
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Formal Foundations for Semi-parsing

Zaytsev, V.
DOI
10.1109/CSMR-WCRE.2014.6747184
Publication date
2014
Document Version
Author accepted manuscript
Published in
2014 Software Evolution Week

Link to publication

Citation for published version (APA):
Zaytsev, V. (2014). Formal Foundations for Semi-parsing. In S. Demeyer, D. Binkley, & F.
Ricca (Eds.), 2014 Software Evolution Week: IEEE Conference on Software Maintenance,
Reengineering and Reverse Engineering (CSMR-WCRE) : proceedings : February 3-6, 2014,
Antwerp, Belgium (pp. 313-317). IEEE. https://doi.org/10.1109/CSMR-WCRE.2014.6747184

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:26 Jul 2022

https://doi.org/10.1109/CSMR-WCRE.2014.6747184
https://dare.uva.nl/personal/pure/en/publications/formal-foundations-for-semiparsing(5cb2c4b4-4af1-42f5-b32b-25040e3fb129).html
https://doi.org/10.1109/CSMR-WCRE.2014.6747184


Formal Foundations for Semi-parsing
Vadim Zaytsev, vadim@grammarware.net, http://grammarware.net,

Universiteit van Amsterdam, The Netherlands

Abstract—There exist many techniques for imprecise manip-
ulation of source code (robust parsing, error repair, lexical
analysis, etc), mostly relying on heuristic-based tolerance. Such
techniques are rarely fully formalised and quite often idiosyn-
cratic, which makes them very hard to compare with respect to
their applicability, tolerance level and general usefulness. With
a combination of recently developed formal methods such as
Boolean grammars and parsing schemata, we can model different
tolerant methods of modelling software and formally argue about
relationships between them.

I. MOTIVATION

In traditional software language processing, we expect an
input program to conform to syntactic constraints of the
language, typically expressed by a grammar (hence the term
“grammarware” for software which input respects grammatical
structure). However, in practice programs may contain errors
(e.g., the compiler can be more permissive than the docu-
mentation; or a refactoring tool may transform source code
into something unacceptable for execution), fragments written
in embedded language extensions, dialect-specific code, etc.
These pose significant challenges for grammar engineers and
for source code analysts in general. Since it has been noted
that many program analyses do not need the entire parse
tree to generate useful results, many less precise methods
are employed instead. They can be referred to as “agile”,
“tolerant”, “robust”, “lightweight”, “permissive”, “recovering”
etc; we use the term “semi-parsing” coined by Dean et al. [9]
to denote that we intend to parse fragments of input while
leaving others unparsed.

A program must be precisely parsed, if it needs to be
executed or undergo any other process involving all or almost
all the nodes or its syntax tree. On the other side of the
tolerance spectrum, pure lexical analysis can be used for low
precision tasks and for token-level queries like name mining
or keyword frequency analysis. Between these two extremes,
there are many techniques like fuzzy parsing, island parsing,
bridge parsing, error recovery, etc. Such approaches typically
use techniques specific to particular toolkits and workbenches,
and are not directly comparable and hard to reuse.

We start the paper with listing 22 existing methods of
semi-parsing in subsection II-A. Then, we address the above-
mentioned problem of method comparison by proposing two
uniform formalisations: one for the syntactic specification
(subsection II-B) and one for the process of parsing with it
(subsection II-C). The research plan is proposed in section III.
To argue in support for its feasibility, we also briefly describe
several cases of semi-parsing and sketch their possible formal
descriptions (section IV) before arriving at a preliminary
conclusion (section V).

II. BACKGROUND

A. Semi-parsing

In [40, §3.8], different methods of semi-parsing were identi-
fied and cited. The list here is updated, extended and reordered:

• ad hoc lexical analysis [16]: usually with readily available
yet unreliable tools like grep or sed;

• hierarchical lexical analysis [25]: essentially a character-
level regular (Type 3) grammar;

• lexical conceptual structure [13]: relying on categorisa-
tion of tokens instead of tokens themselves;

• iterative lexical analysis [7]: persistent bottom-up match-
ing with regular expressions that delivers a parse tree;

