
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Statistical Performance Analysis of an Ant-Colony Optimisation Application in S-
Net

MacKenzie, K.; Hölzenspies, P.K.F.; Hammond, K.; Kirner, R.; Nguyen, V.T.N.; te Boekhorst,
R.; Grelck, C.; Poss, R.; Verstraaten, M.

Publication date
2013
Document Version
Final published version
Published in
FD-COMA 2013: 2nd HiPEAC Workshop on Feedback-Directed Compiler Optimization for
Multi-Core Architectures: 8th International Conference on High-Performance and Embedded
Architectures and Compilers: HIPEAC 2013: Berlin, Germany, January 21-23, 2013

Link to publication

Citation for published version (APA):
MacKenzie, K., Hölzenspies, P. K. F., Hammond, K., Kirner, R., Nguyen, V. T. N., te
Boekhorst, R., Grelck, C., Poss, R., & Verstraaten, M. (2013). Statistical Performance
Analysis of an Ant-Colony Optimisation Application in S-Net. In C. Grelck, K. Hammond, & S.
B. Scholz (Eds.), FD-COMA 2013: 2nd HiPEAC Workshop on Feedback-Directed Compiler
Optimization for Multi-Core Architectures: 8th International Conference on High-Performance
and Embedded Architectures and Compilers: HIPEAC 2013: Berlin, Germany, January 21-23,
2013 (pp. [10-17]). HIPEAC. http://www.project-advance.eu/wp-
content/uploads/2012/07/proceedings.pdf

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:09 Mar 2023

https://dare.uva.nl/personal/pure/en/publications/statistical-performance-analysis-of-an-antcolony-optimisation-application-in-snet(0fcb7701-dd46-4207-be27-aa17c9ee5010).html
http://www.project-advance.eu/wp-content/uploads/2012/07/proceedings.pdf
http://www.project-advance.eu/wp-content/uploads/2012/07/proceedings.pdf

FD-COMA 2013

2nd HiPEAC Workshop on

Feedback-Directed Compiler Optimization

for Multicore Architectures

Clemens Grelck, Kevin Hammond, Sven-Bodo Scholz (eds.)

8th International Conference on
High-Performance and Embedded Architectures

and Compilers

HiPEAC 2013

Berlin, Germany

January 21–23, 2013

Statistical Performance Analysis of an
Ant-Colony Optimisation Application in S-NET

Kenneth MacKenzie
Philip K.F. Hölzenspies

Kevin Hammond
School of Computer Science

University of St Andrews, UK
kwxm@inf.ed.ac.uk,

{pkfh, kh}@st-andrews.ac.uk

Raimund Kirner
Nguyen Vu Thien Nga

Rene te Boekhorst
University of Hertfordshire

School of Computer Science
Hatfield, UK

{r.kirner,v.t.nguyen,
r.teboekhorst}@herts.ac.uk

Clemens Grelck
Raphael Poss

Merijn Verstraaten
University of Amsterdam
Institute of Informatics

Amsterdam, Netherlands
{c.grelck,r.poss,

m.e.verstraaten}@uva.nl

Abstract
We consider an ant-colony optimsation problem implemented
on a multicore system as a collection of asynchronous stream-
processing components under the control of the S-NET coordina-
tion language. Statistical analysis and visualisation techniques are
used to study the behaviour of the application, and this enables us
to discover and correct problems in both the application program
and the run-time system underlying S-NET.

1. S-NET: Language and run-time system
S-NET is an asynchronous stream coordination language [5, 6]. It
combines so-called boxes, which are stateless computational ker-
nels written in any programming language, into networks that trans-
form a single input stream into a single output stream. A stream
is a potentially infinite sequence of non-overlapping, discrete data
items, called records (or messages). Records are collections of
named fields containing values in the box language, together with
tags which contain integer values. Values from the box language
are opaque to S-NET, but integer tags are visible to both the box
language and S-NET. The type of a record is the set of all the names
and tag-values therein.

Disjoint paths can be constructed by using combinators such as
parallel composition, which splits the input stream into a number
of streams that are fed to the operands of the parallel composition.
The transformed output streams are merged to make the resulting
network Single In, Single Out (SISO) again. Which record is fed
to which operand is determined by the record’s type. Boxes have
specified input and output types, i.e. sets of names and tag-values
that are expected to be in the relevant records. Where a stream
is split, records are routed to that path which has the strongest
matching input type, i.e. all names and tag-values in the input type
are in the record and there is no path with an input type with more
names and tag-values that are all in the record.

