
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Parsing the Billboard Chord Transcriptions

de Haas, W.B.; Burgoyne, J.A.

Publication date
2012
Document Version
Final published version

Link to publication

Citation for published version (APA):
de Haas, W. B., & Burgoyne, J. A. (2012). Parsing the Billboard Chord Transcriptions. (UU-
CS; No. 2012-18). Utrecht university.

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:11 Nov 2022

https://dare.uva.nl/personal/pure/en/publications/parsing-the-billboard-chord-transcriptions(3532bd55-9c53-47b8-8c57-643cf58eb118).html

Parsing the Billboard Chord Transcriptions

W. Bas de Haas and John Ashley Burgoyne

Technical Report UU-CS-2012-018
December 2012

Department of Information and Computing Sciences

Utrecht University, Utrecht, The Netherlands
www.cs.uu.nl

ISSN: 0924-3275

Department of Information and Computing Sciences
Utrecht University
P.O. Box 80.089
3508 TB Utrecht
The Netherlands

Parsing the Billboard Chord Transcriptions

W. Bas de Haas∗ and John Ashley Burgoyne†

W.B.deHaas@uu.nl, J.A.Burgoyne@uva.nl

1 Introduction

Over the past few years, research involving chord se-
quences as a mid-level representation for musical
content has become increasingly popular. The clas-
sical problem for music information retrieval (MIR)
has been the design of algorithms that can automatic-
ally extract chord sequences from audio (e.g., Mauch,
2010). Various approaches have also been presented
that use chord sequences as a primary representa-
tion for solving MIR tasks like similarity estimation or
harmonic analysis (e.g., De Haas, 2012). High-quality
chord sequence data is necessary for both of these re-
search strands, but until quite recently, the amount of
such data was severely limited.

In 2011, John Ashley Burgoyne, Jonathan Wild, and
Ichiro Fujinaga presented the McGill Billboard data
set, a set over 1000 professional chord transcriptions
of popular music randomly selected from Billboard
magazine’s “Hot 100” chart between 1958 and 1991,
all time-aligned with audio (Burgoyne et al., 2011). In
addition to the chord transcriptions, the data include
annotations about musical structure, function (e.g.,
verse or chorus), and instrumentation. For copyright
reasons, the corresponding audio files are not avail-
able directly, but several sets of features derived from
the audio, including the widely-used EchoNest fea-
tures,1 are available to download along with the an-
notations.

These data represent a six-fold increase in the
amount of data available for research on chord se-
quences, but the very richness of the data set poses
some challenges for usability. The transcription
format used to represent the chord sequences was ex-
plicitly designed for the Billboard dataset, and aims at
being both machine- and human-readable. This tech-
nical report presents the reasoning behind a new soft-
ware library for parsing this format in order to make
full use of the Billboard set.

∗Utrecht University
†University of Amsterdam
1http://developer.echonest.com/docs/v4/track.html

2 The Billboard file format

A sample annotation in the McGill Billboard format
appears in Figure 1. Each annotation begins with
a header including the title of the song (prefixed by
‘# title:’), the name of the artist (prefixed by ‘#
artist:’), the metre (prefixed by ‘# metre:’), and
the tonic pitch class of the opening key (prefixed by
‘# tonic:’). Similar metre and tonic comments may
also appear in the main body of the annotations, cor-
responding to changes of key or metre. In some cases,
there is no obviously prevailing key, in which case
the tonic pitch class is denoted ‘?’. The annotators
were less consistent in describing the mode (major or
minor), and so at the moment, there is no informa-
tion about mode available. The chord annotations are
linked to the matching audio files by an identifier in
the filename.

The main body of each annotation consists of a
single line for each musical phrase or other sonic ele-
ment at a comparable level of musical structure. Each
line begins with a floating-point number denoting the
timestamp of the beginning of the phrase (in seconds)
followed by a tab character. There are special lines
for silence at the beginning and end of the audio file
and a special line for the end of the piece. The other
lines continue with a comma-separated list of ele-
ments among the following.

• Capital letters, possibly followed by an arbitrary
number of primes (apostrophes), designate high-
level musical structures. They appear at the be-
ginning of each high-level musical segment and
are presumed to continue until the next appear-
ance of a capital letter. When two letters match,
the two high-level segments are musically sim-
ilar. Other than denoting similarity, the letters
themselves have no intrinsic meaning, but for the
letter ‘Z’. ‘Z’ denotes non-musical passages in the
audio such as noise or spoken words.