• fuzzy parsing [17]: parsing triggered by anchor terminals;
• parsing incomplete sentences [18]: input may contain

unknown parts of unknown length;
• island grammars [10]: formally defined in a CFG with

water defined lexically;
• lake grammars [23]: islands are allowed to have lakes or

be explicitly sunk;
• robust multilingual parsing [39]: islands can interact;
• gap parsing [4]: automated recognition of gaps with

water;
• noise skipping [19]: a minimum number of unrecognised

tokens is skipped;
• bridge grammars [27]: semi-automated construction of

bridges between islands with the help of reefs such as
indentation information;

• skeleton grammars [15]: introduction of default rules for
water in a baseline complete grammar;

• breadth-first parsing [20]: parsing of well-defined islands
is triggered by feature tokens;

• iterative syntactic analysis: an approximate structure is
obtained first, then refined;

• grammar relaxation [1]: the grammar is extended with
permissive definitions;

• agile parsing [9]: additional rules are included to connect
several grammars together;

• permissive grammars [8]: explicit recovery rules present
in a grammar;

• hierarchical error repair [3]: the parsing automaton is
adjusted;

• panic mode [1]: all input is skipped until a synchronisa-
tion token;

• noncorrecting error recovery [33]: backend has error
tolerance;

• practical precise parsing [1]: only whitespace informa-
tion and comments are ignored.

mailto:vadim@grammarware.net
http://grammarware.net


What puts these methods aside from the classic perception
on parsing with analytical semantics for the textual input
and generative semantics for corresponding trees, is their
highly versatile ways of introducing tolerance to the process
at different stages in varying quantities. It even remains to be
seen whether there is a straight tolerance spectrum from lexical
analysis to strict syntactic analysis, as claimed by Klusener and
Lämmel [15].

B. Boolean grammars
Boolean grammars [31] extend context-free grammars by

augmenting the juxtaposition (sequentiality) and language
union (disjunction) operators with two additional ones: lan-
guage intersection (conjunction) and language complement
(negation). They can be seen as a formalisation and general-
isation of syntactic predicates [32] and reject productions [5]
commonly found in practical parser generation frameworks
and systems (ANTLR, TXL, ASF+SDF, PEG, etc).

Technical support for Boolean grammars includes parsing
algorithms in the styles of recursive descent [29], LL(k) [30],
LR [28], SGLR/RNGLR [22] and TXL parse views [38].

Boolean grammars give us a formal instrument to
model constructions such as ordered disjunction [11], force-
fully rejected clauses [5], lookahead negation [6], quasi-
synchronisation [37], parallelism [2], etc. Such extensions
on context-free grammars are common in practical software
language processing and also used beyond the context of semi-
parsing. However, most of the time their implementations are
idiosyncratic and thus hardly comparable to similar metacon-
stuctions proposed in other frameworks.

C. Parsing schemata
Parsing schemata are high-level abstract declarative descrip-

tions of parsing algorithms [35]. They are an extension of
the deductive view on parsing [34]. A parsing process is
represented by a set of initial items (partial parse trees), a
set of deduction steps (based on grammar production rules)
and a set of final items (full parse trees or other artefacts that
can be used to obtain full parse trees) — the triplet is usually
called a “parsing system”. A “parsing schema” is a mapping
between any grammar and a corresponding parsing system.

An extension of parsing schemata that deals specifi-
cally with error-repair, has been introduced by Gómez-
Rodrı́guez [12] and is based on allowing a distance of several
transformation steps between the input program and the one
recognised as grammatically correct. By itself this extension
is not powerful enough to express any given semi-parsing
method, but the result demonstrates the feasibility of the
approach proposed by our paper.

Parsing schemata represent (semi-)parsing algorithms as
formal entities that can be not only executed, but also analysed,
compared, optimised, checked for conformance to certain
properties such as “is tolerant with respect to” [15] or proven
to belong to the same class of equivalence. A parsing system
describes rules for deriving a data structure (such as a tree)
from a stream of input symbols, so it can potentially be used
to define any conceivable (semi-)parsing method.

III. PROPOSED METHOD

Extending the parsing schemata formalisation to work with
Boolean grammars can be done in a similar style to general-
ising any other particular particular parsing technique to work
with Boolean grammars [22], [28], [29], [30], [38]. Armed
with such a combined methodology, we plan to construct a
parsing schema for each of the semi-parsing methods listed
before in subsection II-A. Preferably, the implementation
details are to be pushed to the Boolean part while keeping the
schema as uniform as possible for the sake of later comparison.
When such formalisations are completed, it should become
apparent how semi-parsing techniques relate to one another,
and become possible to draw conclusions on the spectrum of
existing methods and position them all along it.