Copyright is held by the author/owner(s).
FD-COMA 2013 2nd HiPEAC Workshop on Feedback-Directed Compiler Opti-
mization for Multi-Core Architectures, part of the 8th International Conference on
High-Performance and Embedded Architectures and Compilers, Berlin, Germany,
January 21-23, 2013
ACM SIGPLAN conference style.

Statefulness is introduced by synchrocells. A synchrocell is also
a SISO stream transformer, defined by a list of record types. For
each record type, there is a corresponding (initially free) ‘slot’
in the synchrocell. In every slot, one record of that type can be
stored, at which point the slot is filled. When all slots are filled,
the synchrocell syncs, i.e. the records stored in all the slots are
combined into a single record. This combined record is produced
on the output of the synchrocell. Every slot of a synchrocell can
only be filled once, so after a sync, the synchrocell ‘dies’.

Finally, S-NET has combinators for feedback (where the output
of a network is fed back to its input stream, if it does not match
a specified type) and recursion (where the output of a network is
fed to a new instance of that same network, if it does not match
a specified type). The latter is used in the application discussed in
this paper. It is referred to as the star-combinator. The operands
of the star-combinator are often informally referred to as ‘starred
networks’. For an extensive treatise we refer to [7].

S-NET programs are compiled into binary and executed by the
S-NET runtime system [4], which in turn uses the Light-weight Par-
allel Execution Layer (LPEL, [10]) for scheduling, placement and
low-level thread management. User boxes as well as components
that implement S-NET’s coordination are all instantiated as tasks
in LPEL. This instantiation is ad-hoc, in the sense that tasks are cre-
ated for boxes when the network in which they occur is first reached
by a record. When the run-time system determines that a box can
no longer be reached by any more records, the corresponding tasks
are automatically garbage collected [3].

An LPEL task is input-buffered, i.e. every task has a (bounded)
input FIFO buffer into which other tasks can write and from which
only the owner-task can read. A task is enabled when there are
items in its input buffer, and it is blocked when trying to write
output to a full receiving buffer. LPEL creates a worker for every
available processor core (or a user-specified number of cores to
be used). A worker is assigned tasks, and the worker’s enabled
tasks are executed in a round-robin fashion. A running task is never
preempted; only when a task finishes or when it blocks on trying
either to read from an empty input buffer or to write to a full
receiving buffer, can a worker execute a different task.

Each worker has its own scheduler, and these cooperate to select
tasks which are ready for execution and to execute them on the
relevant worker. In the current implementation, all system tasks
(synchrocells and various system boxes performing administrative
tasks such as merging records) are allocated over cores in a round-
robin fashion. There are also separate round-robin schedules for the

solve1

solve2

solven

bi, ci pick best
updateinit

?

?

(a) Application structure

bk, ck pick best

ci (i > k)

bk+1, ck+1 pick best

cj (j > k+ 1)

(b) Unrolled collection

Figure 1: Ant-colony optimisation application

instantiation of each user box: in the example described later, there
would be one round-robin schedule for the boxes named solve,
another for the pick best boxes, and so on. See [10, 5.4.2] for
further details.

2. Program structure
The application analysed in this paper is an S-NET implemen-
tation of an ant-colony optimisation algorithm [2] for the Single
Machine Total Weighted Tardiness Problem (SMTWTP), which is
known to be NP-hard [8]. For a detailed discussion of the func-
tional behaviour of the application, see [1]. See also [9] for more
information about the specific techniques used in the application.
For the purposes of this paper, a brief introduction of the structure
of the application (see Figure 1a) suffices.

The application is initialised (in the init box) with a naive,
straightforward solution (stored in a record under field name b0).
This solution is marked as ‘best’ (thus far) and fed as input to
each of n concurrently-executing ‘ants’ (solve tasks). Each of these
generates a perturbation of the solution it is given using (bounded)
randomness to create variation from other ants, and then outputs
the new candidate solution ri. A starred network then consumes
the ants’ outputs, and selects the best candidate to act as input for
a new generation of ants. A synchrocell (denoted by 〈sync〉) waits
for the first candidate c1 to arrive and amalgamates it with b0 to
form a new record which is fed to a pick best task (note that the
concurrently-executing tasks need not finish in order, so that c1 may
not be equal to s1; however, the ci form some permutation of the
si). The pick best task then decides which of b0 and c1 is better,
and outputs the result as a new record b1, which is then combined
with the next available candidate c2 in a new synchrocell, and so
on. The recursion of the starred network terminates when a record
containing the name bn is produced with the best solution for all
ants of the current generation. This part of the network follows a
common S-NET design pattern to mimic a finite state machine;
more information on this pattern can be found in [3].