• Plain text strings denote more traditional names
for musical structures, e.g., verse, chorus, and
bridge. The vocabulary was semi-restricted: An-
notators used a common vocabulary for fre-
quently appearing structures but had the free-
dom to use whatever terms they felt were most
appropriate for unusual contexts.

mailto:W.B.deHaas@uu.nl
mailto:J.A.Burgoyne@uva.nl
http://developer.echonest.com/docs/v4/track.html

title: Just The Way You Are
artist: Billy Joel
metre: 4/4
tonic: D

0.0 silence
0.422267573 A, intro, | D:1 E:hdim7/b7 | D:1 . G:maj/5 D:maj | D:1 E:hdim7/b7 | D:1 . G:maj/5 D:maj |, (keyboard)
7.842154195 B, verse, | D:maj | B:min7 | G:maj7 | B:min7 D:7 |, (vocal
14.962585034 | G:maj7 | G:min7 | D:maj | A:min D:7 |
21.949160997 | G:maj7 | G:min7 | D:maj | B:min7 |
28.992108843 | E:sus4(b7) | E:7 | A:sus4(b7,9) | A:sus4(b7,9) |
35.887301587 | D:maj | B:min7 | G:maj7 | B:min7 D:7 |
42.892721088 | G:maj7 | G:min7 | D:maj/3 | A:min D:7 |
49.795396825 | G:maj7 | G:min7 | D:maj/3 | B:min7 |
56.62478458 | E:min | A:sus4(b7,9) |, voice)
60.129523809 A, interlude, | D:1 E:hdim7/b7 | D:1 . G:maj/5 D:maj | D:maj E:hdim7/b7 | D:1 . G:maj/5 D:maj |, (saxophone)
67.106031746 B, verse, | D:maj | B:min7 | G:maj7 | B:min7 D:7 |, (voice
74.243582766 | G:maj7 | G:min7 | D:maj/3 | A:min D:7 |
81.054217687 | G:maj7 | G:min7 | D:maj/3 | B:min7 |
87.926553287 | E:sus4(b7) | E:7 | A:sus4(b7,9) | A:sus4(b7,9) |
94.748526077 | D:maj | B:min7 | G:maj7 | B:min7 D:7 |
101.543832199 | G:maj7 | G:min7 | D:maj/3 | A:min D:7 |
108.513106575 | G:maj7 | G:min7 | D:maj/3 | B:min7 |
115.351179138 | E:min | A:sus4(b7,9) |, voice)
118.809206349 A, interlude, | D:1 E:hdim7/b7 | D:1 . G:maj/5 D:maj | D:1 E:hdim7/b7 | A:min7 D:7 |, (saxophone)
125.901043083 C, bridge, | G:maj7 | A:7 | F#:min7 | B:sus4(b7) |, (voice
132.871791383 | E:min7 | A:7 | D:maj | D:maj D:7/b7 |
139.776303854 | Bb:maj7 | C:7 | A:min7 | D:7 |
146.563129251 | G:min7 | G:min7/11 | G:maj/9 | G:maj/9 |
153.481836734 B, verse, | D:maj | B:min7 | G:maj7 | B:min7 D:7 |
160.4992517 | G:maj7 | G:min7 | D:maj/3 | A:min D:7 |
167.353605442 | G:maj7 | G:min7 | D:maj/3 | B:min7 |
174.242607709 | E:min | A:sus4(b7,9) |, voice)
177.600181405 A, interlude, | D:1 E:hdim7/b7 | D:1 . G:maj/5 D:maj | D:1 E:hdim7/b7 | A:min7 D:7 |, (saxophone
184.734058956 B, solo, | D:maj | B:min7 | G:maj7 | B:min7 D:7 |
191.658276643 | G:maj7 | G:min7 | D:maj/3 | A:min D:7 |
198.634195011 | G:maj7 | G:min7 | D:maj/3 | B:min7 |
205.497528344 | E:sus4(b7) | E:7 | A:sus4(b7,9) | A:sus4(b7,9) |, saxophone)
212.331269841 B, verse, | D:maj | B:min7 | G:maj7 | B:min7 D:7 |, (voice
219.259229024 | G:maj7 | G:min7 | D:maj/3 | A:min D:7 |
226.146145124 | G:maj7 | G:min7 | D:maj/3 | B:min7 |
233.337800453 | E:min | A:sus4(b7,9) |
236.922675736 C’, outro, | Bb:maj | C:maj | A:min7 | D:7 |, voice)
243.918526077 | G:min7 | A:7 |, (saxophone
247.366848072 B, outro, | D:maj | B:min7 | G:maj7 | B:min7 D:7 |
254.31893424 | G:maj7 | G:min7 | D:maj/3 | A:min D:7 |
261.134852607 | G:maj7 | G:min7 | D:maj/3 | B:min7 |
268.044013605 | E:sus4(b7) | E:7 | A:sus4(b7,9) | A:sus4(b7,9) |, fadeout
274.881247165 | D:maj | B:min7 | G:maj7 | B:min7 D:7 |
281.660566893 | G:maj7 | G:min7 | D:maj/3 | A:min D:7 |, saxophone)
289.208888888 silence
290.79510204 end

