
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Serious computing with tense

Nauze, F; van Lambalgen, M.

Publication date
2004

Published in
Computational Semantics ; 3

Link to publication

Citation for published version (APA):
Nauze, F., & van Lambalgen, M. (2004). Serious computing with tense. In H. Bunt, & R.
Muskens (Eds.), Computational Semantics ; 3 Kluwer.

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:25 Jul 2022

https://dare.uva.nl/personal/pure/en/publications/serious-computing-with-tense(7f1c9cf5-7af1-4204-8494-fe7b116f3700).html

Serious computing with tense ∗

Fabrice Nauze and Michiel van Lambalgen
Department of Philosophy, University of Amsterdam
Nieuwe Doelenstraat 15, 1012 CP Amsterdam
F.D.Nauze@uva.nl, M.vanLambalgen@uva.nl

1. Introduction

In this paper we present a novel approach to the formal semantics
of the French tense system. More precisely, we give a synopsis of the
computational theory of meaning developed in [13], [12] and the forth-
coming book [14], and apply it to two French tenses, Passé Simple
and Imparfait. Much work has been done on French tenses within the
framework of DRT or extensions thereof such as SDRT. The latter uses
so-called rhetorical relations such as elaboration, to explain the peculiar
ways in which events described by sentences in Passé Simple form can
be ordered in time. It is claimed here that a much more insightful
description can be obtained by taking a computational point of view,
in which the meaning of an expression corresponds to an algorithm
which computes its denotation in a given context. ‘Algorithm’ is taken
very seriously here – it is the precise form of the algorithm (constraint
logic programming) that is important. A cognitive justification for this
particular choice is provided in [14]; here we can only hope to convince
the reader by examples of the algorithm in action.

2. Data

In this section we provide some data pertinent to Passé Simple and
the Imparfait. We begin with a discussion of the Passé Simple, and
continue with examples of the interplay between Imparfait and Passé
Simple.

∗ A condensed form of this paper appeared as Chapter 10, ‘Tense in French: Passé
Simple and Imparfait’, in van Lambalgen and Hamm [14].

c© 2004 Kluwer Academic Publishers. Printed in the Netherlands.

ArtikelFabMich091203.tex; 27/07/2004; 14:46; p.1

2 F. Nauze and M. van Lambalgen

2.1. Examples involving the Passé Simple

We will start our discussion with a typical example of a narrative
discourse with the PS where the events described are in temporal
succession:

(1) Pierre se leva, monta dans sa chambre, ferma la porte et alluma
la radio. (4×PS)

What can be said about the role of the PS in this example? Obviously,
the PS conveys the information that all events are located in the past.
More interestingly, it is often claimed that these events are to be viewed
as punctual in the sense that there are no other events which could
partition them. The internal constitution of the events is not important;
this means that the PS views events as perfective. The PS imposes a
view of the events ’from the outside’ and from a distance. This is then
claimed to explain why multiple uses of the PS implies a succession of
the events described. As the events are seen as punctual, irreducible
and viewed from the outside, it is then natural to expect that two
events in the PS are not simultaneous, and so that one is happening
before the other. Then the obvious choice is to place first things first
(unless explicitly stated otherwise). Hence in (1), the getting up of
Pierre precedes his going up in his room, etc... This is why the PS is
often considered to imply narrative succession.

Let us try to describe the above in a more formal manner. The most
evident effect of the PS is to place the eventuality in the past of the
speech time (this is what is known as ”pure” tense information). We
have now two options to account for the succession effect. We may
assume, as in early versions of DRT, that the PS introduces a new
reference point placed after an old one (this would amount to a direct
representation of the ”succession effect” of the PS). Alternatively, we
may posit that the PS represents the eventuality as perfective and
located in the past, and derive the succession effect from this, whenever
it is appropriate.

We will choose the latter option, as it seems to be a better represen-
tation of the core meaning of the PS, succession being in our view only
a (albeit quite frequent) side-effect. In fact, a good counter-example to
the unconditional validity of the succession effect of the PS was given
by Kamp and Rohrer, here slightly changed to

(2) L’été de cette année-là vit plusieurs changements dans la vie de
nos héros. François épousa Adèle, Jean partit pour le Brésil et
Paul s’acheta une maison à la campagne. (4×PS)

ArtikelFabMich091203.tex; 27/07/2004; 14:46; p.2

Serious computing with tense 3

The first sentence introduces an event which gets divided in the fol-
lowing sentence (this phenomenon is known as the rhetorical relation
of elaboration; it can also be viewed as a change of granularity in
the description of events). How this first event is divided cannot be
determined from those PS sentences alone. In a way the first sentence
’asks’ for an enumeration afterwards, and so the next verb phrases
enumerate the list of changes in the life of the ‘heroes’, but in the
absence of adverbs or ordering conjunctions (like puis) we cannot give
the precise temporal relationship between those events. Hence we have
here two phenomena: the first sentence gets divided by others (in a
way this could be seen as contradicting the perfectivity of the PS),
and furthermore the following PS sentences do not impose a natural
ordering on the events described by them. One of the causes of this lack
of ordering is that the VPs have different subjects: François, Jean and
Paul. We can reformulate example (2) by removing one of the subjects
as in

(3) L’été de cette année-là vit plusieurs changements dans la vie de
nos héros. François épousa Adèle et partit pour le Brésil, Paul
s’acheta une maison à la campagne. (4×PS)

In sentence (3) we have now a succession of two events François mar-
rying Adèle and then leaving to Brazil. However we still cannot derive
any ordering of those two VPs with the third. We should also note
that the inverse temporal order seems to be called for in the following
example of Gosselin [4, p.117]

(4) Pierre brisa le vase. Il le laissa tomber. (PS ×2)

Even without the use of an explanative conjunction like car, it seems
we can derive the explanation reading, and this for two reasons: first,
the achievement of the first sentence is irreversible in the way that
the object of the sentence is changed for good after the achievement
(briser), second, the anaphoric pronoun le in the second sentence refers
to the the vase, not to the broken vase which is the result of the
first sentence, hence we expect that the second sentence applies to
the not-yet-broken vase. We can further notice that the first sentence
presupposes an action on the part of the subject Pierre on the vase
(directly or indirectly), which causes the breaking. Furthermore, the
subjects of the two sentences agree, and the pronoun of the second
sentence refers to the object of the first sentence; and obviously to
drop something is a plausible cause of breaking this same thing. It then
seems natural that the second sentence actually describes the action

ArtikelFabMich091203.tex; 27/07/2004; 14:46; p.3

4 F. Nauze and M. van Lambalgen

that leads to the breaking of the vase.1 It should also be noticed that
the fact that the two sentences in (4) are separated by a period is of
major importance. If it is not the case, as in

(5) Pierre brisa le vase et le laissa tomber. (2×PS)

there is no ambiguity about the ordering of the two events described
by the sentences: the breaking happens before the falling. Furthermore,
even when the sentences are separated by a period we may get the
ordering expressed by (5). If we add a further sentence, as in

(6) a. Pierre brisa le vase avec un marteau. Il le laissa tomber et
s’en alla.

b. Pierre brisa le vase avec un marteau. Il le laissa tomber. Il
s’en alla sans le regarder.

the narrative seems to force the events to be ordered corresponding to
the sentences.

Let us now change the examples (1), (2) and (4) somewhat, to
determine when and why narration occurs or on the contrary breaks
down. In example (1) we have a simple succession of events affecting
one subject, in (2) we have several events affecting different subjects
and occurring in a certain period of time but not explicitly ordered with
respect to each other, and finally in (4) we have two events affecting
one subject and one object in inverse temporal order. Now consider the
following variations.

(7) a. Pierre monta dans sa chambre et ferma la porte. (2×PS)
b. Pierre ferma la porte et monta dans sa chambre. (2×PS)
c. Pierre ferma la porte et Jean monta dans sa chambre. (2×PS)
d. # Pierre monta dans sa chambre, ferma la porte, alluma la

radio et se leva. (4×PS)
e. Cet été-là, François épousa Adèle, Jean partit pour le Brésil

et Paul s’acheta une maison à la campagne. (3×PS)
f. Cet été-là, François épousa Adèle et partit pour le Brésil et

Paul s’acheta une maison à la campagne. (3×PS)

Examples (7-a) and (7-b) describe a succession of two events accom-
plished by a single subject: monter dans sa chambre (go upstairs in his
room) and fermer la porte (close the door). In example (7-a) Pierre
goes first in his room and then closes the door whereas in (7-b) he first
closes the door and then goes in his room. As those eventualities are

1 We have provided such an extensive discussion of example (4) because there
appears to be a general agreement in the literature on the impossibility of the PS
to give an inverse temporal reading.

ArtikelFabMich091203.tex; 27/07/2004; 14:46; p.4

Serious computing with tense 5

seen as perfective (this is the aspectual effect of the PS), are ascribed to
one subject (this is a syntactic property of the sentence) and can hardly
be done simultaneously (this is part of the semantics of those eventu-
alities), the only possibility is that those two events are consecutive.
However, the claim that the PS implies succession must be revised. All
we get is that in a discourse in which the PS describes eventualities
which have few semantic connections (note that going upstairs doesn’t
presuppose closing the door and vice-versa) and in which there is a
unique subject, the order of the events is isomorphic to the utterance
order. What is heard (or read) first, happens first.

Here are some more examples to show that the two factors identified,
semantic connections and uniqueness of subject, indeed influence the
reading of a piece of discourse. The importance of uniqueness of subject
can be seen in examples (7-c), (7-e) and (7-f). The only difference be-
tween (7-b) and (7-c) is that in the latter the second VP has a different
subject than the first. The correct reading of this sentence is probably
that of a succession but the possibility of simultaneity is not excluded,
as in (7-b). This sentence can describe the simultaneous actions of two
subjects but would be inadequate to described the inverse order.

Examples (7-e) (a simplified version of (2)) and (7-f) differ in that
François is now the subject of two events. Furthermore those two events
are successive but still in no particular relation to the third event. In
(7-e) all subjects differ and we have no special ordering between the
events.

Sentence (7-d) isn’t correct because Pierre going into his room and
closing the door presupposes (semantically) that he remains standing.2

Hence to determine the temporal relation of a new PS VP with respect
to a given sequence of PS VPs, all having the same subject, the meaning
of the new VP must be compared with the possible lexical (semantic)
information conveyed by the preceding VPs.

The last example we will give involves aspectual information. The
reader may have noticed that the VPS in the preceding examples are
either accomplishments or achievements. The PS can also be used with
states or activities, however.

(8) Il fut président. (PS)

2 This is not the case for the VP ‘switch the radio on’. Therefore the following
sentence is correct.

(i) Pierre alluma la radio et se leva. (2×PS)

ArtikelFabMich091203.tex; 27/07/2004; 14:46; p.5

6 F. Nauze and M. van Lambalgen

In this example we obtain an inchoative reading. This is made clear by
giving the proper English translation: He became president (and not He
was president). The stative VP is coerced by the PS into its initiating
event.3

2.2. Examples involving the Imparfait

It is illustrative to begin this section by citing several comments on this
tense from the literature. De Swart says in [2, p. 57],

sentences in the Imparfait are traditionally taken to describe back-
ground information that does not move the story forward.

