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We consider quantum quenches in integrable models. We argue that the behavior of local observables at

late times after the quench is given by their expectation values with respect to a single representative

Hamiltonian eigenstate. This can be viewed as a generalization of the eigenstate thermalization hypothesis

to quantum integrable models. We present a method for constructing this representative state by means of

a generalized thermodynamic Bethe ansatz (GTBA). Going further, we introduce a framework for

calculating the time dependence of local observables as they evolve towards their stationary values. As

an explicit example we consider quantum quenches in the transverse-field Ising chain and show that

previously derived results are recovered efficiently within our framework.

DOI: 10.1103/PhysRevLett.110.257203 PACS numbers: 75.10.Jm, 02.30.Ik, 03.75.Kk, 05.70.Ln

Introduction.—Recent years have witnessed dramatic
progress in the study of isolated quantum systems out of
equilibrium, in particular, in systems of optically trapped
ultracold atomic gases. Key to these advances is the weak
coupling to the environment, which allows the realization
of essentially unitary time evolution on long time scales
[1–6]. The experimental results have stimulated intense
theoretical efforts aimed at answering fundamental ques-
tions such as: Do observables relax to time-independent
values? What are the principles determining these values?
How can one describe the relaxation towards stationary
behavior?

There is compelling evidence that nonequilibrium time
evolution is strongly affected by dimensionality and the
presence of conservation laws. The experiments of [2] on
trapped 87Rb atoms established that three-dimensional
condensates rapidly relax to a stationary state character-
ized by an effective temperature, whereas constraining
the motion of atoms to one dimension greatly reduces the
relaxation rate of the momentum distribution function.
These results spurred a flurry of theoretical activity aimed
at shedding light on the precise effects of integrability on
the nonequilibrium dynamics of many-body quantum
systems (see [7–38] and references therein).

So far two basic paradigms have emerged in translation-
ally invariant models: at late times subsystems either
thermalize, i.e., are characterized by a Gibbs distribution
with an effective temperature, or they are described by
a generalized Gibbs ensemble (GGE) [8]. When the
time evolution occurs under the action of an integrable
Hamiltonian, the GGE is applicable. Questions regarding
the approach towards the steady state long after the quench
remain difficult to tackle. Short and intermediate times
can be efficiently studied by algorithms based on matrix-
product states [5,13–15], while numerical methods based
on integrability have allowed to access arbitrary times in
finite systems [16–18]. The only cases which have been

largely understood are noninteracting theories such as the
transverse field Ising chain (TFIC) [19–24].
It is our purpose here to develop an efficient framework

for the description of the out-of-equilibrium dynamics of
a system evolving under an integrable Hamiltonian HðhÞ,
where h is a system parameter such as an interaction
strength or a magnetic field. Our approach applies equally
to quantum spin chains and to continuum theories like the
Lieb-Liniger model. The situation we have in mind is that
of a quantum quench: a given system is prepared in the
ground state j�i of the short-ranged Hamiltonian Hðh0Þ,
which itself may not be integrable. At time t ¼ 0 the
system parameter is suddenly changed from h0 to h, and
the system evolves unitarily under HðhÞ for all t > 0,

i.e., j�ðtÞi ¼ e�iHðhÞtj�i. Our main focus is the calcula-
tion of the expectation values of generic, local (in space)
operators O

hOðtÞi ¼ h�ðtÞjOj�ðtÞi
h�ðtÞj�ðtÞi : (1)

Examples ofOwould be products of spin operators located
in a finite segment of a spin chain, or density or field
operators in quantum gases.
Our main result is to show that in the thermodynamic

limit L ! 1, at fixed particle density N=L and for local
observables, the expectation value (1) can be expressed in a
simple way in terms of projections onto a single judi-
ciously chosen representative ‘‘saddle point’’ eigenstate
j�si of HðhÞ:

lim
N!1hOðtÞi ¼ lim

N!1

�h�jOðtÞj�si
2h�j�si þ�s $ �

�
: (2)

In the stationary state, i.e., the limit t ! 1, the averages of
local observables are simply given by the expectation value
in the eigenstate j�si
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lim
t!1 lim

N!1hOðtÞi ¼ lim
N!1

h�sjOj�si
h�sj�si : (3)

