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Chapter 1

Introduction

Metabolism is the whole of all chemical processes in an organism that
enable growth, reproduction and adaptation to the environment. Me-
tabolic processes can be divided in degradation processes (catabolism)
and biosynthesis (anabolism) [93]. The intermediates of metabolism,
metabolites, are no separate entities, but are organized in metabolic
pathways, which are part of a large network. Each step in a metabolic
network is catalyzed by one or more enzymes. The flux through a path-
way is regulated by (genetic) metabolic control mechanisms (see Table
1.1).
Unraveling the functioning of metabolic pathways is an important goal
of systems biology, because it contributes to understanding biological
processes in the cell. Poorly understood properties of the cell are cellu-
lar decision-making and robustness [7, 61, 90]. Cellular decision-making
systems are mechanisms that make the cell adapt effectively to changing
environments [218]. Robustness is the maintenance of certain properties
for survival [188].
Cellular decisions are made at the level of biochemical networks [7].
Therefore, a first step in understanding cellular decision-making is know-
ledge of structural and kinetic properties of biochemical networks. This
can be accomplished by network inference methods.
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Table 1.1: Overview of metabolic control mechanisms.

mechanism definition
enzyme increased enzyme synthesis in the presence
induction or absence of a certain metabolite [73, 126]
enzyme decreased enzyme synthesis in the presence
repression or absence of a certain metabolite [73, 126]
substrate-level high levels of product inhibit the substrate
control to react [126]
feedback cell controls generation of a product
control through activation (positive control) or

inhibition (negative control) of an earlier
reaction in the pathway [93, 196, 126]
(see Figure 1.1 a and b)

feed forward a metabolite activates or inhibits a
control further step in the pathway [196, 126]

(see Figure 1.1 c and d)
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Figure 1.1: Metabolic control mechanisms a) positive feedback control
b) negative feedback control c) positive feedforward control d) negative
feed forward control
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Once the structure and directionality of a metabolic pathway are
known, comparative analysis of metabolite correlations under different
conditions can reveal additional information about the pathway [189].
The availability of resources determines how pathways adjust to their
environment [90]. Pathway statistics can be used to elucidate which
pathways change between two conditions.
Cells are evolved towards an optimal response to changes in their en-
vironment [90, 111]. Therefore, it is important to study what the cell
has optimized for a better understanding of cellular decision-making and
robustness [90]. This can be achieved by methods based on optimization
theory, like flux balance analysis (FBA) [147, 175].
This thesis focuses on metabolic network inference from time-resolved
microbial metabolomics data. Time series describe the dynamic res-
ponse of the cell to a perturbation and therefore provide more informa-
tion than stationary data [13]. Using time series improves inference of
causal relationships, network reconstruction and parameter estimation
[13, 49, 182].

1.1 Time-resolved metabolomics data

1.1.1 Measurements in metabolomics

In this thesis, microbial metabolite profiling datasets are used to illus-
trate metabolic network inference methods. In metabolomics analysis,
one can distinguish between semi-quantitative and quantitative mea-
surements (see Figure 1.2). Values of semi-quantitative measurements
are peak areas (relative concentrations) and can be used to study the
qualitative behavior of metabolites [236]. Semi-quantitative measure-
ment of intracellular and extracellular metabolites is called metabolic
fingerprinting and metabolic footprinting respectively [124]. Quantita-
tive measurements are metabolite concentrations expressed in chemical
units (moles per gram dry weight or moles per liter) [236]. Target ana-
lysis is quantitative measurement of one or several (internal or external)
metabolites of interest [222]. Metabolite profiling is quantifying preselec-
ted groups of metabolites belonging to the same pathway or with similar
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chemical properties (e.g. lipids) [145].
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Figure 1.2: Types of measurements in metabolomics.
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1.1.2 Sampling methods for time-resolved microbial

metabolomics
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Figure 1.3: Operation modes of a bioreactor: a) batch b) fed-batch c)
continuous. Adapted from Mashego et al [124].
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Samples for microorganisms are taken from a bioreactor. Bioreactors
can operate in three different modes (see Figure 1.3): batch (no inflow, no
outflow), fed-batch (inflow, no outflow), continuous (chemostat, inflow
and outflow) [124].
Fast sampling devices sample a small amount of metabolites (mostly only
central pathways) on a second or sub second time scale [210]. Larger
groups of metabolites (tens or hundreds) are sampled with slow devices
on a time scale of hours [94].
Currently, fast sampling devices only exist for microorganisms. Human,
mammals and plants are sampled on the minutes or hours scale [12, 97,
8].