Another result we are aiming at, is to provide automated and
semi-automated means of converting any baseline grammar
into a Boolean grammar with explicitly encoded level of
tolerance. These means can then be tested on a repository of
grammars of wildly varying size and nature, such as Grammar
Zoo, http://slps.github.io/zoo [41].

IV. CASE STUDIES

A. Island grammars

In island grammars, we distinguish between islands of
interest and the sea of water: usually the former are specified
in detail while the latter are left with a less precise and
more robust definition. This raises a problem of preferring
the islands over water during parsing process, which cannot
be expressed directly in a context-free grammar. Within the
islands-and-lakes paradigm, there are different solutions: van
Deursen and Kuipers [10] assign a higher priority to the
production rules corresponding to the islands; Moonen [24] an-
notates the production rule expressing water, with an “avoid”
property; he also needs [23] a “reject” property to explicitly
sink some islands — obviously, in case of using both, rejection
should be stronger than avoidance, and more nesting levels
are impossible to model; Kats et al. [14] use a “recover”
property in their permissive grammars in order to separate
concerns of disambiguation and error recovery; Dean et al. [9]
in similar circumstances use a (negative) lookahead check (on
top of the ordered choice already present in TXL). All these
approaches are hard to compare because of the technology-
specific features.

However, the “reject” annotation is relatively easy to model
with Boolean grammars: for nonterminals A, B and C, if
A ::= B is a normal production rule and A ::= C is a rejected
clause, then A ::= B&¬C. The ordered choice present in
TXL and PEG, is modelled in a similar fashion: if A|B is
classic (unordered) disjunction and A/B is the ordered one,
then A/B = A|(B&¬A). For the case of a lookahead check,
B&¬A is a stronger formalisation because it automatically
assumes that serialisations of A and B are of the same length.

The “avoid” and “recover” clauses are semantically equiv-
alent yet kept as separate features to separate their inten-
tions [8]. Their semantics is impossible to encode with just

http://slps.github.io/zoo


Boolean grammars, so we use parsing schemata. For each
nonterminal, its normal production rules are mapped to de-
duction steps as usual [35], but for each “avoid”/“recover”
production rule, its set of antecedents (hypotheses) is extended
with negations of antecedents of all normal production rules.
Under such conditions, the parsing system will not make a
step with an avoided rule unless all other steps are disabled.

Another possible use for Boolean grammars is merging the
more permissive definitions with the more precise ones, within
one grammar. If a nonterminal N is defined as N → A&B,
where A is its precise syntactical specification and B is its
tolerant one, then we can either formally reason about the
inclusion L(A) ⊂ L(B), or test the parser of N on a corpus
of programs with an assertion that the list of leaves of the
parse tree of A must always be identical to the list of leaves
of the parse tree of B. This kind of claims has never been
entirely possible with semi-parsing methods, but the concern
for its necessity has been raised [15].

B. Error recovery

The Dragon Book [1] proposes several simple strategies of
error recovery and error repair: for instance, panic mode is
one of the simplest methods to detect multiple syntax errors in
one pass of the parser. It uses a list of synchronising tokens: in
case of a parse error, all input content is skipped until the next
synchronising token is encountered, and then precise parsing
is resumed [1]. The task of determining and specifying the
synchronising tokens is left for the grammar engineer, and the
correctness claim about this error recovery method is never
backed up.

With a Boolean grammar, we can rewrite any production
rule of the form N → αtβ, where t is a synchronising token,
as N → (α&(¬t)∗)tβ, to formally specify the assertion that
the string that we expect to parse with α, should be composed
of non-t characters.

A more sophisticated improvement of a panic mode based
error recovery is hierarchic error repair [3], where synchronis-
ing tokens are not provided statically a priori, but dynamically
inferred from the synchronisation stack. In that technique, a
parser is interpreted as an automaton with states corresponding
to correct states of the parsing process and transitions are
labelled with consumed tokens. A synchronisation stack is
kept during the parsing process in order to help choosing
a transition when a parse error occurs (i.e., when there is
no transition corresponding to the actual input token). The
relation between Boolean grammars and parsing automata is
not as strong and well-researched as the relation between more
mature grammar classes, so it is at least not trivial to model
hierarchic error repair with Boolean grammars. However, it
can be easily specified as a parsing schema, since intermediate
items in the deduction system can be automata or states in an
automaton.