We stress that no time averaging is involved in (3), which
can be thought of as a generalization of the eigenstate
thermalization hypothesis [39] (which states that single
eigenstate expectation values can reproduce averages
over a thermal ensemble) to local observables in integrable
models, valid in the thermodynamic limit. A consequence
of (3) is that the ensemble defined by the density matrix
� ¼ j�sih�sj is locally indistinguishable from the GGE
corresponding to the initial state j�i (globally the two
ensembles are different, see also [21]). Our description of
the stationary state is closely related to the generalization
of the eigenstate thermalization hypothesis proposed in
[37], which is based on a generalized microcanonical
ensemble, and to the single-state averages discussed in
[34]. We emphasize that the description (3) of the steady
state and the representation (2) for the time evolution
offer a dramatic reduction in computational complexity
as compared to earlier approaches.

GTBA approach to nonequilibrium evolution.—Let us
consider a quantum integrable model with Hamiltonian H
solvable by Bethe ansatz. Let fj�ig be a complete set of
eigenstates, i.e., Hj�i ¼ !�j�i. The time evolution of an
arbitrary initial state j�i is then given by

j�ðtÞi ¼ X
�

e�E�e�i!�tj�i; (4)

where E� are constant, complex-valued overlaps

E � � � lnh�j�i: (5)

Substituting (4) into the numerator of (1) gives a spectral
representation of the form

h�jOðtÞj�i ¼ X
�;�0

e�E�
�
�E�0eið!��!�0 Þth�jOj�0i: (6)

This double sum over a full Hilbert space basis is a serious
bottleneck. To proceed further, we look to the thermody-
namic limit. In the thermodynamic Bethe ansatz (TBA)
approach to equilibrium thermodynamics [40] (see [41] for
detailed expositions), a summation over states is recast as
a functional integral over root densities �

j�i ! j�i; X
�

ð. . .Þ !
Z

D½��eS�ð. . .Þ: (7)

Here, S� is the entropy of all states characterized by a

given root density and ( . . . ) represents quantities with
well-defined thermodynamic limits. Using (7) once, we
can formally recast (6) in the form

Z
D½��eS�X

�

�
e�E�

�
�E�eið!��!�Þt h�jOj�i

2
þ� $ �

�
:

(8)

The reason for using (7) only once is that we are interested
in local operators O. These have the property that
h�jOj�0i � 0 only if both j�i and j�0i scale to the
same distribution � up to microscopic differences [42].
In the thermodynamic limit the denominator in (1)
becomes

h�j�i ¼
Z

D½��e�2ReðE�ÞþS� (9)

and can be evaluated by the method of steepest descent.
The right-hand side of (9) can be viewed as the partition
function of an integrable model with ‘‘generalized free
energy’’

F� � 2ReðE�Þ � S�: (10)

Here, S� is the usual Yang-Yang entropy of the integrable

Hamiltonian HðhÞ. In the simplest scalar case, realized,
e.g., in the Lieb-Liniger model, it takes the form S�¼
N
R
d�½ð�þ�hÞ lnð�þ�hÞ�� ln���h ln�h�. The hole

density �h is related to the particle density � by the
thermodynamic form of the Bethe equations

�ð�Þ þ �hð�Þ ¼ 1

2�
þ

Z
d�0Kð�� �0Þ�ð�0Þ; (11)

where Kð�Þ is a known function for a given integrable
model. The first term in (10) plays the role of an effective
energy per temperature and hence acts as the ‘‘driving
term’’in a generalized thermodynamic Bethe ansatz (for
details, see [18,43]). Since the effective overlaps (5) are
strictly bounded from below, there exists a saddle point at
�s, i.e., �F �=��j�s

¼ 0 [44]. In the thermodynamic limit,

fluctuations around the saddle point are negligible and
thermodynamic averages can be calculated with respect
to the energy eigenstate characterized by �s. Given that the
expectation values of all local integrals of motion in this
state are by construction the same as those of the general-
ized Gibbs ensemble corresponding to HðhÞ and j�ðt ¼
0Þi, the saddle-point average of local observables precisely
reproduces the GGE average in the sense of [21]. The
functional integrals in (8) can be evaluated analogously:
Given that h�jOj�i is nonzero only for states h�j such that
!� �!� and E�

� þ E� are intensive, the first term in (8) is

dominated by the same saddle point �s. The second term is
treated analogously. Putting everything together we obtain
the thermodynamic limit of (2). In practice we consider the
theory in a large, finite volume L (at fixed density N=L)
and a particular, representative eigenstate j�si that reduces
to j�si in the thermodynamic limit. The corresponding
spectral representation is then

hOðtÞi ¼ lim
N!1

X
�

�
eE

�
�s

�E�
�
þið!��!�s Þt h�jOj�si

2

þ eE�s�E��ið!��!�s Þt h�sjOj�i
2

�
: (12)
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The gain in efficiency in (12) as compared to the ‘‘bare’’
spectral representation (6) is apparent: only a single sum
remains, which, moreover, in practice needs to be carried
out only over the subset of states with non-negligible
matrix elements. As we did not have to assume t to be
large we conjecture that (12) describes the time evolution
of local observables in the thermodynamic limit, at
arbitrary times after the quench. Importantly, in the limit
t ! 1 the integrals in the sum over� can be carried out by
a stationary phase approximation. This shows that in the
stationary state only the expectation value in j�si survives
in (12); i.e.,

lim
t!1hOðtÞi ¼ lim

N!1
h�sjOj�si
h�sj�si : (13)

It is clear from our construction that the state j�si is not
unique. However, different choices give identical results
for (12) and (13), in the thermodynamic limit.

The physical content of (12) is summarized as follows:
in the thermodynamic limit, the relaxation of hOðtÞi
towards its steady state is fully determined by quantum
interference effects between eigenstates situated within a
basin around the saddle point j�si.

An explicit example: The transverse field Ising chain.—
The Hamiltonian of the TFIC is given by

HðhÞ ¼ �J
XL
j¼1

½�x
j�

x
jþ1 þ h�z

j�; (14)

where ��
j are Pauli matrices at site j of a one-dimensional

chain and we consider J, h > 0. At zero temperature
and in the thermodynamic limit, the TFIC exhibits ferro-
magnetic long-range order along the x direction for h < 1,
while it is in a paramagnetic phase for h > 1 [45]. The two
phases are separated by a quantum critical point in the
Ising universality class. It is well known that HðhÞ can be
diagonalized by combined Jordan-Wigner and Bogoliubov
transformations [45]

HðhÞ ¼ X
p

"hðpÞ
�
�y
p�p � 1

2

�
; (15)

where the single-particle energy is given by "hðkÞ ¼
2J

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2 � 2h cosk

p
. Our quench protocol is as follows:

we prepare the system in the ground state j�i for an initial
value h0 of the transverse magnetic field. At time t ¼ 0we
instantaneously change the field from h0 to h. The state of
the system at times t > 0 is obtained by evolving with
respect to the new Hamiltonian HðhÞ,

j�ðtÞi ¼ e�iHðhÞtj�i: (16)

The reduced density matrix of a subsystem A at time t after
the quench is given by �AðtÞ¼Tr �A�ðtÞ¼Tr �Aj�ðtÞih�ðtÞj,
in which �A is the complement of A. For quenches originat-
ing in the paramagnetic phase, i.e., h0 > 1, the Z2

symmetry of rotations by � around the z axis remains
unbroken and it is possible to express �AðtÞ in the form [46]

�AðtÞ ¼ 1

2‘

X
�l¼0;1

�Y2‘
l¼1

a�l

l

	�Y2‘
l¼1

a�l

l

�y / ealWlmam=4: (17)

Here the expectation value is with respect to the state
j�ðtÞi and a2n and a2n�1 are Majorana fermion operators
fulfilling anticommutation relations faj; akg ¼ 2�j;k,

which are related to the lattice spins by a Jordan-Wigner
transformation

a2n�1 ¼
�Y
m<n

�z
m

�
�x

n; a2n ¼
�Y
m<n

�z
m

�
�y

n: (18)

The matrix W is given by tanhðW=2Þ ¼ � [47], where

�jk ¼ Tr½�ðtÞakaj� � �j;k ¼ ��kj: (19)

In the thermodynamic limit, the correlation matrix is given
by [22] �2n�1;2j�1 ¼ �2j;2n ¼ fj�n, �2n�1;2j ¼ gn�j with

gl ¼ �i
Z �

��

dk

2�
e�ikl h� eikffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ h2 � 2h cosk
p