It follows Kamp’s view which is motivated by the study of the tenses
in narrative context and where the fact that the Imp doesn’t move
the narration forward is directly opposed to the fact that the PS does.
Gosselin, in [4, p. 199], doesn’t put the emphasis on moving the story
line forward, but notices that

the Imp refers to a moment in the past during which the process
is going on, without precision about the situation of the beginning
and the end of the process.4

Sten in [10] focusses on its use as ”present in the past”:
L’imparfait sert à indiquer une action qui serait du présent pour
un observateur du passé,...”, (the Imp serves to indicate an action
which would be present for an observator in the past).

Finally, all authors stress the anaphoric nature of this tense, in the
sense that it cannot be used by itself but only with reference to an-
other sentence or with temporal adverbials.5 We may summarize these
positions by saying that the Imparfait is an anaphoric, imperfective
past tense. We will now introduce some examples of the use of the Im-
parfait, however the reader should notice that those examples partially
represent the possibilities of the Imparfait. In particular we won’t give
examples of the so-called narrative Imparfait or habitual and iterative
readings.

3 Notice that the combination PS + stative VP does not logically imply an
inchoative reading.

(i) Il fut président de 1981 à 1995. (PS)

Here, we do not obtain an inchoative reading but just a perfective eventuality.
4 p. 199, [4]: ”L’imparfait renvoie donc typiquement à un moment du passé pen-

dant lequel le procès se déroule, sans préciser la situation temporelle du début et de
la fin du procès. Ce temps apparâıt non autonome (anaphorique) et situe le procès
comme simultané par rapport à d’autres procès du contexte, et comme se déroulant
en un même lieu.

5 See for instance [6, p. 35].

ArtikelFabMich091203.tex; 27/07/2004; 14:46; p.6

Serious computing with tense 7

The anaphoric and imperfective nature of the Imp can be seen in
the following example

(9) a. # Il faisait chaud. (Imp)
b. Il faisait chaud. Jean ôta sa veste. (Imp, PS)

That sentence (9-a) is not felicitous is explained in Kamp’s theory by
the fact that there is no previous ”reference point” to anchor the sen-
tence and that an Imp sentence such as (9-a) does not introduce its own
reference point.6In sentence (9-b), the Imp sentence is ”attached” to
the reference point introduced by the PS sentence and the imperfective
aspect of the Imp is due to the fact that the PS event happens while
the Imp eventuality holds. It is however not a general rule for the Imp,
that the Imp eventuality contains its reference point, as is shown by
the following examples.

(10) Jean appuya sur l’interrupteur. La lumière l’éblouissait. (PS,
Imp)

(11) Jean attrapa une contravention. Il roulait trop vite. (PS, Imp)

The Imp sentence in (10) is viewed as a consequence of the PS sen-
tence; clearly the light cannot blind Jean before he switched it on.
De Swart, in [2, p. 59-61], maintains that the reference point for the
Imp sentence is not the PS sentence, but rather its consequent state
(the light is switched on). Then we would have simultaneity between
the Imp sentence and its reference point. On de Swart’s approach, the
decision whether the Imp overlaps with the PS reference point or with
its consequent state is made on the basis of rhetorical relations between
the sentences; this theory is what is known as SDRT. De Swart calls this
rhetorical relation temporal implication and she provides an analogous
explanation for (11), introducing the rhetorical relation of temporal
presupposition. In example (11) the Imp sentence is understood as being
the cause of getting a ticket hence even though the Imp sentence is
placed after the PS sentence the activity driving too fast takes place
before getting a ticket.

We believe that in this area explanations of much greater generality
are possible than those provided by SDRT. Below we present a fully

6 Notice that the reference point does not have to be introduced by a PS sentence;
it can also be a temporal adverbial, or even the subject of the sentence, as in the
following examples

(i) a. Mercredi, il pleuvait. Jeudi, il faisait soleil. (Imp, Imp)
b. Le grand-père de Marie était noir. (Imp)

ArtikelFabMich091203.tex; 27/07/2004; 14:46; p.7

8 F. Nauze and M. van Lambalgen

computational semantics for French tenses, built upon the computa-
tional mechanism of (constraint) logic programming. In this setup,
rhetorical relations will turn out to be derived constructs, abstracting
certain features of the computations.

3. Computational semantics for tense

Tense is concerned with the grammatical localization of events in time.
However, this does not mean that the ontology required for tense is
restricted to on the one hand a time line, such as the reals, and on the
other hand a set of discrete, structureless entities called events. The
ontology must be very much richer, as has been put forcefully by Mark
Steedman [9, p. 932]

The semantics of tense and aspect is profoundly shaped by concerns
with goals, actions and consequences . . . temporality in the narrow
sense of the term is merely one facet of this system among many.

The system of English future tenses provides a good illustration for this
point of view: present tense in its future use, the futurate progressive,
and the auxiliaries will and be going to all express different relations
between goals, plans, and the actions comprising those plans. The case
of the English future tense will be explained in detail in the forth-
coming book [14]; here we concentrate on the French past tenses. We
claim that also in this case a rich ontology involving goals, plans and
actions is necessary to capture the data. As our basic representational
format we choose a formalism, the event calculus, that was developed in
robotics for the purpose of autonomous planning in robots. The book
[14] contains a lengthy defense of the idea that human understanding of
time is conditioned by human planning procedures. Indirectly one may
then also expect that the grammatical correlate of that understanding
is conditioned by planning. The next step is then, to try to model the
semantics of tense by means of a planning formalism.

3.1. A calculus of events

By definition, planning means setting a goal and computing a se-
quence of actions which provably suffice to attain that goal. It involves
reasoning about events, both actions of the agent and events in the
environment, and about properties of the agent and the environment,
which may undergo change as a consequence of those events. A simple
example is that of an agent who wants a light L to burn from time
t0 until t1, and knows that there is a switch S serving L. The obvious
plan is then to turn S at t0, and to leave S alone until t1. Even this

ArtikelFabMich091203.tex; 27/07/2004; 14:46; p.8

Serious computing with tense 9

simple plan hides a number of problems. We required that a plan should
be provably correct. On a classical reading, that would mean that the
plan is sure to achieve the goal in every model of the premisses, here
the description of the situation and its causal relationships. Among
these models, there will be some containing non-intended events, such
as light turning off spontaneously (i.e. without an accompanying turn
of the switch), or a gremlin turning off the switch between t0 and t1. In
fact it is impossible to enumerate all the things that may go wrong. No
planning formalism is therefore likely to give ‘provably correct plans’
in the sense of classical logic. The most one can hope for is a plan that
works to the best of one’s knowledge.

The event calculus7 is a formalism for planning that addresses some
of these concerns. It axiomatizes the idea that all change must be due to
a cause–spontaneous changes do not occur. It thus embodies one sense
of the common sense principle of inertia: a property persists unless it
is caused to change by an event. That is, if an action a does not affect
a property F , then if F is true before doing a, it will be true after.
Of course, the crucial issue in this intuitive idea concerns the notion of
‘affect’. This refers to a kind of causal web which specifies the influences
of actions on properties.The other difficulty with planning identified
above, the possibility of unexpected events, can be treated either in the
axiomatic system, or equivalently in the logic underlying the system.
The solution of this difficulty is essentially to restrict the class of models
of the axiomatic system to those models which are in a sense minimal:
only those events happen which are required to happen by the axioms,
and similarly only those causal influences obtain which are forced by
the axioms. Our treatment of the event calculus will correspond to the
division just outlined: we first discuss its formalization of causality, and
then move on to introduce the class of its minimal models.

Formally, the event calculus requires a many-sorted first order logic
with sorts for the following:

1. individual objects, such as humans, chairs, tables, . . .

2. real numbers, to represent time and variable quantities

3. time-dependent properties, such as states and activities

4. variable quantities, such as position, degree of sadness, state of
completion of a painting, . . .

7 The version used in this paper is modelled on that developed by Murray Shana-
han, which in turn was based on work by Kowalski and Sergot. A good reference is
the book [8].

ArtikelFabMich091203.tex; 27/07/2004; 14:46; p.9

10 F. Nauze and M. van Lambalgen

5. event types, whose instantiations (i.e. tokens) mark the beginning
and end of time-dependent properties.

A few comments on this list are in order. The predicates of the event
calculus will be seen to have an explicit parameter for time. We have
chosen to represent time by the real numbers, actually by the structure
(R, <; +,×, 0, 1). It is explained at length in [14] why this choice is
justified as well as harmless, so we do not dwell on this topic here.

It may furthermore strike the reader that properties are reckoned to
belong to the ontology of the event calculus, on a par with individual
objects and time points. Usually properties correspond to predicates,
hence objects of a different type than that of entities. But in the event
calculus a property is an object which may itself fill an argument slot
in a predicate. There are several reasons for this, one having to do
with the notion of ‘cause’. Consider one of the most complex classes of
verbs, the accomplishments, of which examples are ‘draw a circle’, ‘write
a letter’, ‘cross the street’. Eventualities representing such verbs have
an elaborate internal structure. On the one hand there is an activity
taking place (draw, write, cross), on the other hand an ‘object’ is being
‘constructed’: the circle, the letter, or the path across the street. Dowty
(in [3]) analyzes the progressivized accomplishment

(12) Mary is drawing a circle

as

(13) cause[Mary draws something, a circle comes into existence].

That is, the sentence is decomposed into an activity (‘Mary draws
something’) and a partial, changing, object (‘circle’); it is furthermore
asserted that the activity is the cause of the change. For Dowty, causal-
ity is a relation between propositions, and accordingly he tries, not
entirely successfully, to give an account of causality in terms of possible
world semantics. By contrast, the event calculus gives an analysis of
causality which has its roots in physics, as a relation between events.

The event calculus actually formalizes two notions of cause, and
their relation. The first notion of cause is concerned with instanta-
neous change, as when two balls collide. We are thus concerned with
an event (type) collision, which for simplicity is assumed to occur in-
stantaneously. An event type together with a time at which it occurs
(or happens) will be referred to as an event token. We furthermore need
time-dependent properties such as, for example, ‘ball b has momentum
m’. In the case at hand, the property ‘ball 1 has momentum m and ball
2 has momentum 0’ will be true until the time of collision t, after which
‘ball 2 has momentum m and ball 1 has momentum 0’ is true. Such

ArtikelFabMich091203.tex; 27/07/2004; 14:46; p.10

Serious computing with tense 11

time-dependent properties are called fluents8. A fluent is a function
which may contain variables for individuals and reals, and which is
interpreted in a model as a set of time points. We now want to be able
to say that fluents are initiated and terminated by events, and that a
fluent was true at the beginning of time. If f is a variable over fluents, e
a variable over events, and t a variable over time points, we may write
the required predicates as

1. Initially(f)

2. Happens(e,t)

3. Initiates(e,f,t)

4. Terminates(e,f,t)

If events happen instantaneously, these predicates are to be interpreted
in such a way, that if Happens(e, t) ∧ Initiates(e, f, t), then f will begin
to hold after (but not at) t; if Happens(e, t) ∧ Terminates(e, f, t), then
f will still hold at t.