C. Bridge grammars

Bridge grammars [27] are a relatively recent extension of
the island grammar paradigm. The method of bridge parsing

relies on “reefs” such as indentation or bracketing; bridges
between islands are constructed based on such reefs, and
artificial islands are created where missing ones should be.
As we can see, this is a method of introducing imprecision
to the process of parsing, not to the specification per se —
hence, parsing schemata should be a feasible way to encode
“bridge repair” actions as deduction steps.

V. CONCLUSION

Preliminary attempts show it to be possible to gain some
benefits by formalising semi-parsing. For instance, we can
engineer relaxed grammars for semi-parsing systematically
instead of reimplementing them within a desired target frame-
work — such an experiment was conducted on a C# grammar
in Rascal, which can be inspected at the Software Language
Processing Suite repository [42] as the demo::IslandBoolean
module, some fragments also shown on Figure 1 and Figure 2.
One of the ultimate objectives of laying out formal foundations
for semi-parsing is automated derivation of such semi-parsing
grammars in a broad sense from baseline grammars, which
would have a list of advantages by itself (easy choice among
semi-parsing methods, reusing defective grammars, etc).

One of the possibly hardest parts of the future work is ad-
dressing a family of search-based error recovery methods, typ-
ically relying on some variation of Levenshtein distance [21]
sometimes incorrectly referred to as Hamming distance in
parsing literature (cf. [36, p.290]). It also remains to be seen
whether negation in Boolean grammars and correctness vali-
dation function in parsing systems can always be transformed
into each other, since both serve as additional limitation
mechanisms for researchers and engineers committed to either
of formalisations.

We do not claim to be the first in our attempt to for-
malise semi-parsing approaches: some classification schemes
have been proposed at least twice before, by Klusener and
Lämmel [15] and by Nierstrasz and Kurš [26]. Our proposed
method of comparison is more refined (generalises 22 ap-
proaches instead of 3–5) and relies on recent advancements
in theoretical computer science.

ACKNOWLEDGEMENT

The author is grateful for discussions of his ideas on this
topic with Oscar Nierstrasz, Jim Cordy and Zinovy Diskin,
which resulted in many insights concerning the use of Boolean
grammars and parsing schemata, as well as for opportunities
to present and discuss some of this work at CWI PEM 2012
in Amsterdam, SATToSE 2013 in Bern and Parsing@SLE in
Indianapolis.

http://github.com/grammarware/slps/blob/master/shared/rascal/src/demo/IslandBoolean.rsc


Fig. 1. A fragment of a grammar manipulation script taking a C# grammar extracted from the corresponding ECMA standard (available at Grammar Zoo [41]),
in the GrammarLab2 syntax, which we expect to be intuitively understood. The syntax highlighting scheme shows terminals in green, nonterminals in blue,
transformation operators and other keywords in red, and grammar mutations with a green background.

Fig. 2. A fragment of a Boolean grammar for C# modelling the skeleton grammar approach by Klusener and Lämmel [15] while preserving both the baseline
production rules for precise parsing, and the relaxed production rules for semi-parsing within the same grammar by using conjunctive clauses (shown with
infix ampersands).

2GrammarLab: Foundations for a Grammar Laboratory, a Rascal lan-
guage workbench library for manipulating grammars in a broad sense,
http://grammarware.github.io/lab.

http://slps.github.io/zoo/
http://grammarware.github.io/lab


REFERENCES

[1] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: Principles,
Techniques and Tools. Addison-Wesley, 2006.

[2] H. Alblas, R. op den Akker, P. O. Luttighuis, and K. Sikkel, “A
Bibliography on Parallel Parsing,” SIGPLAN Notices, vol. 29, no. 1,
pp. 54–65, Jan. 1994.

[3] D. T. Barnard and R. C. Holt, “Hierarchic Syntax Error Repair for
LR Grammars,” International Journal of Computer and Information
Sciences, vol. 11, no. 4, pp. 231–258, 1982.

[4] E. Bertsch and M.-J. Nederhof, “Gap Parsing with LL(1) Grammars,” A
Journal of Mathematical Research on Formal and Natural Languages,
vol. 8, pp. 1–16, 2005.