1.1.3 Analytical techniques for time-resolved micro-

bial metabolomics

Analytical techniques for microbial metabolomics mostly consist of a
chromatographic method for separation of metabolites, followed by mass
detection using mass spectrometry (MS). In gas chromatography (GC),
the analytes are separated by their physical properties. In liquid chro-
matography (LC), the separation is based on chemical properties [224].

1.1.4 Labeling experiments

13C-labeled metabolite data are used to calculate intracellular fluxes,
because these fluxes can not be measured directly [235]. In 13C-labeling
experiments, medium substrates are labeled with 13C [212]. The labeled
carbon atoms propagate through the metabolic pathways [228]. The
different labeling states of the metabolites, isotopomers, can then be
measured with GC-MS or LS-MS [144]. A metabolite with n carbon
atoms has 2n isotopomers (each carbon atom can be labeled or unla-
beled) [228]. For microorganisms, isotopomers can be measured on a
second scale [143, 220]. Fluxes are calculated from the labeling data and
measurements of external fluxes. This method is called 13C metabolic
flux analysis (13C MFA) [228].
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1.2 Metabolic network inference

1.2.1 What is metabolic network inference?

Metabolic network inference is the extraction of metabolic network infor-
mation from experimental data by means of a mathematical framework
[196].
Metabolic pathways can be studied on different levels [190], with increa-
sing amount of detail. The most basic level is structure identification,
which consists of determining the topology of the network (see Figure
1.4a)). An edge is drawn between two metabolites if the one is con-
verted in the other by a chemical reaction. A second way of examining
a pathway is studying the stoichiometry, the amount of substrates and
products involved in the reactions (see Figure 1.4b)). Thermodynamical
properties of the reactions can be studied to determine the directionality
[150] (see Figure 1.4c)). Finally, rate laws can be formulated and pa-
rameters be estimated, which results in a detailed kinetic model [201, 30]
(see Figure 1.4d)).
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Figure 1.4: Different levels of studying metabolic pathways. a) topology
b) stoichiometry c) directionality d) kinetics
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Inference of metabolic networks can serve different purposes, like
understanding cellular functioning and generation of hypotheses [196].

1.2.2 Methods for metabolic network inference

1.2.2.1 Bottom-up and top-down approach

There are two classical approaches to network inference: bottom-up and
top-down. The bottom-up or forward approach uses available knowledge
on kinetic or chemical properties of the network, obtained from the li-
terature or databases [211, 17]. This knowledge is combined to obtain
large-scale models [187]. The top-down approach, also called reverse
engineering, infers network properties from experimental data [17]. Re-
cently, also middle-out approaches are applied that combine bottom-up
and top-down inference [95].

1.2.2.2 Methods for determining network structure

Different mathematical and statistical top-down methods are available
for determining the topology and directionality of a metabolic network.
Methods based on association measures include time-lagged correlation
[5], partial Pearson correlation and mutual information [27]. A second
category of methods are probabilistic approaches, like Bayesian networks
[45]. Other approaches are based on linear approximations of non-linear
reaction models (e.g. Jacobian method) [37].

1.2.2.3 Comparing pathways between different conditions

Pathways can be compared between conditions with pathway statistics,
which provide a manner to study pathways as a whole. Pathway statis-
tics originate from microarray studies [48] and are currently extended to
metabolomics [232, 29, 85]. They are based on the idea that genes and
metabolites change in a coordinated way [48, 232].
Studying pathways instead of single genes or metabolites has several
advantages. Subtle coordinated changes can be discovered that cannot
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be detected with tests for individual genes or metabolites [232]. Fur-
thermore, comparative studies are facilitated because the number of hy-
potheses that has to be tested is reduced [48].
Two different types of pathway statistics can be distinguished. Compe-
titive tests compare a pathway with the rest of the genes or metabolites
in the dataset. Self-contained tests examine if a pathway is different
between two phenotypes or conditions [48].