� ½cos�k � i sin�k cosð2"hðkÞtÞ�;
fl ¼

Z �

��

dk

2�
e�ikl sin�k sinð2"hðkÞtÞ;

(20)

where cos�k¼4J2ð1þhh0�ðhþh0ÞcoskÞ="hðkÞ"h0ðkÞ.
The reduced density matrix (17) is Gaussian, and hence
multipoint correlation functions are obtained by Wick’s
theorem. Concomitantly all local correlation functions in
the stationary state are fully specified by the two-point
averages (19) and (20), in the limit t ! 1. So far we
have considered only the case h0 > 1. For quenches
originating in the ferromagnetic phase, i.e., h0 < 1, the
reduced density matrix �AðtÞ is not Gaussian [46].
However, as shown in [22], �Að1Þ is again given by the
t ! 1 limit of (17).
Stationary behavior.—Wewill now show how to recover

these results in the GTBA framework. The simplest way
to obtain the solution of the GTBA equations for the TFIC
is to note that the mode occupation numbers constitute

conserved quantities ½�y
k�k; HðhÞ� ¼ 0. Hence, the root

density in the stationary state is simply given by

�ðkÞ ¼ h�j�y
k�kj�i
2�

¼ 1� cos�k

4�
; (21)

and the particle density is D ¼ R
�
�� dk�ðkÞ. The corre-

sponding Hamiltonian eigenstate at density D ¼ 2N=L in
a large, finite volume is then

j�si ¼
YN
j¼1

�y
�j
�y��j

j0; hi; (22)

where j0; hi is the fermionic vacuum state and the mo-
menta �j > 0 are distributed according to the density (21),
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i.e., �jþ1 ¼ �j þ 1=½L�ð�jÞ�. Changing the values of a

finite number of �j leads to slightly different alternative

representative states. Calculating the expectation values of
local operators in these states gives rise to differences that
disappear in the limit N, L ! 1. The density matrix
corresponding to the state (22) is �s ¼ j�sih�sj and by
virtue of the product form (22) it is Gaussian. This means
that it can be represented in the form (17) and is completely
determined by its correlation matrix (19). The only non-
vanishing matrix elements are

ð�sÞ2l�1;2l�2n ¼ � i

L

X
k

e�inkðh� eikÞð1� 2�k;�j
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ h2 � 2h cosk
p : (23)

Turning the sum over momenta into an integral by means
of the Euler-Maclaurin sum formula, we find that �s ¼
�ð1Þ and hence limt!1�AðtÞ ¼ �s;A. This proves that the

GTBA formalism reproduces the correct stationary state
for the reduced density matrix for any finite subsystem in
the thermodynamic limit, and hence for all local correla-
tion functions.

Relaxation behavior.—Our general formalism suggests
that the time evolution of local (in space) operators is given
by (2), where the state j�si is defined in the previous
paragraph. We now demonstrate the validity of (2) for
any local operator O in the case where the quench origi-
nates in the paramagnetic phase, such that theZ2 symmetry
is unbroken. The proof is as follows: we start by defining
two density matrices �ðtÞ ¼ j�ðtÞih�ðtÞj and �sðtÞ ¼
j�sðtÞih�sðtÞj. Crucially, both of these density matrices
are Gaussian as a Wick’s theorem holds for averages
calculated with respect to both of them. The right-hand
side of (2) can be written in the form

�
Tr½�sðtÞ�ðtÞO�
2Tr½�sðtÞ�ðtÞ� þ � $ �s

�
� Tr½�̂ðtÞO�: (24)

Because each term in �̂ is a product of two Gaussian
density matrices, it is Gaussian itself, and hence fully
characterized by its correlation matrix

�̂ jk ¼ Tr½�̂ðtÞakaj� � �j;k: (25)

The two-point functions in (25) are easily calculated,
and as shown in the supplementary material we have

limN!1�̂ðtÞ ¼ �ðtÞ. This proves that for any local observ-
able O (such as products of spin operators contained
in a finite subsystem) in the thermodynamic limit
limN!1Tr½�̂ðtÞO� ¼ Tr½�ðtÞO�, and establishes Eq. (2).