The second notion of causality is more like change due to a force
which exerts its influence continuously. The paradigmatic example here
is the acceleration of an object due to the gravitational field, but other
examples abound: pushing a cart, filling a bucket, drinking a glass of
wine, writing a letter, As the reader can see from this list, continu-
ous change is important in providing a semantics for accomplishments.

Continuous change requires its own special predicates, namely

5. Trajectory(f1,t,f2,d)

6. Releases(e,f,t)

In the Trajectory predicate, one should think of f1 as a force, and of f2

as a variable quantity which my change under the influence of the force.
The predicate then expresses that if f1 holds from t until t+d, then at
t+d, f2 holds. In applications, f2 will have a real number as argument,
and will be of the form f(g(t+ d)) for some continuous function g.

The predicate Releases is necessary to reconcile the two notions of
cause with each other. Cause as instantaneous change leads to one
form of inertia: after the occurrence of the event marking the change,
properties will not change value until the occurrence of the next event.
This however conflicts with the intended notion of continuous change,
where variable quantities may change their values without concomi-
tant occurrences of events. The solution is to exempt, by means of

8 The name is appropriated from Newton’s treatise on the calculus, where all
variables are assumed to depend implicitly on time.

ArtikelFabMich091203.tex; 27/07/2004; 14:46; p.11

12 F. Nauze and M. van Lambalgen

the special predicate Releases, those properties which we want to vary
continuously, from the inertia of the first form of causation.

The axioms will be seen to have the form: if there are no ‘f -relevant’
events between t1 and t2, then the truth value of f at t1 is the same
as that at t2. We introduce two special predicates to formalize the
notion of ‘f -relevant’ events. The first predicate expresses that there is
a terminating or releasing event between t1 and t2; the second predicate
expresses that there is an initiating or releasing event between t1 and
t2.

7. Clipped(t1,f,t2)

Lastly, we need the ‘truth predicate’

8. HoldsAt(f,t).

The intuitive meaning of HoldsAt(f, t) is that the fluent f is true at
time t. In the usual setup of the event calculus, such defining axioms
for this truth predicate are lacking, and this can easily lead to contra-
dictions. However, due to lack of space we cannot furnish the relevant
truth theory and we ask the reader to simply assume that HoldsAt(f, t)
can indeed be forced to have the meaning ‘the fluent f is true at time
t’.

For language processing we need a lexicon, which can be thought of
as associating a theory to each lexical item. We will show below that
for the purposes of discussing tense it is very useful to formulate these
theories in the language of the event calculus. In fact we claim that there
is a profitable analogy between linguistics and robotics here. In order to
derive predictions, e.g. on when a robot will reach its destination, one
needs a theory describing the robot’s situation, conveniently divided
in axioms, holding for every situation, and a scenario, laying down
properties of a particular situation; this latter theory corresponds to
the lexicon. We first study the axioms.

3.2. The axiom system EC

The axioms of the event calculus given below are modified from [8],
the difference being due to the fact that we prefer a logic program-
ming approach, whereas Shanahan uses a technique for obtaining min-
imal models called circumscription. In the following, all variables are
assumed to be universally quantified.

AXIOM 1. Initially(f) ∧ ¬Clipped(0, f, t) → HoldsAt(f, t)

AXIOM 2. Happens(e, t) ∧ Initiates(e, f, t) ∧ t<t’ ∧ ¬Clipped(t, f,
t’) → HoldsAt(f, t’)

ArtikelFabMich091203.tex; 27/07/2004; 14:46; p.12

Serious computing with tense 13

AXIOM 3. Happens(e, t) ∧ Initiates(e, f1, t) ∧ t<t’ ∧ t’=t+d ∧
Trajectory(f1, t, f2, d) ∧ ¬Clipped(t, f1, t’) → HoldsAt(f2, t’)

AXIOM 4. Happens(e, s) ∧ t<s<t’ ∧ (Terminates(e, f, s) ∨ Releases(e,
f, s)) → Clipped(t, f, t’)

The set of axioms of the event calculus will be abbreviated by EC.
We add some explanatory comments on the axioms. The meaning of
these axioms can be seen most clearly in the case of axiom 2. Suppose
a fluent f is initiated at time t1 > 0, and that no ‘f -relevant’ event
occurs between t1 and t2. Here, ‘f -relevant’ is rendered formally by the
predicate Clipped, whose meaning is given by axiom 4. Axiom 2 then
says that f also holds at time t2. The role of the Releases predicate is
important here, because it provides the bridge between the two notions
of causality. Axiom 2 really embodies the principle of inertia as it relates
to the first notion of causality, instantaneous change: in the absence of
relevant events, no changes occur. However, continuous change occurs
due to a force, not an event, and hence absence of relevant events
does not always entail absence of change. The Releases predicate then
provides the required loophole.

The first axiom says that if a fluent holds at time 0 and no event has
terminated or released it before time t > 0, it still holds at t. Axiom
3 is best explained by means of the example of filling a bucket with
water. So let f1 be instantiated by filling, and f2 by height(x). If filling
has been going on uninterruptedly from t until t

′
, then for a certain x,

height(x) will be true at t
′
, the particular x being determined by the

law of the process as exemplified by the Trajectory–predicate.

3.3. A model for EC

In the absence of further statements constraining the interpretation of
the primitive predicates, a simple model for EC is obtained by taking
the extensions of Happens and Initially to be empty. If we then set
¬HoldsAt(f, t) for all f, t we obtain a model. However, this model is
not very informative, and to facilitate the reader’s comprehension of
the axioms, we will sketch an intuitively appealing class of models of
EC. It can in fact be proven that all models of EC of interest in this
context are of the form to be presented. We have to specify the sorts
of fluents and event types in such a way that EC holds automatically.
We interpret fluents as sets of intervals of the form [0, b] or (a, b], where
a is the instant at which an initiating event occurs, and b is the instant

ArtikelFabMich091203.tex; 27/07/2004; 14:46; p.13

14 F. Nauze and M. van Lambalgen

- R(] (] (]

f
PPPPPPPPPPi

@
@

@@I

��
���

���*

Figure 1. Structure of fluents

where ‘the next’ terminating event occurs9. Talk about ‘the next’ seems
justified due to the inertia inherent in fluents. A typical fluent therefore
looks as in figure 1.

For the purpose of constructing models, we think of event (types)
as derivative of fluents, in the sense that each event either initiates
or terminates a fluent, and that fluents are initiated or terminated by
events only. The instants are taken to be nonnegative reals. Each fluent
f is a finite set of disjoint halfopen intervals (a, b], with the possible
addition of an interval [0, c]. Event types e are of the form e = e+f
or e = e−f where e+f := {(f, r) | ∃s((r, s] ∈ f)} and e−f := {(f, s) |
∃r((r, s] ∈ f)}.

This then yields the following interpretations for the distinguished
predicates.

1. HoldsAt := {(f, t) | ∃I ∈ f(t ∈ I)}

2. Initially := {f | ∃s > 0[0, s] ∈ f)}

3. Happens := {(e, t) | ∃f((e = e+f ∨ e = e−f) ∧ (f, t) ∈ e)}

4. Initiates := {(e, f, t) | e = e+f ∧ (f, t) ∈ e}

5. Terminates := {(e, f, t) | e = e−f ∧ (f, t) ∈ e}

6. Releases := ∅

7. Clipped := {(t1, f, t2) | ∃t(t1 < t < t2 ∧ (f, t) ∈ e−f)}

PROPOSITION 1. EC is true under the above interpretation.

The model captures an important intuition, namely that fluents can
be represented by intervals, that is, very simple sets, as a consequence
of ‘the common sense law of inertia’. The reader is advised to have
this interpretation in mind when interpreting statements in the formal
language.

9 Note that a fluent does not hold at the instant it is initiated, but does hold at the
moment it is terminated. We need intervals [0, b] to account for Initially statements.
We allow b to be ∞.

ArtikelFabMich091203.tex; 27/07/2004; 14:46; p.14

Serious computing with tense 15

3.4. Scenarios

The above axioms provide a general theory of causality. We also need
‘micro-theories’ which state the specific causal relationships holding in
a given situation, and which list the events that have occurred in that
situation. We claim that an important part of the lexicon can also be
represented in this causal format. For example, in the case of ‘draw
a circle’ the situation contains (at least) an activity (‘draw’) and a
changing partial object (the circle in its various stages of completion);
the micro-theory should specify how the activity ‘draw’ is causally
related to the amount of circle constructed. This is done by means
of two definitions, of state and scenario.

DEFINITION 1. A state S(t) at time t is a conjunction of

1. literals of the form (¬)HoldsAt(f, t), for t fixed and possibly differ-
ent f .

2. (in)equalities between fluent terms, between event terms and be-
tween constants for individuals.

3. formulas in the language of the structure (R, <; +,×, 0, 1)

DEFINITION 2. A scenario is a conjunction of statements of the
form

1. Initially(f),

2. ∀t(S(t) → Initiates(e, f, t)),

3. ∀t(S(t) → Terminates(e, f, t)),

4. ∀t(S(t) → Releases(e, f, t)),

5. ∀t(S(t) → Happens(e, t)),

6. S(f1, f2, t, d) → Trajectory(f1, t, f2, d).

where S(t) (more generally S(f1, f2, t, d)) is a state in the sense of
definition 1.

These formulas may contain additional constants for objects, reals or
time points, and can be prefixed by universal quantifiers over reals
(including time points) and objects. Formulas of type 6 are said to
define a dynamics.

One final remark before we consider an example. The definition of
‘state’ refers only to fluents being true or false; it is not allowed to in-
clude conjuncts using Happens. This may seem strange for a formalism

ArtikelFabMich091203.tex; 27/07/2004; 14:46; p.15

16 F. Nauze and M. van Lambalgen

concerned with causality; after all, the archetypical form of causality
is one where Happens(e1, t) implies Happens(e2, s) for some s slightly
later than t. There is a formal reason for our choice: allowing Happens in
states increases the danger of nonterminating computations. In practice
the restriction can be liberalized: one must only take care that no loops
are introduced. In one example below we shall make use of the more
liberal form; the reader can easily check that this causes no harm.