1.2.2.4 Association networks

Association networks or relevance networks connect metabolites based on
their similarity, which is characterized by a similarity measure. Metabo-
lites are connected if the calculated similarity measure is above a certain
threshold. Frequently used similarity measures are Pearson correlation,
Spearman correlation and mutual information [27].
Associations in a relevance network are not necessary metabolic reac-
tions [21]. They are the result of the combination of all reactions and
regulatory interactions in the network [189].
Correlations provide information about the regulation of the underlying
pathways [192]. High positive correlation of a metabolite pair can point
to rapid equilibrium or dominance of an enzyme, while high negative
correlation can indicate the presence of a conserved moiety [21].
Comparing correlation networks between different conditions can pro-
vide information about the invariant features of metabolic pathways,
changes in regulation and the existence of multiple steady states [189].
Correlations preserved among different conditions can point to rapid
equilibrium. Reversed correlations between conditions can indicate a
change in regulation or the existence of multiple steady states [189].
For the reasons mentioned above, studies on association networks are
equally important as studies on metabolic reaction networks.
Metabolic reaction networks and association networks provide comple-
mentary information about a metabolic pathway (network structure and
regulation respectively). Therefore, combined studies of reaction and
association networks provide more information than studying each type
of network separately.
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1.2.2.5 Kinetic models

Kinetic models describe metabolic networks with non-linear differential
equations [196]. They are used for determining the steady-state(s) of the
system, simulating time-courses and studying metabolic control [162].
Detailed information about rate laws and kinetic parameters is required
for building kinetic models [119]. When the exact form of the rate laws
is unknown, approximate rate laws (e.g. S-systems) can be used [196].

1.2.2.6 Stoichiometric models

Often, there is insufficient experimental data to estimate the parameters
in a kinetic model. Stoichiometric models were developed to avoid the
difficulties with kinetic models [112]. Figure 1.5 gives an overview of
current methodologies in stoichiometric modeling.
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Figure 1.5: Current methodologies in stoichiometric modeling.
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Stoichiometric models make use of mass balances dC/dt = S · v,
where S is the stoichiometric matrix, v the vector of reaction rates and
dC/dt the time derivatives of the metabolite concentrations [162]. Stoi-
chiometric models can be used to elucidate the systemic properties of
metabolism or to determine reaction rates [112].
Systemic properties are analyzed under steady state conditions, where
S · v = 0. Concepts often used for system analysis are elementary modes
(EM) and extreme pathways (EP). Both EM and EP define all possible
routes from a substrate to a product. EP assumes that all reactions are
irreversible, while EM allow for reversibility [93].
Stoichiometric models for determining reaction rates can be divided in
models for reaction rate estimation and predictive models.
Steady state fluxes can be estimated from mass balances and external
flux measurements by metabolic flux analysis (MFA) [112]. Dynamic
MFA is an extension of MFA for estimating reaction rate profiles over
time [110].
Often, not enough external fluxes can be measured to make the system of
mass balances determined. 13C MFA (see 1.1.4.) overcomes this problem
[112], because measuring isotopomers instead of metabolites reduces the
degrees of freedom.
Flux balance analysis (FBA) is a stoichiometric modeling approach that
predicts the steady state flux distribution based on an optimality hypo-
thesis, which describes the biological goal of the organism under a given
condition [112]. The hypothesis is formulated as an objective function,
which is minimized or maximized, given certain constraints [147]. The
constraints are the mass balances and additional inequality constraints
on the reaction rates, thermodynamics and regulation [112]. The objec-
tive function is a linear combination of the fluxes [147]. The resulting
optimization problem is solved for the fluxes. The result of the FBA
is a prediction of the flux distribution that will occur under the condi-
tions determined by the constraints [112]. Often, there are alternative
solutions that reach the optimum for the objective function, given the
constraints. The range of optimal solutions can be studied with flux
variability analysis (FVA) [121].
Dynamic FBA (DFBA) is an extension of FBA that accounts for dy-
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namic changes in cellular behavior [120]. In DFBA, the mass balance
constraints are differential equation constraints instead of linear con-
straints [196]. DFBA approaches can be divided in two groups [116]:
static optimization approach (SOA) and dynamic optimization approach
(DOA). In the SOA approach, the time period is divided in intervals and
an optimization problem is solved at the starting point of each time in-
terval. The DOA approach solves a single optimization problem for the
entire time course [120].