Finally, update generates inputs for the n ants of the next
generation, by copying the best solution of this generation. It also
updates a data structure (the pheromone matrix) stored in shared
memory which contains heuristic information which is read by the
solve tasks and used to direct their search for new solutions.

The outer box drawn in Figure 1a is a starred network that un-
folds for a fixed number of generations (supplied to the application
as an input parameter max it) to run the whole cycle repeatedly

and eventually produce a hopefully close-to-optimal solution to the
problem.

3. Statistical Analysis and Visualisation
3.1 Structure of the data
We performed a number of runs of the ant-colony optimisation
application on a 48-core server with 4 sockets each having 2 by
6 core AMD Opteron 6174 processors. We have log data for all
combinations of the following parameters:

• Number of ants: 1, 10, 20, 30, 40, 50, 60
• Number of cores used for execution: 4, 8, 16, 32, 48
• Size of input problem: 200, 400, 600, 800
• Number of iterations (max it): 100, 500, 1000, 2000

This gives a total of 7× 5× 4× 4 = 560 datasets. In this section
we will concentrate on the data with 48 cores, 100 iterations and
input size 400, with the number of ants varying. We report on the
data for a single run, but repeated runs with the same configuration
give very similar results.

Each dataset consists of a directory containing a map file de-
scribing the assignment of tasks to workers (i.e., cores), together
with one log file for each worker, listing the events that have oc-
curred on that worker. For the 1-ant example, the data totals 448
kilobytes: the map file contains 1408 lines and the log files contain
approximately 180 lines each. For the 60-ant example, the data to-
tals 23 megabytes: the map file contains 36808 lines and the log
files contain approximately 10500 lines each.

For analysis and visualisation, we use the R system [11]; the
plots in this paper were produced using the R library ggplot2 [12].
The log files contain a great deal of data and can be very large, so
we use a parser written in Haskell to extract information of interest
and output it in a tabular form suitable for input to R.

3.2 Analysis
We are primarily interested in the statistical properties of the ap-
plication with a view to predicting execution time based on input.
However, the data turned out to have some puzzling features which
led to the discovery of problematic issues with respect to both the
S-NET/LPEL system and the implementation of the ant-colony ap-
plication.

Given the structure of the application, one would expect the
solve boxes (i.e., the ants) to have the largest latency. Internally,
each ant contains a loop with 100 iterations, whereas the other user
boxes contain mostly straight-line code. Moreover, there should be
little variation in the latencies of ants. Each ant is executing iden-
tical code; there is a stochastic component (each ant occasionally
attempts to improve its current solution by performing a slight ran-
dom perturbation) but this should average out over a single execu-
tion.

However, this is very definitely not what happens. Figure 2
shows a graph of box latencies plotted against start time for 40 ants
(“latency” here refers to the time from first input to final output).
Points are coloured according to the type of box whose latency is
being plotted: in this case, green points denote ants (solve boxes).
As expected, the execution time of ants is much greater than that
of other boxes (with the exception of synchrocells, denoted by red
points: however, these spend most of their lifetime waiting for input
and perform very little computation). Unexpectedly, however, there
are wide variations in the latencies of boxes. Moreover, latencies
are not smoothly distributed; instead, boxes with similar start times
tend to occur in small clumps with similar latencies.

What happens if we reduce the number of ants? Figure 3 shows
a similar plot of tasks for the 30-ant example. Here we see that

Figure 2: Task execution times for 40 ants

Figure 3: Task execution times for 30 ants

again latencies have a large variance; however, in this case there is
a very striking periodicity evident in the variation of latencies.

For 20 ants we obtain Figure 4. In this case the latencies are
much more evenly distributed and the clumping effect is less evi-
dent. Note also that the vertical scale changes, and that the latency
of ants increases as the number of ants executing in parallel grows.