[5] M. van den Brand, A. van Deursen, J. Heering, H. de Jong, M. de Jonge,
T. Kuipers, P. Klint, L. Moonen, P. A. Olivier, J. Scheerder, J. J.
Vinju, E. Visser, and J. Visser, “The ASF+SDF Meta-Environment:
a Component-Based Language Development Environment,” Electronic
Notes in Theoretical Computer Science, vol. 44, no. 2, pp. 3–8, 2001.

[6] J. R. Cordy, “The TXL Source Transformation Language,” Science of
Computer Programming, vol. 61, no. 3, pp. 190–210, 2006.

[7] A. Cox, “Syntactic Approximation Using Iterative Lexical Analysis,” in
Proceedings of the International Workshop on Program Comprehension,
2003, pp. 154–163.

[8] M. de Jonge, L. C. L. Kats, E. Visser, and E. Söderberg, “Natural
and Flexible Error Recovery for Generated Modular Language Envi-
ronments,” ACM Transactions on Programming Languages and Systems
(TOPLAS), vol. 34, no. 4, pp. 15:1–15:50, Dec. 2012.

[9] T. R. Dean, J. R. Cordy, A. J. Malton, and K. A. Schneider, “Agile
Parsing in TXL,” Journal of Automated Software Engineering, vol. 10,
no. 4, pp. 311–336, 2003.

[10] A. van Deursen and T. Kuipers, “Building Documentation Generators,”
in Proceedings of International Conference on Software Maintenance
(ICSM 1999), 1999, pp. 40–49.

[11] B. Ford, “Parsing Expression Grammars: a Recognition-Based Syntactic
Foundation,” in Proceedings of the Symposium on Principles of Pro-
gramming Languages, January 2004.

[12] C. Gómez-Rodrı́guez, M. A. Alonso, and M. Vilares, “Error-Repair
Parsing Schemata,” Theoretical Computer Science, vol. 411, no. 7–9,
pp. 1121–1139, 2010.

[13] R. Jackendoff, “Semantic Structures,” Current Studies in Linguistics,
vol. 18, 1990.

[14] L. C. L. Kats, M. de Jonge, E. Nilsson-Nyman, and E. Visser, “Pro-
viding Rapid Feedback in Generated Modular Language Environments.
Adding Error Recovery to SGLR Parsing,” in Proceedings of the 24th
ACM SIGPLAN Conference on Object-Oriented Programing, Systems,
Languages, and Applications (OOPSLA 2009), G. T. Leavens, Ed. ACM
Press, Oct. 2009.

[15] S. Klusener and R. Lämmel, “Deriving Tolerant Grammars from a
Base-line Grammar,” in Proceedings of the 19th IEEE International
Conference on Software Maintenance (ICSM’03). IEEE Computer
Society, Sep. 2003, pp. 179–188.

[16] S. Klusener, R. Lämmel, and C. Verhoef, “Architectural Modifications
to Deployed Software,” Science of Computer Programming, vol. 54, pp.
143–211, 2005.

[17] R. Koppler, “A Systematic Approach to Fuzzy Parsing,” Software—
Practice & Experience, vol. 27, no. 6, pp. 637–649, 1997.

[18] B. Lang, “Parsing Incomplete Sentences,” in Proceedings of the 12th
Conference on Computational linguistics, Volume 1, ser. COLING ’88.
Association for Computational Linguistics, 1988, pp. 365–371.

[19] A. Lavie and M. Tomita, “GLR* — An Efficient Noise-Skipping Parsing
Algorithm for Context-Free Grammars,” in Recent Advances in Parsing
Technology, ser. Text Speech and Language Technology, H. Bunt and
M. Tomita, Eds. Kluwer Academic Press, Aug. 1996, vol. 1, pp. 183–
200.

[20] J. A. N. Lee, The Anatomy of a Compiler. Van Nostrand, 1967.
[21] V. I. Levenshtein, “Binary Codes Capable of Correcting Deletions,

Insertions and Reversals,” Soviet Physics Doklady, vol. 10, no. 8, pp.
707–710, 1966.

[22] A. Megacz, “Scannerless Boolean Parsing,” in Sixth Workshop on Lan-
guage Descriptions, Tools and Applications, J. Boyland and A. Sloane,
Eds., 2006, pp. 106–111.

[23] L. Moonen, “Generating Robust Parsers using Island Grammars,” in
Proceedings of the 8th Working Conference on Reverse Engineering
(WCRE’01). IEEE Computer Society Press, Oct. 2001, pp. 13–22.