3.5. Minimal models

We now turn to an important feature in which the proposed compu-
tational semantics differs from, say, DRT. DRSs are always taken to
be substructures of the ‘real’ world (or a world of fiction, as the case
may be). By contrast, the models that we consider are ‘closed worlds’
in the sense that events which are not forced to occur by the scenario,
are assumed not to occur. Later additions to the scenario may overturn
this assumption, so that incremental processing of a discourse does not
lead to a ‘nice’ chain of DRSs ordered by the substructure relation.
Instead, we obtain a nonmonotonic progression. In [12] it is shown
how the peculiar meaning of the progressive form in English can be
explained in this way, and, also, that the ubiquitous phenomenon of
coercion is a natural consequence of this computational model. This
form of nonmonotonicity is easiest explained in terms of planning; we
will latter return to its linguistic relevance.

Consider a problem with planning referred to above: it is impossible
to construct a plan which is provably correct in the sense that it works
whatever is true in the real world. We can only hope for plans which
are correct with respect to the eventualities that are envisaged now,
barring unforeseen circumstances. Formally, this means that we must
restrict the class of models of event calculus and scenario to models
which are minimal in the sense that the occurrences of events and their
causal influences are restricted to what is required by the scenario and
EC. Thus if a scenario contains only the following statements involving
Happens

− Happens(switch-on, 5)

− Happens(switch-off, 10)

a non-minimal model of this scenario would be one in which the fol-
lowing events are interpolated between times 5 and 10:

− Happens(switch-off, 8)

− Happens(switch-on, 9)

ArtikelFabMich091203.tex; 27/07/2004; 14:46; p.16

Serious computing with tense 17

Similarly, if the scenario contains only the following statements involv-
ing Initially, Initiates and Terminates

− ¬HoldsAt(light-on, t) → Initiates(switch-on, light-on, t)

− Terminates(switch-off, light-off, t)

a non-minimal model of this scenario could contain the additional
statements concerning causal influences

− Initially(light-on)

− HoldsAt(light-on, t) → Terminates(switch-on, light-on, t)

While this intuition about minimality is fairly straightforward, its im-
plementation is less so. Somewhat surprisingly, there exist essentially
different ways of defining ‘minimal model’. We favour the definition
implicit in logic programming, because of its computational nature. It
will be shown that in the cases of interest to us, there exists in fact a
unique minimal model, which defines the denotations of all expressions
occurring in the scenario. Moreover, there exists a computable proce-
dure for obtaining the minimal model, so that the denotations are in
fact computable.

3.6. Logic programming with constraints and negation as
failure

This section introduces the computational machinery that we will use.
Examples of actual computations will be given below. We have not
worried about details of implementation, such as providing selection
rules, but apart from this the computational mechanism is fully explicit.

Our favoured formalism, constraint logic programming, is in general
concerned with the interplay of two languages. In our case these will be
the languages L = {0, 1,+, ·, <}, and the language K consisting of the
primitive predicates of the event calculus. The latter will also be called
programmed predicate symbols, because we will write logic programs
defining the primitive predicates.

Not considering negation for the moment10, clauses in a constraint
logic program based on L and K are generally of the following form

B1, . . . , Bn, c→ A,

where the B1, . . . , Bn, A are primitive predicates and c is a constraint.
Constraints may occur only in the bodies of clauses. Likewise, a query
has the logical form

B1 ∧ . . . ∧Bm ∧ c→ ⊥.
10 I.e. restricting attention to so called definite constraint logic programs.

ArtikelFabMich091203.tex; 27/07/2004; 14:46; p.17

18 F. Nauze and M. van Lambalgen

We shall use the notation

?c,B1, . . . , Bm

for queries, always with the convention that c denotes the constraint,
and that the remaining formulas come from K. The words ‘query’ and
‘goal’ will be used interchangeably.

The aim of a constraint computation is to express a programmed
predicate symbol entirely in terms of constraints, or at least to find an
assignment to the variables in the programmed predicate which satisfies
a given constraint. Thus, unlike the case of ordinary logic programming,
the last node of a successful branch in a derivation tree contains a
constraint instead of the empty clause. To make this precise, we have
to spell out the notion of derivation step and derivation tree.

One difference between standard logic programming and constraint
logic programming is its treatment of substitution. In the former, the
unification algorithm, applied to two atoms, determines which terms
have to be substituted for the variables occurring in the atoms, in order
for the atoms to become identical. In constraint logic programming the
treatment is different: when the unification algorithm has determined
that a term t should be substituted for a given variable x, one adds a
constraint t = x but no substitution is effected. If A,B are atoms, we
let {A = B} denote the set of equations between terms which unify A
and B if A and B are unifiable; otherwise {A = B} is set to ⊥. The
constraints are then simply accumulated in the course of the derivation.
There are some clear notational advantages to this approach, which
avoids nested, possibly unreadable terms11. The main advantage is
conceptual, however, since it allows a more symmetric treatment of
positive and negative information.

The main derivation rule is resolution, which can be formalized as
follows. Suppose ?c,B1, . . . , Bi, . . . , Bm is a goal, and D1, . . . , Dk, c

′ →
A a program clause. A new goal

?c′′, B1, . . . , D1, . . . , Dk, . . . , Bm

can be derived from these two clauses if the constraint c′′, defined as c′′

= (c∧{Bi = A}∧c′) is satisfiable in A. That is, if A can be unified with
Bi, one can replace Bi by D1, . . . , Dk if in addition the given constraint
c is narrowed down to contain also the unifying substitution and the

11 A consequence of this approach may seem that the constraint language L has
to be extended, since constraints in the wider sense may now also involve ob-
jects, (parametrized) events and (parametrized) fluents. However, all such syntactic
objects can be coded into L.

ArtikelFabMich091203.tex; 27/07/2004; 14:46; p.18

Serious computing with tense 19

constraint c′. Given this inference rule, the concepts of derivation tree
and branch in a derivation tree have straightforward definitions12.

DEFINITION 3. A branch in a derivation tree is successful if it is
finite and ends in a query of the form ?c, where c is a satisfiable con-
straint; note that the query is not allowed to contain an atom. A branch
in a derivation tree is finitely failed if it ends in a query ?c,B1 . . . Bm

such that either c is not satisfiable, or no program clause is applicable
to the Bi. Otherwise the branch is called infinite.

Intuitively, this definition applied to the situation of interest means
the following. Suppose we start from a query ?HoldsAt(f, t) and find a
successful branch ending in ?c. This should mean that for all t, if c(t) is
true, then so is HoldsAt(f, t). Likewise, if a branch finitely fails and ends
in ?c,B1 . . . Bm, we should have, for all t satisfying c(t), ¬HoldsAt(f, t).

For our purposes, definite constraint logic programs are not yet
expressive enough, due to the occurrence of ¬ in the bodies of the
axioms of the event calculus13.

DEFINITION 4. A complex body is a conjunction of literals, i.e.
atoms and negated atoms, and constraints. A normal program is a
formula ψ → A of CLP (T) such that ψ is a complex body and A
is an atom.

The form of negation most congenial to constraint logic program-
ming is constructive negation ([11]). In the customary negation as
failure paradigm, negative queries differ from positive queries: the latter
yield computed answer substitutions, the former only the answers ‘true’
or ‘false’. Constructive negation tries to make the situation more sym-
metrical by also providing computed answer substitutions for negative
queries. Applied to constraint logic programming, this means that both
positive and negative queries can start successful computations ending
in constraints. The full operational definition of constructive negation
is somewhat involved (see [11]), but we will provide a simplified ver-
sion (disregarding the possibility of infinite derivations) modeled on
negation as failure, which suffices for our purposes.

The operational meaning of constructive negation may be given as
follows. Suppose we are given the goal ?L1, . . .Li, . . . ,Ln, c.Here, the
ψi are literals and c is a set of constraints Consider a Li of the form

12 As in the case of standard logic programming, one also needs the concept of a
selection rule, which determines which atom should be chosen at a particular stage
in a derivation. The interested reader may consult [11]; we need not dwell on this
topic here.

13 The following definition is deliberately simplified from the one given in [11].

ArtikelFabMich091203.tex; 27/07/2004; 14:46; p.19

20 F. Nauze and M. van Lambalgen

Li = ¬B, which has been selected for processing. Start a subderivation
with goal ?B. Assume this derivation tree is finite. Collect the con-
straints c1, . . . , cl occurring on the successful branches of the tree (the
finitely failing branches can be disregarded). The children of the goal
?L1, . . . ,Li, . . . ,Ln,c are now of the form

?c ∧ ¬ci,L1, . . . ,Li−1, . . . ,Li+1, . . .Ln

for all i such that c ∧ ¬ci is satisfiable. There may be no such i, in
which case the goal has no children. The subderivation may itself fea-
ture negative goals, so that an abstract definition of a derivation tree
allowing constructive negation involves a recursion. We will not provide
a definition, but the reader may check that the derivations used in the
linguistic applications below all conform to the above characterization.
A global concept of success for a derivation tree is given by the following
definition.

DEFINITION 5. A query ?c,G is totally successful if its derivation
tree includes successful branches ending in constraints c∧c1, . . . , c∧cn
such that A |= ∀x(c→ c1 ∨ . . . ∨ cn.

Intuitively, a query ?c,G is totally successful if all instances of the
query also succeed; this is much stronger than saying that the query is
satisfiable, as one would in standard logic programming.

3.7. Semantics

As in the case of negation as failure, the fundamental technical tool in
describing the semantics of the above procedure is the completion of a
program:

DEFINITION 6. Let P be a normal program, consisting of clauses

B
1 ∧ c1 → p1(t1), . . . , Bn ∧ cn → pn(tn),

where the pi are atoms and the Bi are complex bodies. The completion
of P, denoted by comp(P), is computed by the following recipe:

1. choose a predicate p that occurs in the head of a clause of P

2. choose a sequence of new variables x of length the arity of p

3. replace in the i-th clause of P all occurrences of a term in ti by
a corresponding variable in x and add the conjunct x = ti to the
body; we thus obtain B

i ∧ ci ∧ x = ti → pi(x)

ArtikelFabMich091203.tex; 27/07/2004; 14:46; p.20

Serious computing with tense 21

4. for each i, let zi be the set of free variables in B
i ∧ ci ∧ x = ti not

in x

5. given p, let n1, . . . , nk enumerate the clauses in which p occurs as
head

6. define Def(p) to be the formula

∀x(p(x) ↔ ∃zn1(B
n1∧cn1∧x = tn1)∨. . .∨∃znk

(Bnk∧cnk
∧x = tnk

).

7. comp(P) is then obtained as the formula
∧

p Def (p), where the con-
junction ranges over predicates p occurring in the head of a clause
of P.

The soundness of the operational definition of constructive negation
is expressed by

THEOREM 1. Let P be a normal program on the constraint structure
A, and let T be the axiomatization of A.