Figure 1: A sample annotation from the McGill Billboard set.

2

Chord Type Shorthand Components

power chord 5 (5)
suspended 2nd sus2 (2,5)
major 11th maj11 (3,5,7,9,11)
minor 11th min11 (b3,5,b7,9,11)
dominant 11th 11 (3,5,b7,9,11)
major 13th maj13 (3,5,7,9,11,13)
minor 13th min13 (b3,5,b7,9,11,13)
dominant 13th 13 (3,5,b7,9,11,13)

Table 1: Extensions to the MIREX chord syntax as used
for annotations in the Billboard set.

• Chord annotations appear as series of bars
flanked by pipes (‘|’). A phrase may by fol-
lowed by an ‘x’ and an integer, which means that
the phrase is repeated that number of times. A
phrase may also be followed by an arrow (‘->’),
which is a musicological hint that the phrase is
musically elided into the following phrase.

• Leading instruments are noted in songs where
there is a notable deviation from the norm of a
leading vocal throughout the entire song. They
appear as text strings preceded by a left paren-
thesis (‘(’) in the segment where the instrument
comes to prominence and as text strings suc-
ceeded by a right parenthesis (‘)’) in the segment
where that instrument fades from prominence. If
an instrument is prominent for a single segment
only, its name appears with both left and right
parentheses.

More detail on the structural annotations is avail-
able in (Smith et al., 2011). Essentially, these annota-
tions replace the lower level of structural annotations
(lowercase letters) from this reference with chord an-
notations.

Although there are some passages that have chord
annotations at the eighth-note level, in general the
chord annotations are simplified to the beat level. All
chord symbols follow the standard presented at IS-
MIR 2005 and used in MIREX2 since (Harte et al.,
2005; Downie, 2008), with a few additions to the short-
hand to facilitate the richness of these annotations:
‘5’ for power chords, and ‘sus2’, ‘maj11’, ‘11’, ‘min11’,
‘maj13’, ‘13’, and ‘min13’ for the corresponding chords
in traditional jazz notation Burgoyne (2012). Table 1
provides the theoretical components for these chords
in MIREX-style notation, although users should be
warned that in practise, jazz musicians frequently
omit some of the components of 11th and 13th chords.
An additional pseudo-chord shorthand of ‘1’ denotes
pure bass notes with no chord on top (without such a
shorthand, they could be confused for major chords).

2 http://www.music-ir.org/mirex/wiki/MIREX_HOME

In order to save space, repeated chords are denoted
with a dot instead of the full chord name. To further
save space, bars containing a single chord on all beats
list the chord symbol only once; likewise, in quadruple
metres (4/4 or 12/8), bars with only two chords and
the change on the third beat list those two chords with
no dots. For brief changes of metre, the metre may ap-
pear in parentheses at the beginning of the bar rather
than as a full metre comment.

Two non-chord symbols may appear within bars.
For passages that were too musically elaborate to
merit beat-level chord annotations, annotators some-
times filled the bar with an asterisk (‘| * |’). For
brief pauses of arbitrary length (often a single beat),
annotators added a bar with the special annotation
‘&pause’.

3 The Billboard parser

We present the billboard-parser program and lib-
rary.3 The parser for the Billboard data has been
developed in the functional programming language
Haskell (Peyton Jones, 2003),4 and relies on the
uu-parsinglib parser combinator library (Swierstra,
2009).5 A particularly attractive feature of this library
is that it features error correction, which, in case of in-
put that does not match the format, allows the parser
to finish the parse and output detailed information on
where the parsing failed.