Table 5 shows the mean latency and the variance (taken over
the entire execution of the program) for varying numbers of ants.
The mean latency for 50 and 60 ants is very large, but this is to be
expected since the number of ants exceeds the number of available
cores (48), so some ants will have to wait for a previous ant of the
same generation to finish before they can start. What is surprising
is that even with 40 ants the latency is significantly higher than one
would expect. The latency for the 1-ant case (15.5ms on average)

can be regarded as the “true” execution time of an ant. Since the
ants are supposed to be operating independently in parallel, one
would expect the mean latency in the 40-ant case to be similar
(perhaps with a little overhead), but instead it is more than 68 times
greater.

How can this be explained? We were able to make some
progress by looking more closely at execution times for ants in
a single generation. In Figures 6 and 7 we display a close-up view
of the plot of latencies against start times for generations 22 and 23
of the 40-ant data (the horizontal and vertical scales are the same
for both plots). We see that these fall into two distinct classes. In
the first class, which we will call Type I generations, all the ant
executions start at approximately the same time and have a high la-
tency. In the second class (Type II generations), the ant tasks for a

Figure 4: Task execution times for 20 ants

Ants per
generation

Total number
of ants

Mean latency
(ms)

Standard
deviation

Total execution
time (s)

1 100 15.5 7.95 2.56
10 1000 126.92 18.20 18.73
20 2000 314.06 38.93 44.30
30 3000 684.21 250.75 94.15
40 4000 1059.77 552.81 154.70
50 5000 1458.28 862.37 225.82
60 6000 1441.133 849.78 315.85

Figure 5: Latency statistics for varying amounts of parallelism

Figure 6: Ant execution times for generation 22

generation are split into two batches: each ant in the first batch has
a high latency, and each ant in the second batch begins much later,
but has a lower latency. Furthermore, the ants in Type II generations
all have lower latencies than the ones in Type I generations.

Examination of all 100 generations shows that similar patterns
are repeated throughout, with Type II generations forming about
one third of the total. Moreover, there is an approximate periodicity:

Figure 7: Ant execution times for generation 23

the generations typically (but not always) form groups of three,
with one Type II generation followed by two Type I generations.

A similar dichotomy appears in the 30-ant case. The first few
generations are of Type II, but then there is a long period where
the majority of generations are of Type I; about halfway through,
the generations revert to Type II and then the pattern repeats (cf
Figure 3). In the 20-ant case, the majority of generations are Type
I, with only about 7 out of 100 being Type II. For 10 ants the
dichotomy disappears: all generations are of Type I.

3.3 Message analysis
The phenomena described in the previous section are still difficult
to explain, but a third type of plot is very helpful. Recall that
data is transferred between boxes by means of records (also called
messages). The plots in Figures 8 and 9 show the messages emitted
by boxes and the executions which they trigger.

In these figures, each horizontal line represents one message and
consists of two contiguous sections (some of the lines are very
short, and may be difficult to make out). The left-hand section

Figure 8: Messages for generation 22

Figure 9: Messages for generation 23

represents the transmission time of a message M , from output to
input: the colour corresponds to the type of task from which M
has been output. The right-hand section represents the lifetime of
the task T whose execution is triggered by M , from the time when
T inputs M the time when T produces its final output: the colour
denotes what type of task T is.

Figure 8 shows the messages for generation 22 (which is Type
I), and corresponds to the plot in Figure 6. The lower section of
the graph shows messages being output by the update task and re-
ceived by the solve tasks. The string-like upper section shows the
sequence of 〈sync〉–pick best executions forming the fold opera-
tion which chooses the best result from the current execution, and
the middle section shows the output messages of the solve tasks
travelling to synchrocells. There is some waiting time here because

the synchrocell may not be created until preceding entries have
been processed in the fold.

Returning to the bottom section of Figure 8, we see that the start
times of the ant tasks are slightly staggered: this is due to the ants
waiting for their input records, which are output sequentially by the
update task. Apart from this though, the ants all run concurrently
(confirming Figure 6) and finish at roughly the same time.

On the other hand, Figure 9 (corresponding to Figure 7) depicts
generation 23, of Type II. We again see the two distinct batches of
ants which appeared in Figure 7, but now it is clear that none of the
ants in the second batch start to execute until after most of the ants
in the first batch have finished.