1. If the query ?c,G is totally successful, then T +P |= ∀x(c→ G.

2. If the query ?c,G is finitely failed, then T +P |= ¬∃x(c ∧G).

There is also a corresponding completeness result (for which see [14]),
but this need not detain us here. It is however of some importance
to note the following consequence of the computational procedure just
outlined. The formulation of the result is somewhat sloppy (see [14] for
a rigorous version), but it suffices to capture the main idea.

THEOREM 2. Let P be a normal program on the constraint structure
A, and let T be the axiomatization of A. Then T +comp(P) has a
unique model which is of the form given in section 3.3.

4. Where do the fluents come from?

We now have to connect the preceding material with natural language.
The basic idea of the approach is that meaning is computational, and
that computations are performed in the language of the event calculus.
Here is an example of this kind of computation involving the English
progressive, taken from [5] and [14]. Consider the sentences

(14) a. John was crossing the street.
b. John crossed the street.

ArtikelFabMich091203.tex; 27/07/2004; 14:46; p.21

22 F. Nauze and M. van Lambalgen

The second sentence implies that John arrived at the other side, but
the first one does not. Nevertheless, the VP ‘cross the street’ is telic
in that it comes with a canonical culminating event. The so-called
‘imperfective paradox’ generated by sentences (14-a) and (14-b) is: on
the one hand the canonical culminating event essentially belongs to the
meaning of ‘cross the street’, on the other hand the actual occurrence
of that event can be denied with impunity. The solution given in [14] is
that an accomplishment such as ‘cross the street’ actually corresponds
semantically to a plan for reaching the other side of the street. This
plan will be brought to successful completion in a minimal model of the
plan, but not necessarily in extensions of the minimal model. The plan
corresponds to a scenario in the language of the event calculus, and
the minimal model of the plan can be computed using the procedure
outlined in the previous section. What we have not yet explained is
how to associate a plan to a lexical expression.

The first step in setting up a corresponding plan consists of the
transformation of lexical material into fluents and events. Here is a
brief sketch of how this can be done – a more detailed exposition can
be found in [5] and [14]. We assume that verbs correspond to predicates
which have a time parameter. Thus, in the intransitive case, ‘walk’
corresponds to the predicate walk(x, t). Given this predicate, one can
form two kinds of abstraction over it, corresponding to perfect and
imperfect aspect, respectively:

1. ∃twalk(x, t)

2. {t | walk(x, t)}

Since time is interpreted on the reals, which contain the integers, such
expressions may be assigned Gödel numbers as ‘codes’, with the conse-
quence that these codes may themselves figure as arguments in pred-
icates14. Codes of expressions of the first kind will play the role of
event types in the event calculus, whereas those of the second kind will
function as fluents. Indeed, for fixed x, {t | walk(x, t)} can be viewed as
a function from times to truth values, i.e. as a time-dependent property,
and this is precisely how fluents are characterized.

We shall employ the following notation in using events and fluents
derived from natural language expressions: event types will be denoted
by e(x), and fluents by f [x], where in both cases e and f are replaced
by suitable natural language expressions. For example, we will meet the
expressions leave-to(Jean,Brasil) (an event type), and is-president(x)
(a fluent).

14 In AI, this process is known as reification.

ArtikelFabMich091203.tex; 27/07/2004; 14:46; p.22

Serious computing with tense 23

The second step in setting up a plan corresponding to a lexical
expression consists in writing down a scenario in the language of the
event calculus, which captures the (causal aspects of) the meaning
of that expression. This second step is best explained by means of
examples, of which many will be given below.

We have now completed our introduction to the computational ma-
chinery. In the next section we exploit a feature of this machinery to
give an account of reference time, together with utterance time and
event time the main pillar of the semantics of tense.

5. Reference time as integrity constraint

Reichenbach’s great insight into tense was his identification of the im-
portance of the reference time, on a par with event time and utterance
time. The reference time is a marker for the time, context or situation
that we are talking about. R must be known by the participants in
order for the temporal discourse to make sense. Reichenbach noticed
that the reference time can be different from the event time, as for
instance in the present perfect

(15) I have caught a flu.

Here the infection-event lies in the past, but the reference time is
identical to the utterance time: the sentence is meant to have present
relevance, e.g. as an explanation for my being bad–tempered. We now
have to investigate how the reference time is to be formulated in our
framework. This is not at all easy, as the following example will make
clear.

Suppose we try to model the English present perfect, in a very simple
situation, where there is an event type e (say a viral infection) which
initiates a consequent state f e.g. having a flu); there are no further
events or fluents. The scenario therefore contains only the statement

(16) Initiates(e, f, t).

Suppose the utterance time is denoted by a constant now, to be inter-
preted on the reals; this constant belongs to the constraint language.
The present relevance of the present perfect then suggests that the
contribution of this tense to the scenario is the addition of formula
(17-b), so that the scenario becomes

(17) a. Initiates(e, f, t)
b. HoldsAt(f, now).

ArtikelFabMich091203.tex; 27/07/2004; 14:46; p.23

24 F. Nauze and M. van Lambalgen

We would like to derive from (17), using the axioms of the event calcu-
lus, that for some t < now, Happens(e, t). Naively one might reason as
follows: completing the axioms of the event calculus plus the scenario
gives us

Happens(e, t) ∧ Initiates(e, f, t) ∧ t < t′ ∧ ¬Clipped(t, f, t′) ↔ HoldsAt(f, t′),

so that the desired result follows after applying the given (17-b).
Although this argument embodies an important intuition, it cannot
be pushed through as stated, since the completion at issue is actually

[Happens(e,t) ∧ Initiates(e,f,t) ∧ t<t’ ∧¬ Clipped(t,f,t’)] ∨ [now=t’]
↔ HoldsAt(f,t’),

from which nothing can be derived. Thus the contribution of the
reference time cannot simply be an addition to the scenario.

To clarify the contribution of the reference time, we need a small
excursion in database theory, taking an example from Kowalski [7, p.
232].

An integrity constraint in a database expresses obligations and pro-
hibitions that the states of the database must satisfy if they fulfill
a certain condition. A simple example is a database of family rela-
tionships, which should satisfy constraints such as ‘everybody has a
genetic father’ (obligation) and ‘no one is both father and mother’
(prohibition). The operational meaning of the integrity constraints is
that each time the database is updated, it must be checked whether
the constraints still hold.

Kowalski [7, p. 232] advocated the use of integrity constraints in
the slightly different context of reactive agents, who have to perform
appropriate actions given certain sensory input. Here the integrity con-
straint is used to request an update (e.g. stating that an action has been
performed), rather than to regiment the updates as in the examples
above. For instance, the ‘obligation’ to carry an umbrella when it is
raining, may be formalized by the integrity constraint

HoldsAt(rain, t) → HoldsAt(carry umbrella, t+ ε). (1)

The intended meaning is that if it rains at t, then the agent should
carry an umbrella soon after. The crucial point here is the meaning
of the →. The formula 1 cannot be an ordinary program clause, for in
that case the addition of HoldsAt(rain, t) would trigger the consequence
HoldsAt(carry umbrella, t) which may well be false, and in any case
does not express an obligation. Below we will therefore replace → by
the expression IF. . . THEN, whose meaning is defined operationally.

A good way to think of an integrity constraint expressing an obli-
gation is to view the consequent as a constraint that the database

ArtikelFabMich091203.tex; 27/07/2004; 14:46; p.24

Serious computing with tense 25

must satisfy if the antecedent holds. Similarly, an integrity constraint
expressing a prohibition can be taken to mean: if the antecedent holds,
then the database should not satisfy the consequent. In other words,
in the first case the integrity constraint imposes an obligation on the
ordinary sentences in the database to establish that the consequent
should hold. This entails in general that the database has to be updated
with a true statement about the world; which statement that is, has to
be found out by abduction. To return to our example, there will be an
action take umbrella, whose meaning is given by the database clause

Initiates(take umbrella, carry umbrella, t).

Suppose the database is updated with HoldsAt(rain,now), i.e. the an-
tecedent of the integrity constraint 1. The integrity constraint then
requires us to set up a derivation starting from the query

?HoldsAt(carry umbrella,now + ε).

Applying the event calculus we can reduce this query to

?Happens(take umbrella,now),¬Clipped(now , carry umbrella,now+ε).

We now have to update the database in such a way that the query
succeeds. This can be achieved if we only add the clause

Happens(take umbrella,now),

and no other occurrences of events. For in this case the query

?Happens(take umbrella,now),¬Clipped(now , carry umbrella,now+ε)

reduces to

?¬Clipped(now , carry umbrella,now + ε),

and this query can be shown to succeed by applying negation as failure
to

?Clipped(now , carry umbrella,now + ε).

Indeed, the latter query fails because of the way we updated the database.
Of course, it is assumed that a statement such as Happens(take umbrella,
now) only gets added when in fact the action has been performed.

As this example makes clear, an integrity constraint requires us to
update a database in a particular way. A derivation is started with the
consequent of the integrity constraint as the top query. Then resolution
with clauses from the database is applied for as long as possible. The

ArtikelFabMich091203.tex; 27/07/2004; 14:46; p.25

26 F. Nauze and M. van Lambalgen

derivation will in general end with a query that cannot be further re-
solved. If this were an ordinary derivation we would then apply negation
as failure to the top query. In the case of an integrity constraint we
use the unresolved bottom query instead to suggest an addition to the
database which will make the top query succeed after all. The procedure
chosen has the effect of making a minimal update of the database to
ensure success of the top query: the computation exploits as much of
the database as is possible, and only plugs in facts when absolutely
necessary.

These considerations lead us to the following definition of integrity
constraint as it applies in our context.

DEFINITION 7. Let R,R′, R′′ . . . be a finite set of constants each
denoting a reference time; these constants belong to the constraint lan-
guage. An integrity constraint is a formula of the form

(†) IF ϕ THEN ψ(R,R′, R′′ . . .),
where ϕ and ψ are formulas of the event calculus.
The operational meaning of (†) is that if the scenario satisfies ϕ,

the goal ?ψ(R,R′, R′′ . . .) must succeed, or fail finitely. To determine
whether the scenario satisfies ϕ, one has to investigate whether the goal
?ϕ succeeds. Hence if the integrity constraint expresses an obligation it
may be represented by the demand that ?ϕ,ψ(R,R′, R′′ . . .) succeeds.

The case that the goal must succeed expresses an obligation; the case
where it must fail finitely expresses a prohibition. A typical application
is where ψ(t, t′, t′′ . . .) = HoldsAt(f, t) ∧ t ≤ now .In this case we
require that the goal?HoldsAt(f,R)∧R ≤ now succeeds or fails finitely
by either of the following strategies.

1. One may update the scenario with true Happens, Initiates and
¬Clipped formulas, using the axioms of the event calculus; this is
the strategy of choice if f is an activity fluent. It has the effect of
making the temporal denotation of f extended in time.

2. If the first strategy fails, the scenario may also be updated with
true HoldsAt or Initially formulas, or (in)equalities in R in the
language of the reals. This is a possible strategy if f represents a
state, since states do not have to be caused by events. For example,
they may be a particular instance of a parametrized state, which
evolves continuously via a dynamics.