The interface of the billboard-parser program
is straightforward. Currently, the parser features
five modes, parse, mirex, full, test, or result,
that can be selected with the mode of operation flag
–-mode <mode>. With the first mode, parse, one or
more pieces are parsed, and the piece is printed to
the user in a way that resembles the original. If a
piece cannot be parsed correctly, the parser will in-
form the user which part of the input could not be
parsed, and where this occurred exactly in the file.
The second mode, mirex, converts billboard pieces
into the format typically used in MIREX evaluations:
‘onset <space> offset <space> chordlabel’. In
MIREX mode, the chord labels are also truncated to
the triad shorthands (‘maj’, ‘min’, ‘dim’, ‘aug’, ‘sus2’,
and ‘sus4’); all additional chord extensions are re-
moved. We truncate a chord by expanding it to its
corresponding list of intervals, and analyse the com-
ponents, if any, that are a second, third, fourth, or
fifth above the root. If this reduced set of components
fails to match any of the truncated shorthands (for in-
stance, in the case of a power chord or a 7([5) chord),

3http://hackage.haskell.org/package/
billboard-parser

4www.haskell.org
5http://hackage.haskell.org/package/uu-parsinglib

3

http://www.music-ir.org/mirex/wiki/MIREX_HOME
http://hackage.haskell.org/package/billboard-parser
http://hackage.haskell.org/package/billboard-parser
www.haskell.org
http://hackage.haskell.org/package/uu-parsinglib

the chord label is replaced by ‘X’, a special label that
the MIREX evaluation routines are designed to ignore.

The parser supports a few other modes. The third
mode, full, uses the same format as the mirexmode,
but it prints the full chordlabel as found in the data.
The fourth mode, test, executes a series of unit tests
that flag chords with an unexpected duration. Finally,
the mode result will output the results presented in
Section 5.

The billboard-parser can parse single files by
using the flag –-file <path>, or batch process a dir-
ectory with billboard files by using the –-dir <path>
flag. In the latter case, the user should point to a loc-
ation where the Billboard collection is stored. The
parser will look for a file named salami_chords.txt
inside a folder containing exactly four digits (which
are used as identifiers). We also implemented an al-
ternative way of pointing to a file by providing the
path to the Billboard dataset (with –-dir <path>)
and a Billboard identity, i.e., the unique folder num-
ber, with the flag –-id <integer>. If the mirexmode
is used in combination with the –-dir <path> flag
a file mirex_chords.txt is written to the folder that
also contains the source file. Optionally, a user can set
a specific output folder with the flag –-out <path>.

Because we use an eighth-note grid, the generated
output can be rather verbose. To compress the gener-
ated output, we added another flag to our interface to
reduce the output chord sequence. When the –-comp
reduce switch is added, the billboard-parser will
merge all subsequent chords that do not contain ad-
ditional information, like bar lines, structural annota-
tions, instrumentation etc. If the user adds a flag
–-comp expand, the chord sequence is not reduced,
and the all eight note grid positions are printed. By
default all output is reduced.

Besides a program, the billboard-parser is also
a software library. If you are familiar with the Haskell
programming language, you can import this library
and use the internal representation of a billboard song
for further computing. Internally, we use a datatype to
bundle the metadata and the chords. The chords are
stored as a list of chord datatypes that store informa-
tion about the chord, the onset and offset, lead instru-
ment labels, and structural segmentation information
at every eighth note position.6

In the parsing process, all dots (‘.’) are transformed
into the chords they represent. If a meter change is
encountered, it is parsed on-the-fly, and the result is
used in the remainder of the parsing process. Nat-
urally, if the parser comes across a repetition, the in-
volved chords sequence is automatically expanded.
The textual structural segmentation and instrumenta-

6See the Haskell API for details: http://hackage.haskell.
org/package/billboard-parser

tion annotations are categorised, and the starting and
ending positions are stored in the chord datatype. Mu-
sical passages not containing harmonic information
that can be transcribed at the beat level (‘*’, ‘&pause’,
‘Z’, and ‘silence’, etc.) are internally represented as a
non-chord annotations. Within MIREX, an ‘N’ annota-
tion is generally used to denote such passages.