1.3 Challenges in metabolic network infe-

rence

1.3.1 Estimating the topology and directionality from

time-resolved metabolomics data

When estimating the topology and directionality of a metabolic net-
work, one has to deal with several issues. In experimental data, the
number of samples is often much lower than the number of metabolites
in the network (”curse-of-dimensionality”) [155]. Because of the curse-
of-dimensionality problem, different network topologies can match with
experimental observations [87]. Furthermore, experimental data have a
high level of noise [196]. Therefore, it is important to find out how much
noise is allowed for a good performance of network inference methods.
It is also crucial to know which type of data are required for different
network inference methods [196]. One needs to know what kind of per-
turbations are necessary, how many replicates are required, how frequent
samples have to be taken and how long the time series has to be [107].

1.3.2 Incorporating pathway information

In metabolomics, there exist various univariate and multivariate statisti-
cal methods for finding significant differences under changing conditions
[138, 69]. However, these methods treat the metabolites as separate units
and do not take into account that metabolites are organized in pathways
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[232]. A challenge for metabolomics is to explore how information about
pathway structure can be incorporated into statistical methods.

1.3.3 Interpretation of correlations

Many statistical methods for metabolomics make use of correlations or
covariances. Examples are principal component analysis (PCA) [77],
canonical correlation analysis (CCA) [233] and individual differences
scaling (INDSCAL) [75]. It is important to understand what these cor-
relations mean biologically.
Previous correlation studies focus on steady state data [192, 21, 189].
However, metabolite levels change dynamically in response to perturba-
tions [87]. Correlation analysis can provide biological information addi-
tional to the information provided by steady state correlation analysis.
Extracting information from correlations is a challenging task because
there is no direct relationship between a correlation network and the
underlying pathway [192].

1.3.4 Combining experimental data with stoichiome-

tric models

A disadvantage of stoichiometric models is that they often result in a
large solution space [121]. When also dynamics are included, the me-
thods also become mathematically complex because differential equation
constraints are involved. The mathematical complexity makes them less
suitable for studying larger systems [120]. Integration of experimental
data into stoichiometric models can reduce the solution space [159]. Ex-
amples of combining experimental data with steady state flux balance
analysis are rFBA and IOMA. In rFBA, transcriptional regulation is
integrated into flux balance analysis [36]. IOMA combines quantita-
tive proteomics and metabolomics data with flux balance analysis [234].
Similar mathematical methods also have to be developed for dynamic
flux balance analysis, in order to reduce both the solution space and the
mathematical complexity due to differential equation constraints.
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1.4 Scope and outline of the thesis

This thesis focuses on the inference of metabolic network properties from
time-resolved metabolite concentration data. Each chapter addresses one
of the challenges described in paragraph 1.3.
Chapter 2 presents a study about the feasibility of estimating the to-
pology and directionality of metabolic networks from time-resolved me-
tabolomics data.
Chapter 3 deals with incorporating pathway information in studies that
compare different conditions. The extension of a pathway-based method
(Goeman’s global test) from gene expression analysis to metabolomics
is explained in detail.
Chapter 4 focuses on extracting network information from correlations
in time-resolved metabolomics data. Information about the pathway
structure is combined with correlation analysis to infer regulation me-
chanisms responsible for changes in the distribution of reaction rates
across conditions.
Chapter 5 addresses the integration of time-resolved metabolomics data
into dynamic flux balance analysis (DFBA) with the aim to reduce both
the solution space and the mathematical complexity of standard DFBA.
Finally, some suggestions for future research are described in chapter
6.
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