Another typical application of integrity constraints in our context is
where the goal which must succeed or fail finitely is of the form
?Happens(e,R) ∧R ≤ now . Again there are two possible strategies for
handling the goal:

ArtikelFabMich091203.tex; 27/07/2004; 14:46; p.26

Serious computing with tense 27

1. if Happens(e, t) occurs in the head of a clause with nontrivial body
θ(e, t), proceed by resolving the query ?θ(e,R);

2. otherwise, replace Happens(e,R) by a set of true (in)equalities in
R.

It is also possible to have an integrity constraint without a condition,
i.e. where ϕ is a tautology. An entry in my diary like ‘appointment in
Utrecht, Friday at 9.00’ expresses an unconditional obligation to satisfy
HoldsAt(be-in-Utrecht,Friday at 9.00), and presented with this integrity
constraint, my internal database comes up with a plan to satisfy the
constraint. We will usually refer to an unconditional integrity constraint
by means of the query that must succeed, or fail finitely.

We now illustrate the linguistic relevance of the preceding defini-
tion by the example of the English perfect: for the present perfect the
integrity constraint is that the query

(18) ?HoldsAt(f,R), R=now,

must succeed, whereas for the pluperfect success is required for the
query

(19) ?HoldsAt(f,R), R <now.

In both cases the logic programming mechanism starts a computation
from the given query by applying the axioms of the event calculus. For
instance, applying axiom 2 means that the database searches for an
event e such that Initiates(e, f, t), Happens(e, t0) and ¬Clipped(t0, f, t).
If this query does not succeed, the database may ask the outside world
for input. For instance, in the above the scenario consists of the formula
Initiates(e, f, t) only. The database then asks for input of a true formula
Happens(e, t0) ∧ t0 ≤ R. This is the computational meaning of the
perfect. It is also the computational meaning of the progressive, where
the fluent f represents an activity and e an initiating event. If the
database would be unable to find a formula Initiates(e, f, t), it could
also ask the world for input of a true formula of this type. Alternatively,
it could forego the search for an f -triggering event and ask for a set of
(in)equalities in R or (using axiom 1) a true Initially formula instead.
These strategies may occur if f represents a stative verb, for in that
case f need not be triggered by an action or event.

The upshot of the preceding discussion is that a reference time is
characterized by a set of fluents which must hold at that time. This
stipulation captures the idea that the role of a reference time is to

ArtikelFabMich091203.tex; 27/07/2004; 14:46; p.27

28 F. Nauze and M. van Lambalgen

fix the situation or context that we are talking about. In general such
situations are only partially determined. Suppose the reference time is
characterized by fluents f1, . . . , fn, i.e. by the integrity constraint

?HoldsAt(f1, R), . . . ,HoldsAt(fn, R).

If we want to stipulate that another fluent f , say the result fluent
involved in the perfect, holds at R, the only way to do this is to enlarge
the integrity constraint to

?HoldsAt(f1, R), . . . ,HoldsAt(fn, R),HoldsAt(f,R),

i.e f must occur in a subgoal in the integrity constraint. In general
we shall mention only the immediately relevant part of the integrity
constraint, in this case ?HoldsAt(f,R), and leave out the contextually
given part15.

Before we move to a discussion of the Passé Simple and Imparfait,
let us take stock. The principal function of the scenario is to contribute
lexical information, which is general and does not talk about specific
times. The addition of temporal information is required to construct
a sentence out of lexical material. Contrary to first impressions, the
reference time cannot be added as a fact to a scenario, as we have seen
in the case of the perfect. The reference time is an integrity constraint
formulated in terms of fluents, which typically puts constraints upon
possible temporal locations of event types.

We have to exercise some care here: the traditional phrase ‘event
time’ obscures the fact that there are at least two different kinds of
events, what we have termed here fluents and event types. Localizing
stative verbs or VPs in the English progressive, involves anchoring a
fluent, whereas the English simple tenses locate event types. This is
related to an important issue: the role of Aktionsart in defining tense.
Some authors, such as Comrie [1], prefer to define tense abstracting
from aspectual features, the idea being that tense talks only about
localization in time; an example will be given below. We try to go
a different route, and allow for the possibility that tense works out
differently for different Aktionsarten. Some indications of what this
means in practice are given below.

15 In the presence of integrity constraints, the model whose existence is posited
in theorem 2 depends of course on the constraints used the make the goal in the
integrity constraint succeed or fail.

ArtikelFabMich091203.tex; 27/07/2004; 14:46; p.28

Serious computing with tense 29

6. Formalizing the Passé Simple and Imparfait

We will now formalize the examples of section 2 using the event calculus
formalism.

6.1. Passé Simple: scenarios and integrity constraints

Guided by the previous analysis we propose that the effect of the
Passé Simple is to introduce an integrity constraint of the form ?Hold-
sAt(f,R), Happens(e,R), R < now, where e is the event type derived
from the VP which occurs in the PS, and the fluent f represents the
context in which the PS is interpreted. If the context is empty, for
example if the sentence considered is the first sentence of the discourse,
we leave out the HoldsAt clause. One may observe immediately that
this stipulation accounts for two features of the PS: it presents the
eventuality as perfective, and it places the eventuality in the past of
the speech time.

We also need a meaning postulate for the conjunction et, which is
not a simple Boolean conjunction. The following stipulation seems to
capture what we need: if the PS occurs in the form ‘Set PS-VP’, then
the fluent f occurring in the integrity constraint for the PS refer to
the state which results from the event described by S (and not from
material that was processed earlier). We view the construction ‘S1, S2

et S3’ as an iterated form of et, that is, as ‘(S1 et S2) et S3’. Sentences
conjoined by et are thus bound together more tightly then sentences
conjoined by a period.

6.1.1. Succession (non)effects
Recall that we have argued in section 2.1 for the succession effect in
PS narratives as a side-effect of the semantics of the PS. Consider the
sentences

(20) a. Pierre monta dans sa chambre et ferma la porte. (2×PS)
b. Pierre ferma la porte et monta dans sa chambre. (2×PS)

If our approach is to be correct, the implied succession in sentences
(20-a) and (20-b) should derive from the ordering of the sentences,
the identity of the subject in the conjuncts related by et, and the
perfectivity of the PS. We propose the following derivation of this effect.
The scenario for sentence (20-a) looks as follows

1. a) Initiates(go-upstairs(x), upstairs[x], t)
b) ?Happens(go-upstairs(Pierre), R), R < now succeeds

2. a) Initiates(close(x, y), closed[y], t)

ArtikelFabMich091203.tex; 27/07/2004; 14:46; p.29

30 F. Nauze and M. van Lambalgen

b) ?HoldsAt(upstairs[Pierre],R′), Happens(close(Pierre,door),R′),
R′ < now succeeds

The formulas collected in 1. represent the information in the scenario
induced by the first VP16. The first formula states lexical information,
and the integrity constraint gives the contribution of the PS. For com-
pleteness we should have added a HoldsAt clause as well, whose fluent
has information about the context; but this clause would be irrelevant
to the computation. The minimal model for this scenario looks as fol-
lows. Until reference time R, the fluent upstairs[Pierre] does not hold
(by negation as failure), at R the event go-upstairs(Pierre) happens
and initiates the fluent upstairs[Pierre].

The next pair of formulas introduces the semantic contribution of
the second conjunct of (20-a). The lexical information introduced in
2a is straightforward. The choice of the integrity constraint 2b requires
some explanation. The Happens clause of the integrity constraint rep-
resents the effect of the PS (perfective event in the past of the speech
time), and the HoldsAt clause represents the context in which the PS is
interpreted. Since the two clauses in (20-a) are linked by et, the fluent
in this HoldsAt clause must refer to the state resulting from 1. We show
that this choice accounts for the default succession effect of a sequence
of PS sentences ascribed to a single subject. In the minimal model we
have R < R′, as is shown by the following derivation. The first few
steps in the argument look like this: The top node of this derivation

?HoldsAt(upstairs[Pierre],R’),
Happens(close(Pierre,door),R’),

R′ < now

Axiom 2

iiiiiiiiiiiiiiiiiiii

?Happens(go-upstairs(Pierre),R), Initiates(go-
upstairs(Pierre),upstairs[Pierre],R),

¬Clipped(R,upstairs[Pierre],R′),

Happens(close(Pierre,door),R′), R < R′ < now

Happens(go-upstairs(Pierre),R),
Initiates(go-upstairs(x),upstairs[x], t)

jjjjjjjjjjjjjjjjjjjj

?¬Clipped(R,upstairs[Pierre],R′),

Happens(close(Pierre,door),R′),

R < R′ < now

Figure 2. Effect of the second integrity constraint in (20-a).

contains the integrity constraint, i.e. a goal which is assumed to succeed.
The derivation shows that the top goal can only succeed if the goal
?¬Clipped(R,upstairs[Pierre],R′), Happens(close(Pierre,door),R′),R <

16 Recall that go-upstairs(x) denotes an event type and upstairs[x] a fluent.

ArtikelFabMich091203.tex; 27/07/2004; 14:46; p.30

Serious computing with tense 31

R′ <now also succeeds. A simple negation as failure argument shows
that the subgoal ?¬Clipped(R,upstairs[Pierre],R′) succeeds. This leaves
us with the goal ?Happens(close(Pierre,door),R′),R < R′ <now, which
means that any R′ satisfying Happens(close(Pierre,door),R′) must also
satisfy R < R′ <now.

Having explained the main idea, we shall usually leave the last few
steps, including the proof that the ?¬Clipped subgoal succeeds, to the
reader.

Analogously, the scenario for sentence (20-b) looks as follows

1. a) Initiates(close(x, y), closed[y], t)

b) ?Happens(close(Pierre,door), R), R < now succeeds

2. a) Initiates(go-upstairs(x), upstairs[x], t)

b) ?HoldsAt(closed[door], R′), Happens(go-upstairs(Pierre), R′),
R′ < now succeeds

A derivation analogous to figure 2 shows that in the minimal model we
must have R < R′. In both this case and the previous, the derivation
does not branch, corresponding to the fact that sentences (20-a) and
(20-b) have a single reading.