4 Interpolation based audio alignment

Generally, parsing the format described in Section 2 is
straightforward, but the alignment of the chords with
the audio deserves some further explanation. Because
annotating the exact starting and ending positions of
the chords would have been very time consuming, it
was a deliberate decision to add timestamps only at
the beginning of every chord annotation line. This de-
cision implies the assumption that the tempo does not
fluctuate a lot within the song, but we believe that this
is a justifiable assumption because the dataset con-
sists of pop music only (see Scheirer, 1998). Thus,
in order to be able to pinpoint the exact starting and
ending positions of individual chords, the timestamps
must be interpolated based on the timestamps at the
start of each line and the metrical structure of the
chords sequence.

In general, chords are annotated at every beat, but
due to metre changes, occasionally it is only possible
to keep a consistent tempo at the eighth-note level.
Hence, we interpolated all chord annotations at the
eighth-note level. As a side effect, the MIREX output
contains chords and timestamps for every eighth-note
position as well, making these files rather long. Hence,
we added the chord sequence compression explained
in the previous section.

For measuring how well the automatic interpola-
tion does its job, we implemented a unit test that
checks whether there are eighth-note time frames
that are considerably longer or shorter than the aver-
age length of a frame. The acceptable deviation is a
parameter to the test, which we set to 7.5%: frames
with a duration 7.5% longer or shorter than the av-
erage eighth note within a piece are reported to the
user. We ignore non-chord annotations because non-
harmonic sections are not necessarily expected to
align with the eighth-note grid.

The acceptable deviation test identified a consid-
erable flaw in our interpolation strategy: at the be-
ginning and endings of some songs, we encountered
unexpectedly long frame lengths. At the beginning
of songs, the most common reason the test was
triggered was the presence of the so-called slow in-
troduction, a common stylistic feature whereby the
first few phrases of a song are at a markedly slower
tempo (Burns, 1987). Occasionally there were also

4

http://hackage.haskell.org/package/billboard-parser
http://hackage.haskell.org/package/billboard-parser

some problems due to variation in how annotators
handled pickup beats. At the end of a song, annotat-
ors marked ‘silence’ when there was nothing to hear
any more. Due to a fade-out or the decaying sound of
the last chords, for certain pieces there was a discrep-
ancy between the timestamp of the last chord and the
timestamp of the annotated silence, which distorted
the interpolation of the last line of chords.

To overcome improper alignments at the beginning
or ending of a song, we redesigned the interpolation
for the first and last line of chords. For the misalign-
ment of the last line of chords, we used the average
beat length of the penultimate line to predict the beat
durations of the chords on the last line and filled the
remaining gap between the last chord and the silence
annotation with additional non-chords. In the case of
problems with the pickup beats, the misalignment of
the first line of chords was corrected by applying the
same function, but with the chord sequence reversed.

5 Evaluating the alignment quality

It was difficult to estimate automatically how well the
chords transcriptions were aligned to the audio by the
billboard-parser. To ensure that most of the align-
ments were correct, we manually checked the align-
ment of songs that failed the acceptable deviation test
by hand. We also evaluated the MPTrEE chord tran-
scription algorithm (De Haas et al., 2012) on the first
tranche of 649 songs, and identified a couple of mis-
alignments. Furthermore, this evaluation showed that
for some pieces the tuning was off the mark. Both
the misalignments and the tuning problems were cor-
rected as much as possible. Although we were sur-
prised how well the automatic alignment worked for
most pieces, it was impossible to get both the align-
ment and the tuning perfect at all eighth note frames
in every piece. Some commercial recordings are no-
toriously tuned almost exactly between two keys at
standard pitch (A4 = 440 Hz), for example, Jimmy Gel-
lis’s ‘Stand By Me’, and many songs have at least one
phrase with an abrupt ritardando or lengthy pause
that no interpolation strategy could solve. Nonethe-
less, as we listened to all of the pieces that triggered
the unit test alongside a ‘click track’ with the interpol-
ations, it was remarkable how well it worked most of
the time.

To give the reader some idea of the amount of de-
viation in the alignments, we measure the number of
eighth note positions in the first tranche of 649 songs
that fail our deviation test at five different levels of
eighth note deviation: 5%, 7.5%, 10%, 15%, and 25%.
These numbers are displayed in Table 2. With our in-
terpolation strategy less then 1 percent of the eighth
note positions, averaged over all pieces, deviated more

Deviation 5% 7.5% 10% 15% 25%

Misalignments 3.58% 1.38% 0.95% 0.62% 0.47%

Table 2: The percentage of eighth note grid positions
that deviate more than the above mentioned devi-
ation, averaged over 649 Billboard pieces.

than 10% of the average eighth note length of a song. It
might be good to realise that for a piece played at 120
beats per minute an eighth note is only 0.25 seconds
long, and a 0.025 second deviation is smaller than fre-
quently used signal processing frame lengths.