[24] ——, “Lightweight Impact Analysis using Island Grammars,” in Pro-
ceedings of the 10th International Workshop on Program Comprehension
(IWPC’02). IEEE Computer Society Press, Jun. 2002.

[25] G. C. Murphy and D. Notkin, “Lightweight Source Model Extraction,”
in Proceedings of the Third ACM SIGSOFT symposium on Foundations
of Software Engineering, ser. SIGSOFT ’95. ACM, 1995, pp. 116–127.

[26] O. Nierstrasz and J. Kurš, “Parsing for Agile Modeling,” Science of
Computer Programming, vol. LAFOUS, 2013.

[27] E. Nilsson-Nyman, T. Ekman, and G. Hedin, “Practical Scope Recovery
Using Bridge Parsing,” in Post-proceedings of the Second International
Conference on Software Language Engineering, D. Gašević, R. Lämmel,
and E. Van Wyk, Eds. Springer-Verlag, 2009, pp. 95–113.

[28] A. Okhotin, “LR Parsing for Boolean Grammars,” in Developments in
Language Theory, ser. Lecture Notes in Computer Science, C. Felice
and A. Restivo, Eds. Springer Berlin Heidelberg, 2005, vol. 3572, pp.
362–373.

[29] ——, “Recursive Descent Parsing for Boolean Grammars,” Acta Infor-
matica, vol. 44, no. 3-4, pp. 167–189, 2007.

[30] ——, “Expressive Power of LL(k) Boolean Grammars,” Theoretical
Computer Science, vol. 412, no. 39, pp. 5132–5155, 2011.

[31] ——, “Conjunctive and Boolean Grammars: The True General Case
of the Context-Free Grammars,” Computer Science Review, vol. 9, pp.
27–59, 2013.

[32] T. J. Parr and R. W. Quong, “Adding Semantic and Syntactic Predicates
To LL(k): pred-LL(k),” in Compiler Construction, ser. Lecture Notes
in Computer Science, P. A. Fritzson, Ed. Springer Berlin Heidelberg,
1994, vol. 786, pp. 263–277.

[33] H. Richter, “Noncorrecting Syntax Error Recovery,” ACM Transactions
on Programming Languages and Systems, vol. 7, no. 3, pp. 478–489,
Jul. 1985.

[34] S. M. Shieber, Y. Schabes, and F. C. N. Pereira, “Principles and
Implementation of Deductive Parsing,” Journal of Logic Programming,
vol. 24, no. 1&2, pp. 3–36, 1995.

[35] K. Sikkel, Parsing Schemata — a Framework for Specification and
Analysis of Parsing Algorithms. Springer, 1997.

[36] S. Sippu and E. Soisalon-Soininen, Parsing Theory. Vol. II: LR(k)
and LL(k) Parsing, W. Brauer, G. Rozenberg, and A. Salomaa, Eds.
Springer-Verlag, 1990.

[37] D. A. Smith and J. Eisner, “Quasi-Synchronous Grammars: Alignment
by Soft Projection of Syntactic Dependencies,” in Proceedings of the
Workshop on Statistical Machine Translation, ser. StatMT’06. Associ-
ation for Computational Linguistics, 2006, pp. 23–30.

[38] A. Stevenson and J. R. Cordy, “Parse Views with Boolean Grammars,”
Science of Computer Programming, vol. LAFOUS, 2013.

[39] N. Synytskyy, J. Cordy, and T. Dean, “Robust Multilingual Parsing using
Island Grammars,” in Proceedings CASCON’03, 13th IBM Centres for
Advanced Studies on Collaborative Research. IBM Press, 2003, pp.
149–161.

[40] V. Zaytsev, “The Grammar Hammer of 2012,” Computing Research
Repository (CoRR), vol. 1212.4446, pp. 1–32, Dec. 2012.

[41] ——, “Grammar Zoo: A Repository of Experimental Grammarware,”
2013, submitted to the Fifth Special issue on Experimental Software
and Toolkits of Science of Computer Programming (SCP EST5). Under
review after major revision.

[42] V. Zaytsev, R. Lämmel, T. van der Storm, L. Renggli, and
G. Wachsmuth, “Software Language Processing Suite3” 2008–2014,
http://slps.github.io.

3The authors are given according to the list of contributors at http://github.
com/grammarware/slps/graphs/contributors.

http://slps.github.io
http://github.com/grammarware/slps/graphs/contributors
http://github.com/grammarware/slps/graphs/contributors