So far so good, but we also have to check whether the proposed
integrity constraint does not overgenerate, that is, we have to look
at examples where the succession does not hold. Let us first look at
example (7-d), here adapted to

(21) # Pierre monta dans sa chambre et se leva. (2×PS)

As we remarked above, sentence (21) is not felicitous because the
information conveyed by the second VP contradicts the lexical pre-
supposition of the first. That is, you go upstairs walking, hence you
need to be standing up; and if you are already standing up you cannot
perform the action of getting up. The scenario for this case has the
following form

1. a) Initiates(go-upstairs(x), upstairs[x], t)

b) ?Happens(go-upstairs(Pierre), R), R < now succeeds

2. a) HoldsAt(sitting-down[x], t)→ Initiates(get-up(x), upright[x], t)

b) ?HoldsAt(upstairs[Pierre], R′), Happens(get-up(Pierre), R′),
R′ < now succeeds

ArtikelFabMich091203.tex; 27/07/2004; 14:46; p.31

32 F. Nauze and M. van Lambalgen

Using only the material in 1. we obtain a minimal model where the
fluent upstairs[Pierre] is initiated at time R (hence does not hold before
R). Viewed superficially, the material in 2. enforces that the event get-
up(Pierre) happens at time R′ with R′ < now . However, the integrity
constraint in 2(b) is actually inconsistent with 2(a), as we can see when
we try to compute the query ?HoldsAt(upright[Pierre],t),R′ < t.

?HoldsAt(upright[Pierre],t), R′ < t Axiom 2

gggggggggggggggggg

?Happens(get-up(Pierre),R′),

Initiates(get-up(Pierre),upright[Pierre],R′),

R′ < t, ¬Clipped(R′,upright[Pierre],t)

Happens(get-up(Pierre),R′),
HoldsAt(sitting-down(x), t) →
Initiates(get-up(x),upright[x],t)

hhhhhhhhhhhhhh

?HoldsAt(sitting-down[Pierre],R′),

¬Clipped(R′,upright[Pierre],t), R′ < t

failure

Figure 3. Conditions on the fluent upright[Pierre] in (21).

The problem is that, in the course of the derivation, the query
?HoldsAt(upright[Pierre],t) is transformed into ?HoldsAt(sitting-down
[Pierre],R′) which cannot lead to successful termination, as we do not
have any information in the scenario pertaining to an event initiating
this fluent (see figure 3). This means that also for t later than R′,
?HoldsAt(upright[Pierre],t) is false. As a consequence, the goal 2(b)
cannot succeed.

The following example presents a case where the order of the events
can actually be the inverse of the order of the sentences describing
them.

(22) Pierre brisa le vase. Il le laissa tomber. (2×PS)

When introducing this example in section 2.1 we noted that one may
get the standard ordering back upon enlarging the discourse:

(23) a. Pierre brisa le vase avec un marteau. Il le laissa tomber et
s’en alla.

b. Pierre brisa le vase avec un marteau. Il le laissa tomber.
Il s’en alla sans le regarder.

ArtikelFabMich091203.tex; 27/07/2004; 14:46; p.32

Serious computing with tense 33

Thus we must be able to explain the inversion of example (22) by
a construction which is flexible enough to also accomodate examples
(23-a) and (23-b).

It is important to mention at this stage that lexical expressions do
not come with unique scenarios. A clause in a scenario can be seen as an
activated part of semantic memory17; which part is activated depends
on all kinds of circumstantial factors. For this example we assume that
the scenario for ‘break’ contains an open-ended set of clauses specifying
possible causes of the breaking. We choose a simplified formulation here;
e.g. 1b below could be derived in more elaborate scenario detailing
the relationship between ‘drop’, ‘fall’ and impact on the ground. The
simplified formulation is better suited, however, to illustrate the main
points of the argument. Accordingly, we will take the scenario to be
of the following form, where we omit the HoldsAt components of the
integrity constraints because they play no role in the derivation.

1. a) Initiates(break(x, y), broken[y], t)
b) Happens(drop(x, y),t− ε) → Happens(break(x, y), t)
c) Happens(smash(x, y),t) → Happens(break(x, y), t)

...
d) ?Happens(break(Pierre,vase), R), R < now succeeds

2. a) ?Happens(drop(il,le), R′), R′ < now succeeds18

A successful computation starting from the query ?Happens(break(
Pierre,vase), R), R< now is given in figure 4.

?Happens(break(Pierre,vase),R),
R < now

Happens(drop(x, y),t − ε)
→ Happens(break(x, y), t)

jjjjjjjjjjj

?Happens(drop(Pierre,vase),R−
ε), R < now

?il=Pierre, le=vase,
R′ = R − ε < R < now

Figure 4. The effect of the two integrity constraints in example (22).

This computation explains the reversed order. Notice however that
if we would bind the two sentences with an et, as in (5), the integrity

17 There is actually a close connection between logic programming with negation
as failure and the spreading activation networks beloved of psycholinguists.

18 The anaphors ‘il’ and ‘le’ are really variables to be unified with concrete objects;
we keep the words as handy mnemonics.

ArtikelFabMich091203.tex; 27/07/2004; 14:46; p.33

34 F. Nauze and M. van Lambalgen

constraint for the second sentence would be

?Happens(drop(il, le), R′),HoldsAt(broken[vase], R′), R′ < now

. By negation as failure, Initially(broken[vase]) is false, hence there must
have been an event initiating the fluent broken[vase]. If ‘il’ is unified
with Pierre and ‘le’ with the vase, this is impossible, because dropping
the vase would have to take place before R′. If the fluent broken[vase]
goes proxy for the broken vase (as an object)19, it is possible to unify
‘le’ with broken[vase], and get a coherent interpretation again. The
examples (23-a) and (23-b) can be treated in the same manner.

Finally, we come to an example where the events described have no
natural order.

(24) Cet été-là, François épousa Adèle, Jean partit pour le Brésil et
Paul s’acheta une maison à la campagne. (3×PS)

The fact that we cannot order the enumerated events in sentence (24) is
mainly due to the different subjects of the VPs. The temporal adverbial
(Cet été-là) only places the events in a certain period of time, without
implying anything about their order.

A scenario might look as follows:

1. a) Initiates(begin, this-summer, t)

b) Terminates(end, this-summer, t)

2. a) Initiates(marry(x, y), married[x, y],t)

b) ?HoldsAt(this-summer, R1), Happens(marry(Francois, Adèle),
R1), R1 < now succeeds

3. a) Initiates(leave-for(x, y), be-in[x, y], t)

b) ?HoldsAt(this-summer,R2), Happens(leave-for(Jean,Brasil),R2),
R2 < now succeeds

4. a) Initiates(buy(x, y), have[x, y], t)

b) ?HoldsAt(this-summer,R3), Happens(buy(Paul,countryhouse),
R3), R3 < now succeeds

What we obtain from the integrity constraints, by means of a derivation
like the ones given above, is that there are times R0 and R4 such
that Happens(begin, R0), Happens(end, R4), R0 < {R1, R2, R3} and
{R1, R2, R3} ≤ R4. However, the order of R1, R2 and R3 cannot be
determined.

19 This trick is explained in [14].

ArtikelFabMich091203.tex; 27/07/2004; 14:46; p.34

Serious computing with tense 35

6.1.2. Inchoative use of the PS
Consider again the example

(25) Mitterand fut président. (PS)

We have to derive formally that the PS applied to the stative expression
‘be president’, picks out the initiating event. Interestingly, when we
are only given the fluent ‘be president’, there is no explicitly given
event which warrants the application of the PS. Applying the PS means
that a form of coercion is going on, in which the fluent is somehow
transformed into an event. The proper of way of doing this involves
so-called hierarchical planning, for which we refer to [14], since it is too
involved to explain here; we give a simplified treatment, based on the
idea that the PS ‘searches’ the scenario to find the event which saturate
the event-argument in the integrity constraint. Since presidents are
usually elected, the scenario for ‘be president’ will contain a statement
such as 1a. This statement contains a reference to the event ‘elect’,
which may thus figure in an integrity constraint. We thus get

1. a) Initiates(elect(x), president[x], t)

b) ?Happens(elect(M.), R), R < now succeeds

?HoldsAt(president[M.],t′), t′ ≤ R Axiom 2

iiiiiiiiiiiiii

?Happens(elect(M.),t),
Initiates(elect(M.),president[M.],t),

t < t′ ≤ R, ¬Clipped(t,president[M.],t′
Happens(elect(M.),R)

jjjjjjjjjjjjjjjjjjj

?Initiates(elect(M.),president[M.],R),

R < t′ ≤ R, ¬Clipped(R,president[M.],t′)

failure

Figure 5. Fluent president[M.] before R.

As can be seen from figure 5, the fluent president[M.] does not hold
before R. A similar derivation shows that it must hold after R.

6.2. Imparfait: scenarios and integrity constraints

The integrity constraint associated to the Imparfait must be very dif-
ferent from that associated to the Passé Simple, for example because
an Imp sentence is not felicitous in isolation, unlike a PS sentence. An

ArtikelFabMich091203.tex; 27/07/2004; 14:46; p.35

36 F. Nauze and M. van Lambalgen

Imp sentence must be anchored by means of PS in the discourse. We
therefore propose the following.

An Imp VP with an adjacent PS VP introduces an integrity con-
straint of the form

?Happens(e,R), HoldsAt(f1, R′), ..., HoldsAt(fn, R
′), R < now, R′ < now

where e is some PS event of the discourse context (this sentence can
precede or come after the Imp sentence), and f1,..., fn are the relevant
fluents describing the Imp verb phrase.

The most relevant part of the integrity constraint for the Imp is the
HoldsAt(f,R′) part. This part is what distinguishes the PS and the
Imp: the PS introduces an integrity constraint of the form Happens(e,R),
possibly together with some other fluents that hold at R, while the
integrity constraint associated to the Imp introduces a number of
HoldsAt(f,R′) statements that are combined with the Happens(e,R)
statement of a PS VP in the discourse.

6.2.1. Imparfait as background
Consider the discourse

(26) Il faisait chaud. Jean ôta sa veste. (Imp, PS)

The scenario for these sentences must contain a fluent warm, and an
event and a fluent for the achievement ‘take off one’s sweater’. For the
latter we choose the event take-off, which terminates the fluent wearing ;
equivalently, we could have take-off initiate not-wearing. The integrity
constraint anchors the fluent warm; note again that anchoring is only
possible given a PS VP.

1. a) Terminates(take-off(x, y), wearing[x, y],t)

b) ?HoldsAt(warm, R), HoldsAt(wearing[Jean,vest],R),
Happens(take-off(Jean,vest),R), R < now succeeds

The derivation in figure 6 shows that ‘ Il faisait chaud’ really functions
as a background.

The final query can succeed only if warm is true from the start. The
next derivation (figure 7) shows the fate of the fluent wearing[Jean,vest].
Hence the fluent warm is true at all times, while the fluent wear-
ing[Jean,vest] holds until R and is terminated at this time.

6.2.2. Imparfait for a resultant state
(27) Jean appuya sur l’interrupteur. La lumière l’éblouissait. (PS,

Imp)

ArtikelFabMich091203.tex; 27/07/2004; 14:46; p.36

Serious computing with tense 37

?HoldsAt(warm,R),
HoldsAt(wearing[Jean,vest],R),

Happens(take-off(Jean,vest),R), R <now
2×Axiom 1

ooooooooooooooo

?Initially(warm), 0 < R <
now, ¬Clipped(0,warm,R),
Initially(wearing[Jean,vest]),

¬Clipped(0,wearing[Jean,vest],R),
Happens(take-off(Jean,vest),R)

Figure 6. Integrity constraint in example (26).