6 Concluding remarks

In this technical report we have presented the
billboard-parser program and library, which reads
and transforms the McGill Billboard chord transcrip-
tions. We described the Billboard file format, ex-
plained how the billboard-parser parses the chord
annotations, how it aligns these annotations to their
audio, and how it can be used create MIREX compat-
ible ground-truths.

Every set of ground truth contains errors, and
likewise our alignment between audio and chords
is not perfect. Nevertheless, we believe that the
alignment is very good in general. Most of the re-
maining mis-alignments are caused by sudden, dra-
matic changes in tempo that would require labori-
ous manual annotations of the timestamps for every
eighth note. Moreover, we expect that the effect
of such mis-alignments is marginal in benchmark-
ing competitions like MIREX because all algorithms
are affected equally (in contrast to a strategy rely-
ing on automatic beat-tracking, which would heav-
ily favour chord-recognition algorithms that used the
same beat tracker). Overall, we are convinced the
billboard-parser is a practical and high quality tool
that will aid in fulfilling the full potential of the Bill-
board dataset.

Acknowledgements

W. Bas de Haas is supported by the Netherlands Or-
ganization for Scientific Research, NWO-VIDI grant
276-35-001, and John Ashley Burgoyne is supported
the NWO-CATCH grant ‘Cognition-Guided Interoper-
ability Between Collections of Musical Heritage (CO-
GITCH)’.

References

Burgoyne, J. A. (2012). Stochastic Processes and
Database-Driven Musicology. PhD thesis, McGill

5

University, Montréal, Québec, Canada.

Burgoyne, J. A., Wild, J., and Fujinaga, I. (2011). An
expert ground truth set for audio chord recognition
and music analysis. In Proceedings of the 12th In-
ternational Society for Music Information Retrieval
Conference (ISMIR), pages 633–638.

Burns, G. (1987). A typology of ‘hooks’ in popular re-
cords. Popular Music, 6(1):1–20.

Downie, J. S. (2008). The music information retrieval
evaluation exchange (2005–2007): A window into
music information retrieval research. Acoustical
Science and Technology, 29(4):247–255.

De Haas, W. B. (2012). Music information retrieval
based on tonal harmony. PhD thesis, Utrecht Uni-
versity.

De Haas, W. B., Magalhães, J. P., and Wiering, F. (2012).
Improving audio chord transcription by exploiting
harmonic and metric knowledge. In Proceedings of
the 13th International Society for Music Information
Retrieval Conference (ISMIR), pages 295–300.

Harte, C., Sandler, M., Abdallah, S., and Gómez, E.
(2005). Symbolic representation of musical chords:
A proposed syntax for text annotations. In Proceed-
ings of the 6th International Society for Music In-

formation Retrieval Conference (ISMIR), pages 66–
71.

Mauch, M. (2010). Automatic Chord Transcription
from Audio Using Computational Models of Musical
Context. PhD thesis, Queen Mary University of Lon-
don.

Peyton Jones, S. (2003). Haskell 98 language and lib-
raries: the revised report. Journal of Functional Pro-
gramming, 13(1):7–255.

Scheirer, E. (1998). Tempo and beat analysis of acous-
tic musical signals. Journal of the Acoustical Society
of America, 103(1):588–601.

Smith, J. B. L., Burgoyne, J. A., Fujinaga, I., De Roure,
D., and Downie, J. S. (2011). Design and creation
of a large-scale database of structural annotations.
In Proceedings of the 12th International Society for
Music Information Retrieval Conference, pages 555–
560.

Swierstra, S. D. (2009). Combinator parsers: a short
tutorial. In Bove, A., Barbosa, L., Pardo, A., and
Sousa Pinto, J., editors, Language Engineering and
Rigorous Software Development, volume 5520 of
Lecture Notes in Computer Science, pages 252–300.
Spinger.

6

	Introduction
	The Billboard file format
	The Billboard parser
	Interpolation based audio alignment
	Evaluating the alignment quality
	Concluding remarks

