (in Item 2 and Item 3) was found.

Seeing that various choices can be made, when inves-
tigating measurement bias in multilevel data, we aimed at
providing some guidance by presenting a five-step procedure
that facilitates the investigation of measurement bias with
respect to Level 1 and Level 2 violators. Using this approach,
the final model takes all bias and substantive findings into
account.
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APPENDIX
CLOSENESS ITEMS

1. Ishare an affectionate, warm relationship with this child.

2. 1If upset, this child will seek comfort from me.

This child is uncomfortable with physical affection or touch from me
(reverse scored).

This child values his/her relationship with me.

When I praise this child, he/she beams with pride.

This child tries to please me.

It is easy to be in tune with what this child is feeling.

This child openly shares his/her feelings and experiences with me.
My interactions with this child make me feel effective and confident.
This child allows himself/herself to be encouraged by me.

This child seems to feel secure with me.
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