?HoldsAt(wearing[Jean,vest],t),
R < t, R < now

Axiom 1

jjjjjjjjjjjjjjjj

?Initially(wearing[Jean,vest]),
¬Clipped(0,wearing[Jean,vest],t),

R < t, R < now

//
?Clipped(0,

wearing[Jean,vest],t),
R < t

Axiom 4

rrrrrrrrrrrr

failure

?Happens(take-
off(Jean,vest),R),

Terminates(take-off(Jean,
vest),wearing[Jean,vest],R),

0 < R < t

?0 < R < t

bb

Figure 7. Fluent wearing[Jean,vest] in example (26) for t > R.

This is an example where there is no overlap between the two eventuali-
ties, pushing a button and being blinded. The desired effect is obtained
only when the scenario gives some information about the causal relation
between the light being on and being blinded; this is the purpose of
part 2 of the scenario.

1. a) Initiates(push(x,on), light-on, t)

b) Terminates(push(x,off), light-on, t)

c) ?Happens(push(Jean,y), R), R <now succeeds

2. a) Releases(push(x,on), blinded[x], t)

b) Trajectory(light-on, t, blinded[x], d)

c) ?Happens(push(Jean,y), R), HoldsAt(light-on, R′),
HoldsAt(blinded[Jean],R′), R <now, R′ <now succeeds

ArtikelFabMich091203.tex; 27/07/2004; 14:46; p.37

38 F. Nauze and M. van Lambalgen

Figure 8 shows the derivation starting from the integrity constraint
2c. The substitution leading to success is indicated. The last query in
the derivation can be made to succeed because the scenario makes no
mention of a push-off event, and we therefore obtain the conclusion
R < R′ < now.

?Happens(push(Jean,y),R), R <

now, R′ <now, HoldsAt(light-on,R′),

HoldsAt(blinded[Jean],R′)
Axiom 2

kkkkkkkkkkkkkkkkkk

?Happens(push(Jean,y),R),

HoldsAt(blinded[Jean],R′), R < now,

t < R′ <now, Happens(push(x,on),t),
Initiates(push(x,on),light-on,t),

¬Clipped(t,light,R′)

[Jean/x][on/y] [R/t]

?Happens(push(Jean,on),R),

HoldsAt(blinded[Jean],R′),R < R′ <
now, Initiates(push(Jean,on),light,R),

¬Clipped(R,light-on,R′)

Initiates(push(x,on),light-on,t)

jjjjjjjjjjjjjjjjjjjjj

?Happens(push(Jean,on),R),

HoldsAt(blinded[Jean],R′), R < R′ <

now, ¬Clipped(R,light-on,R′)

Trajectory(light-on,t,blinded[x],t + d),
Axiom 3

hhhhhhhhhhhhhhhhhhh

?Happens(push(Jean,on),R), R < R′ <

now, ¬Clipped(R,light-on,R′)

Figure 8. Integrity constraint in example (27).

6.2.3. Imparfait in an explanatory context
In the following discourse, the second sentence has the function of
explaining the event described in the first sentence. The eventuality de-
scribed in the second sentence should therefore be placed in its entirety
before the event described in the first sentence.

(28) Jean attrapa une contravention. Il roulait trop vite. (PS, Imp)

The scenario for this situation may look as follows. The first two state-
ments have been included for convenience only; it would make no
difference if we pushed the beginning of the scene further in the past
and introduced an event initiating driving.

1. a) Initially(driving[Jean])

ArtikelFabMich091203.tex; 27/07/2004; 14:46; p.38

Serious computing with tense 39

b) Initially(speed[s])

c) Initiates(get(x,ticket), have[x,ticket],t)

d) ?Happens(get(Jean,ticket),R), R <now succeeds

2. a) Terminates(get(x,ticket), driving[x],t)

b) Terminates(get(x,ticket), speed[s],t)

c) Initiates(get(x,ticket), speed[0],t)

d) ?Happens(get(Jean,ticket),R), HoldsAt(speed[s],R′),
HoldsAt(driving[Jean],R′), s > limit, R < now, R′ < now
succeeds

In the first step we start from the query in 2d, and we expand the
derivation tree according to the different possibilites for the relation
of R and R′, and then we recombine to get the possibilities R′ ≤ R
and R < R′. These possibilities are considered in the figures 10 and 11,
respectively.

?Happens(get(Jean,ticket),R),

R < now, R′ < now,
HoldsAt(speed[s],R′),

HoldsAt(driving[Jean],R′),
s > limit

kkkkkkk
SSSSSSS

?goal + R < R′

QQQQQQQQQQ ?goal + R = R′ ?goal + R′ < R

?R′ ≤ R < now, s > limit,
Happens(get(Jean,ticket),R),

Initially(speed[s]),
Initially(driving[Jean]),

¬Clipped(0,speed[s],R′),

¬Clipped(0,driving[Jean],R′)

Figure 9. Integrity constraint in example (28).

The reader should notice that, for the sake of readability, in figures
10 and 11 we process the Clipped formulas in the same tree and delete
them from the goal. The proper treatment of the integrity constraint
would be, as described in section 5, to first update the database with the
Happens statement and then begin a new tree for the Clipped statement
and check it for failure.

Derivation 10 terminates successfully with the constraint R′ ≤ R <
now, because of part 1 of the scenario.

ArtikelFabMich091203.tex; 27/07/2004; 14:46; p.39

40 F. Nauze and M. van Lambalgen

?Happens(get(Jean,ticket),R),

R′ ≤ R <now,
HoldsAt(speed[s],R′),

HoldsAt(driving[Jean],R′), s>limit

Axiom 1

oooooooooooooooo

?Happens(get(Jean,ticket),R),

R′ ≤ R <now, Initially(speed[s]),

¬Clipped(0,speed[s],R′),
s >limit, Initially(driving[Jean]),

¬Clipped(0,driving[Jean],R′)

// ?Clipped(0,speed[s],R′) Axiom 4

nnnnnnnnnnnnnnn

failure

jj

?Happens(get(Jean,ticket),R),

R′ ≤ R < now, Initially(speed[s]),
s > limit, Initially(driving[Jean]),

¬Clipped(0,driving[Jean],R′)

// ?Clipped(0,

driving[Jean],R′)
Axiom 4

lllllllllllll

failure

kk

?Happens(get(Jean,ticket),R),

R′ ≤ R < now, Initially(speed[s]),
s > limit, Initially(driving[Jean])

Figure 10. Integrity constraint in example (28) with R′ ≤ R.

?Happens(get(Jean,ticket),R),

R < R′ < now,
HoldsAt(speed[s],R′), s >

limit, HoldsAt(driving[Jean])

Axiom 1

nnnnnnnnnnnnnnnnnn

?Happens(get(Jean,ticket),R),

R < R′ < now, Initially(speed[s]),

¬Clipped(0,speed[s],R′), s >
limit, Initially(driving[Jean]),

¬Clipped(0,driving[Jean],R′)

// ?Clipped(0,speed[s],R′) Axiom 4

pppppppppppppppppp

failure
?Happens(get(Jean,ticket),R),

0 < R < R′,
Terminates(get(Jean,ticket),speed[s],R)

?0 < R < R′

dd

Figure 11. Integrity constraint in example (28) with R < R′.

ArtikelFabMich091203.tex; 27/07/2004; 14:46; p.40

Serious computing with tense 41

Now consider derivation 11 for the other possibility, R < R′. This
derivation ends in failure, because the subderivation for Clipped(0,
driving[Jean],R′) will end in success, given that getting a ticket at
R < R′ ends in terminating the driving at that point.

7. Coda

In conclusion we can do no better than quote from the eloquent ‘Apol-
ogy and guide to the reader’ of Kamp and Rohrer [6]

. . . the mechanisms which natural language employ to refer to time cannot
be properly understood by analyzing the properties of single sentences.
Thus the methodology of modern generative grammar, which takes the
single sentence as the basic unit of study is not, we believe, suited to this
particular domain. Rather, a proper analysis of temporal reference must
(a) make explicit its anaphoric aspects – the systematic ways in which
such devices of temporal reference as tenses and temporal adverbs rely
for their interpretation on temporal elements contained in the antecedent
discourse –
and
(b) discover the temporal organization of those conceptual structures
which extended discourses produce in the human recipients who are able
to interpret them.

This is precisely what we have attempted to do here.

References

1. B. Comrie. Tense. Cambridge University Press, Cambridge, 1985.
2. H. de Swart and F. Corblin (eds). Handbook of French Semantics. CSLI

Publications, February 2002. NWO-CNRS PICS project.
3. D. Dowty. Word meaning and Montague grammar. Reidel, Dordrecht, 1979.
4. L. Gosselin. Sémantique de la temporalié en français. Champs Linguistiques.

Editions Duculot, 1996.
5. F. Hamm and M. van Lambalgen. Event calculus, nominalisation and the pro-

gressive. Research report, ILLC, Amsterdam, December 2000. 76 pp. To appear
in Linguistics and Philosophy. Available at http://www.semanticsarchive.net.

6. H. Kamp and C. Rohrer. unpublished progress-report for research on tenses
and temporal adverbs of French, 200?

7. R.A. Kowalski. Using meta-logic to reconcile reactive with rational agents. In
Meta-logics and logic programming, pages 227–242. MIT Press, 1995.

8. M.P. Shanahan. Solving the frame problem. The M.I.T. Press, Cambridge MA,
1997.

9. M. Steedman. Temporality. In J. van Benthem and A. ter Meulen, editors,
Handbook of Logic and Language, chapter 16, pages 895–938. Elsevier Science,
1997.

ArtikelFabMich091203.tex; 27/07/2004; 14:46; p.41

42 F. Nauze and M. van Lambalgen

10. H. Sten. Les temps du verbe fini (indicatif) en français moderne. Historik-
filologiske Meddelelser. Det Kongelige Danske Videnskabernes Selskab, 1952.

11. P.J. Stuckey. Negation and constraint logic programming. Information and
Computation, 118:12–33, 1995.

12. M. van Lambalgen and F. Hamm. Intensionality and coercion. In R. Kahle,
editor, Intensionality. ASL Lecture Notes in Logic, A.K. Peters, 2003.

13. M. van Lambalgen and F. Hamm. Moschovakis’ notion of meaning as applied
to linguistics. In M. Baaz and J. Krajicek, editors, Logic Colloquium ’01. ASL
Lecture Notes in Logic, A.K. Peters, 2003.

14. M. van Lambalgen and F. Hamm. The proper treatment of events. To ap-
pear with Blackwell Publishing, Oxford and Boston, 2004. Until publication,
manuscript available at http://staff.science.uva.nl/̃ michiell.

ArtikelFabMich091203.tex; 27/07/2004; 14:46; p.42