This suggests that in Type II generations some of the solve tasks
are being blocked, and indeed this turns out to be the case. Recall

that the update task outputs 41 records, and that each of these
forms the input to a different subsequent task: 40 of them go to
new solve tasks (in numerical order), and the final one is supplied
to a 〈sync〉 as the seed for the fold. This routing is performed by
a system task called a splitter, which runs on a worker of its own.
Close examination of the log files confirms that generations become
split into two different batches when the splitter is scheduled on
the same worker as one of the solve tasks. The splitter sends a
number of inputs to new solve tasks and can then become blocked
because some solve tasks have not yet been scheduled (or because
the update task has not yet produced all of its outputs), and at this
point the solve task on the splitter’s worker can start to execute
if its input has been emitted by the splitter. If this happens then
the splitter is unable to emit its remaining outputs until the solve
task has completed, and thus the remaining solve tasks are in turn
blocked. This behaviour is a consequence of the scheduling strategy
described at the end of §1, which purposely allows a system task to
be scheduled on the same worker as a user task.

3.4 Periodic phenomena
A closer examination of the placement also explains the very dis-
tinct cyclic behaviour seen in the 30-ant example (Figure 3) and the
less evident period-3 cycles in the 40-ant example.

In the 30-ant example, in generation n (counting from 1), the
ants are scheduled on successive cores (counting from 0) starting
at 30n+ 20 (mod 48). The splitter is situated on core 31n+ 20
(mod 48), so it follows that the splitter is n cores after the first
ant (modulo 48). Thus at the start of the execution the splitter
is on the same core as a low-numbered ant, leading to a high
probability of the splitter being blocked, with a consequent delay to
later ants. Thus initially most generations will be Type II, with all
the ants having relatively low latency. As the execution progresses,
the splitter moves on to clash with higher-numbered ants (or to be
situated on cores without ants), leading to (a) a lower probability
of blockage, and (b) fewer ants becoming blocked. Thus later
generations will mostly be Type I, with all ants having high latency.
On the 48th generation the splitter returns to the same core as the
first ant, and the pattern repeats. This explains the cyclic nature of
Figure 3.

In the 40-ant case, the first ant of generation n is situated on
core 40n + 10 and the splitter is situated on core 23n + 28 (both
modulo 48). Thus the relative position of the splitter is 23n+28−
(40n+10) = −17n+18 ≡ 31n+18 (mod 48). The first few
elements of this sequence are 1, 32, 15, 46, 29, 12, 43, 26, 9, 40, 23,
6, 37, 20, 3, 34, 17, 0, We have emboldened “low” positions
(arbitrarily chosen as those less than 20) which are likely to lead
to Type II generations, and we see that these form a subsequence
which is roughly periodic with period 3; this reflects the structure
which we saw earlier for the Type I and II generations in the 40-ant
case.

We see that the very neat situation in the 30-ant case is essen-
tially due to a numerical coincidence involving the operation of the
scheduling algorithm, and that things are much more irregular for
40 ants. These features are very dependent on the details of the ap-
plication. For example, in the 30-ant case the splitter is situated on
core 31n + 20; the number 31 occurs because there happen to be
126 = 2 × 48 + 30 other system tasks scheduled between suc-
cessive 〈split〉 tasks. A small change in the S-NET network could
remove some of these system tasks or insert new ones, leading to
a significant change in the way the splitter moves about the cores
and thus to a corresponding change in the latency of the ants. In
particular, if the splitter was always situated on the same core as
the first ant then the splitter would become blocked when the first
ant started, and we would always see (short, fast) Type II gener-
ations; on the other hand if the splitter was just one core before

Figure 10: Mean latency of ant groups

Figure 11: Logartihmic mean latency of ant groups

the ants then it would never become blocked and we would always
have (long, slow) Type I generations. In more complex applications
the structure of the S-NET network can evolve under program con-
trol since the number of serial and parallel replications can depend
on tag values in the output of user boxes. This could lead to sudden
and completely unpredictable scheduling clashes, with correspond-
ing drastic changes in network throughput. This strongly suggests
that we should strive to eliminate such behaviour; possible solu-
tions will be discussed later in the paper.

3.5 Variation of ant latency
We have now managed to explain why the executions of the ants in
a single generation can become split into two batches, but we have
not yet explained the observation that average latency increases
with the number of concurrent ants. This is evident in Figure 8,
where the strip representing ant executions is considerably longer
than in Figure 9. We can get a better idea of the dependence by
partitioning the ant executions into groups which are executing
concurrently and then plotting the average execution time of the

ants in the group against the size of the group. This is shown in
Figure 10 for the 40-ant data.