Our line of arguments breaks down for quenches origi-
nating in the ferromagnetic phase, because the density
matrix �ðtÞ is no longer Gaussian [46]. In order to verify
the validity of (2) in this case, we have analyzed the
relaxation of the order parameter one-point function
h�ðtÞj�x

‘j�ðtÞi for quenches with h0, h < 1 in the regime

where the density of excitations of the postquench

Hamiltonian HðhÞ in the initial state is small, i.e.,

h�j�y
k�kj�i � 1. The result for Jt�1 in this case is [21]

h�ðtÞj�x
‘j�ðtÞi � ð1� h2Þ1=8

� exp

�
�2t

Z �

0

dk

�
"0hðkÞK2ðkÞ

�
: (26)

This result is recovered from (2) in a very efficient way
as follows. Taking into account boundary conditions in a
large, finite volume, the appropriate form of (2) for the
order parameter expectation value is

h�ðtÞj�x
‘j�ðtÞi ¼ Re

�
Rh�ðtÞj�x

‘j�sðtÞiNS
NSh�j�siNS

�
: (27)

Here R/NS correspond to periodic or antiperiodic bound-
ary conditions on the fermions respectively, see, e.g., [21].
As shown in [21], the state Rh�ðtÞj can be written as a
linear superposition of energy eigenstates with n pairs of

fermions Rh�ðtÞj ¼ PL=2
n¼0 Rh�nðtÞj. The late-time behavior

of (27) is determined by states with N pairs, i.e., the term
with n ¼ N. Retaining only this contribution, and using
the known form of matrix elements of the order parameter
[48], one readily obtains [49] the result (26) by means of
the techniques developed in [21].
Conclusions.—We have argued that averages of local

operators in the steady state reached long after a quantum
quench to an integrable model can be described as expec-
tation values with respect to a single simultaneous eigen-
state of all local conservation laws [Eqs. (3) and (13)]. This
state can be constructed by means of a generalized ther-
modynamic Bethe ansatz. Going further, we have shown
that the time evolution of local observables is governed by
states in the vicinity of this saddle point through Eqs. (2)
and (12). The spectral representation (12) allows us to
identify the physical mechanism underlying the relaxation
for a given observable at late times. Our approach paves the
way for analyzing quantum quenches in interacting inte-
grable models and applications to the Lieb-Liniger and the
sine-Gordon model are in progress. Given the regularity
assumptions in our GTBA analysis, an important question
concerns the range of initial states that can be analyzed
by our method. One requirement is that the probability
distributions of all local conservation laws becomes very
narrow as the thermodynamic limit is approached. An
interesting application of our approach would be to
quenches involving ‘‘integrable’’disorder [50], where the
GGE appears to no longer apply.
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(London) 419, 51 (2002).

[2] T. Kinoshita, T. Wenger, and D. S. Weiss, Nature (London)
440, 900 (2006).

[3] S. Hofferberth, I. Lesanovsky, B. Fischer, T. Schumm, and
J. Schmiedmayer, Nature (London) 449, 324 (2007).

[4] S. Trotzky, Y.-A. Chen, A. Flesch, I. P. McCulloch,
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Göhmann, A. Klümper, and V. E. Korepin, The One-
Dimensional Hubbard Model (Cambridge University
Press, Cambridge, England, 2005).

[42] In a large, finite system of size L, the changes to the root
distribution would be of order L�1.

[43] J. Mossel and J.-S. Caux, J. Phys. A 45, 255001 (2012).
[44] For simplicity, we assume the saddle point to be unique,

and to occur in the bulk rather than at a boundary of the
Hilbert space. Generalizations are straightforward.

[45] See, e.g., S. Sachdev, Quantum Phase Transitions
(Cambridge University Press, Cambridge, England, 2011).

[46] M. Fagotti and F.H. L. Essler, arXiv:1302.6944.
[47] G. Vidal, J. I. Latorre, E. Rico, and A. Kitaev, Phys. Rev.

Lett. 90, 227902 (2003); I. Peschel and V. Eisler, J. Phys.
A 42, 504003 (2009).

[48] G. von Gehlen, N. Iorgov, S. Pakuliak, V. Shadura, and Y.
Tykhyy, J. Phys. A 41, 095003 (2008); N. Iorgov, V.
Shadura, and Yu. Tykhyy, J. Stat. Mech. (2011) P02028.

[49] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.110.257203 for details
on this calculation.
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