We see that mean execution time increases rapidly with the
number of concurrent ants, and the logarithmic plot in Figure 11
is close to a straight line, showing that the growth is approximately
exponential.

This suggests that there is some contention between concurrent
ants, and examination of the source code for the boxes confirms that
this is the case. One source of contention is that at the start of execu-
tion, each solve box allocates some memory for the storage of tem-
porary data structures: this is done using the libc library function
malloc, which (in some versions of libc at least) performs a lock-
ing operation to preserve the integrity of the heap during memory
allocation. However, there is another problem which is more seri-
ous. We mentioned earlier that the ant-colony optimisation method
contains a non-deterministic step. In the implementation which we
have been studying this is achieved by calls to libc’s rand function:

for (k = 0; k < num_jobs-1; k++){
...
q = ((double)rand())/RAND_MAX;

if (q < const_q0) {
...

}
else{

q = ((double)rand())/RAND_MAX;
...

}
...

}

Here const q0 is defined to be 0.9, and num jobs is the number of
jobs in the input data. In the present case, num jobs is equal to 400,
and it follows that the execution of each solve box calls rand about
440 times. However, rand is not a pure function: it contains some
internal state which is preserved by a global mutex. When we have
40 ants running concurrently with each ant making over 400 calls
to rand, this leads to a significant amount of contention, nullifying
much of the supposed advantage of parallelism. This also explains
why average ant latency increases as the number of ants increases:
the more ants we have, the more contention, and hence the longer
the ants take to finish. The use of rand is quite a serious error in the
code (and indeed is as a violation of the S-NET “contract” which
should be satisfied by box code in order to obtain valid S-NET
applications), but is very easily overlooked.

3.6 Summary
Thus we have a putative explanation for the complex statistical
behaviour of the ant-colony application. We have two interacting
bugs, one relating to the behaviour of splitters in the LPEL im-
plementation, and the other to the use of calls to library functions
which perform locking operations. The first bug leads to ant gener-
ations sometimes becoming split into two subgroups which execute
consecutively, and the second leads to an increase of ant latencies
as the size of a group of concurrently-executing ants increases. As
we have seen, this increase is exponential (Figure 10), which leads
to a significant decrease in performance.

3.7 Amelioration
How can we overcome these problems? In one way or another we
must re-engineer some aspects of the S-NET/LPEL runtime sys-
tem. One approach could be to fuse splitters with the user boxes
whose output they are distributing. Another tactic would be to give
splitters a high priority, allowing them to preempt box tasks. This
would also require introducing preemption into the so far collabo-
rative task management layer of LPEL. A third approach could be

Figure 12: Latency of ant groups for revised program

to alter the scheduling algorithm so as to place splitters (and per-
haps other system tasks) on a subset of cores which is disjoint from
the ones running user boxes. We are in the process of experiment-
ing with these approaches, but at the time of writing performance
data for the ant-colony example was not quite available; however,
we are hopeful that this will solve our problem.

The bugs in the actual implementation of the ant-colony exam-
ple are more easily dealt with. We have modified the ant code by
replacing malloc-allocated heap memory with stack-allocated ar-
rays, and by replacing the calls to the libc rand function with calls
to a random number generator which maintains its state locally.
We have some data for this version of the application, and the per-
formance has improved markedly: for example, the total execution
time for the 40-ant case drops from 154.7 seconds to 68.9 seconds.
However, it appears that there is still some contention.

Figure 12 plots average latency per group versus group size for
the modified program with 40 ants, and corresponds to Figure 10
for the unmodified program (but note that the vertical scale is
different). We see that the exponential behaviour shown by the
original program has been replaced by linear behaviour, and that
the average latency has decreased considerably. However, ideally
we would expect that ant execution time should be independent
of the number of ants executing concurrently, and should be close
to the 15.5ms average seen in the case of a single ant. Here the
latency of an ant can be of the order of 400ms, still 25 times larger
than we would expect. We have as yet been unable to explain this.
We believe that all calls to stateful library functions have now been
eliminated from the solve boxes, and thus we should have removed
any possibility of contention; however the graph indicates that
contention remains. A possibility is that there is some contention
in the logging system as individual cores write data to files (and in
particular to the map file which records information for all cores).
We intend to try some experiments to see if this might possibly be
the case, for example by turning off logging for some subset of the
cores and seeing if behaviour of the overall system improves.

4. Conclusion
We have used statistical and visualisation techniques to investigate
the behaviour of a complex multicore application. The LPEL log-
ging system produces a great deal of output, and it is very difficult
to interpret the raw data; visualisation has helped us to gain a much
better understanding of the behaviour of our application and to dis-

cover (and make progress towards correcting) not only bugs in the
program we have been analysing, but also previously-unnoticed is-
sues in the S-NET/LPEL platform itself. Thus we believe that tech-
niques such as the ones discussed here can be helpful both to appli-
cation programmers and to system developers.

Our initial motivation for these investigations was to gather sta-
tistical data relating to latency and throughput of S-NET applica-
tions with a view to providing guarantees to end-users that appli-
cations will perform within specified parameters. This has proven
to be more difficult than anticipated due to the complex nature of
the performance data, but we hope that our investigations will now
lead to simplifications in the system which will in turn lead to bet-
ter programs with more consistent behaviour, enabling us to meet
our original goals.

In the short term, we wish to fully resolve the issues discussed
earlier in this paper; in the longer term, we will investigate a
number of other S-NET applications, and we hope that the methods
developed and the experience gained in the research discussed
above will enable us to make rapid progress in our analysis, and
also help us to recognise and correct errors and inefficiencies in the
applications which we study.

Acknowledgements
The work has been funded by the EU FP-7 project ADVANCE
(Asynchronous and Dynamic Virtualisation through performance
ANalysis to support Concurrency Engineering, project no. 248828).

References
[1] W. Cheng, F. Penczek, C. Grelck, R. Kirner, B. Scheuermann, and

A.Shafarenko. Modeling streams-based variants of ant colony optimi-
sation for parallel systems - a dataflow-driven approach using S-Net.
In Proc. of the 7th International Conference on High-Performance and
Embedded Architectures and Compilers (HiPEAC), 2012.

[2] M. Dorigo and T. Stützle. Ant Colony Optimization. Bradford Com-
pany, Scituate, MA, USA, 2004.

[3] C. Grelck. The essence of synchronisation in asynchronous data
flow. In 25th IEEE International Parallel and Distributed Processing
Symposium (IPDPS’11), Anchorage, USA. IEEE Computer Society
Press, 2011.

[4] C. Grelck and F. Penczek. Implementation Architecture and Multi-
threaded Runtime System of S-Net. In S. Scholz and O. Chitil, edi-
tors, Implementation and Application of Functional Languages, 20th
International Symposium, IFL’08, Hatfield, United Kingdom, Revised
Selected Papers, volume 5836 of Lecture Notes in Computer Science,
pages 60–79. Springer-Verlag, 2011.

[5] C. Grelck, S. Scholz, and A. Shafarenko. Asynchronous Stream Pro-
cessing with S-Net. International Journal of Parallel Programming,
38(1):38–67, 2010.

[6] C. Grelck, S.-B. Scholz, and A. Shafarenko. A Gentle Introduction
to S-Net: Typed Stream Processing and Declarative Coordination of
Asynchronous Components. Parallel Processing Letters, 18(2):221–
237, 2008.

[7] C. Grelck, Shafarenko, A. (eds):, F. Penczek, C. Grelck, H. Cai,
J. Julku, P. Hölzenspies, Scholz, S.B., and A. Shafarenko. S-Net
Language Report 2.0. Technical Report 499, University of Hertford-
shire, School of Computer Science, Hatfield, England, United King-
dom, 2010.

[8] J. Lenstra, A. Rinnooy Kan, and B. P. Complexity of machine schedul-
ing problems. Annals of Discrete Mathematics, pages 343–362, 1977.

[9] D. Merkle and M. Middendorf. An ant algorithm with a new
pheromone evaluation rule for total tardiness problems. In Proceed-
ings of the EvoWorkshops 2000, number 1803 in LNCS, pages 287–
296. Springer Verlag, 2000.

[10] D. Prokesch. A light-weight parallel execution layer for shared-
memory stream processing. Master’s thesis, Technische Universität
Wien, Vienna, Austria, Feb. 2010.

[11] R Development Core Team. R: A Language and Environment for Sta-
tistical Computing. R Foundation for Statistical Computing, Vienna,
Austria, 2012. ISBN 3-9000051-07-0.

[12] H. Wickham. ggplot2: elegant graphics for data analysis. Springer
New York, 2009.

