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Fast volume
render techniques
for interactive analysis

H.J. Noordmans,
A.W.M. Smeulders,
H.T.M. van der Voort

Department of Biological Information Technology,
University of Amsterdam, Kruislaan 403,
1098 SJ Amsterdam, The Netherlands
e-mail: herke@wins.uva.nl

Without graphics hardware, interactive vol-
ume rendering is almost impossible with
the current generation of computers and
software. We describe the implementation
of a volume renderer for interactive analy-
sis of confocal images. We propose several
techniques to accelerate the rendering of
grey-value volumes. We propose to illumi-
nate the volume selectively with ray tem-
plates to get a proper shadow cue in the
shortest feasible time. In the viewing
phase, rendering is distinctively accelerat-
ed for four user interactions: (1) a total
change by successive adaptive refinement,
(2) an unknown change in the view with
this refinement strategy combined with
suspended interpolation, (3) a known
change in the view by recalculating only
that part and (4) a view translation by re-
calculating the uncovered part.

Key words: Volume rendering ± Inter-
action ± Successive adaptive refinement ±
Confocal microscopy

1 Introduction

Volume rendering is increasingly important for
the analysis of volume data. It gives a clearer view
of the total structure, as opposed to the detailed in-
formation one gets from viewing the volume
through slices. If the volume rendering is fast
enough, it can be used to interactively analyse
the volume. It may then be used to explore the
volume data qualitatively or to guide quantitative
measurements. In exploring the volume, the ren-
derer must react quickly to changes in the colour
and transparency of the volume data, in the view
angle or in the position of the view, et cetera.
For quantitative measurements, the renderer must
show measurement results quickly and visualize
3D objects that guide the measurements (e.g. 3D
probe). In both cases, high demands are made
on the volume renderer. It should produce views
with sufficient quality in the shortest feasible
time. A possible solution is to do rendering calcu-
lations in hardware or across multiple processors,
which considerably speeds up volume rendering
(Lorensen and Cline 1987; Yoo et al. 1992; State
et al. 1995). For the case in which this kind of
hardware is not available, algorithms have been
developed to accelerate volume rendering in soft-
ware (Bergman et al. 1986; Levoy 1990a, b, c;
Montani and Scopigno 1990; Nielson and
Hamann 1990; Shu and Lin 1991). Although these
techniques reduce the rendering time consider-
ably, they are hardly sufficient to provide interac-
tive responses.
In this paper, we discuss the software implementa-
tion of a volume renderer to be used for the inter-
active analysis of confocal images. These images
are recorded by a confocal laser scanning micro-
scope (CSLM) (Wilson and Sheppard 1984). A
specimen, stained with fluorescent dyes, is placed
under the microscope. The fluorescent molecules
excited by dye-specific monochromatic laser light,
emit light with a dye-specific larger wavelength.
The light is captured with sensitive detectors and
converted into an electronic signal. The volume
is scanned step by step by the CSLM to determine
the amount of fluorescent material of each volume
element. This results in a volume image where
each voxel value represents the amount of fluores-
cence detected. By staining the specimen with
more than one dye, several structures can be re-
corded at the same time. This results in a set of
volumes that should be combined by the renderer
during display.

The Visual Computer (1997) 13:345±358
� Springer-Verlag 1997 345

Correspondence to: H.J. Noordmans



2 Interactive rendering
of confocal images

Confocal images make specific demands on a vol-
ume renderer. As the images often contain a large
amount of noise, it is difficult to ascertain whether
a voxel belongs to the object of interest or to the
background (Kaufman et al. 1990). This means
that we cannot rely on volume-rendering tech-
niques that segment the volume data before display
(Levoy 1988). The renderer should be able to visu-
alize the raw, unprocessed volume image, the re-
sult of a segmentation step, or both at the same
time. This gives two kinds of images: grey-value
images where the value of a voxel represents the
amount of fluorescent material present on the loca-
tion, and a label image where the value of a voxel
represents the type of material on the same loca-
tion (binary images are defined as label images
with two labels). The raw, unprocessed image is
stored as a grey-value image; the result of a seg-
mentation step is stored as a label image. The im-
age types give different interpretations of the value
of a voxel. With label images, a voxel belongs to
one object: and the value at a subvoxel position
equals that of the closest voxel. With grey-value
images, the voxel value acts as a density measure;
the interpolation is required to determine the value
at a subvoxel position. Both image types should
be visualized appropriately by the volume ren-
derer.
Another demand is that the renderer should be able
to render 3D objects to be used for true interactive
measurements. For accurate manipulation and
measurement, the position and size of the object,
together with its relation to other volume objects,
should be as clear as possible. There are two ways
to render the objects: as surface objects mixed with
the volume data in the rendering stage (Levoy
1990b; Ebert and Parent 1990), or as a group of
voxels that constitute the object. The latter ap-
proach may create sampling artefacts, but results
in a far simpler volume renderer than the first ap-
proach. We have chosen this approach to visualize
3D objects.
The volume renderer should generate views with
an adequate number of visualization cues to faith-
fully visualize the volume data and the 3D objects.
In the analysis of confocal images, we consider
occlusion and shadowing two essential cues

(Voort et al. 1993), as both enhance the spatial re-
lation between volume objects. An optimal effec-
tive shadow cue can be obtained when the shadow
of one object is visible on another object. This
hampers the use of fast illumination methods
where the illumination value is based only on
the light direction and not on the amount of mate-
rial in front of the light source (Drebin et al. 1988;
Yoo et al. 1992).
For an interactive response, the renderer should de-
liver a proper response time. This requires that, in
addition to a fast rendering algorithm, the underly-
ing light-matter interaction model should be com-
putationally efficient. Two extremes of the scatter-
ing equation lead to fast algorithms: high-albedo
and low-albedo scattering (Kajiya 1984). In the
first case, light is scattered so often that all voxels
are illuminated equally. In the second case, light is
scattered only once; the rendering process can be
split into an illumination phase and a viewing
phase (Kajiya 1984). Because we consider shad-
ows essential for depth perception, we opt for the
low-albedo extreme.
To offer flexibility in visualizing the volume data,
the scatter model is based on fluorescence. In the
simulated fluorescence process (SFP) (Messerli et
al. 1993; Voort et al. 1993), we model an amount
of fluorescent material in each voxel, the amount
being proportional to the voxel value. In the illu-
mination phase, we simulate a light source emiting
photons that excite the fluorescent molecules to a
higher energy level. These molecules re-emit part
of the energy as photons that arrive at the final
view. To get the low-albedo extreme, the emitted
light is not able to re-excite other fluorescent mol-
ecules (nonoverlapping excitation and emission
spectra). For an effective shadow and occlusion
cue, a photon may be absorbed by any material it
passes. As with fluorescence, the emitted wave-
length is larger than the excitation wavelength,
which enables materials to absorb light in the illu-
mination phase differently than light in the view-
ing phase. With label images, each label denotes
one type of fluorescent material, and each material
is excited by a specific wavelength and emits a
specific wavelength. With N materials, each mate-
rial is described by 2N + 1 parameters: one scatter
efficiency, N absorption constants for each wave-
length in the illumination phase, and N absorption
constants for each wavelength in the viewing
phase. The large number of parameters offer the
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user much flexibility in visualizing the volume
data.

3 Evaluation of the literature

For the implementation of the volume renderer,
we have first investigated whether existing tech-
niques are sufficient to produce views at an inter-
active rate. First, we discuss techniques for the
illumination phase, then those in the viewing
phase.

3.1 Illumination phase

In the illumination phase, we simulate a light
source illuminating the volume with size n�n�n
from a certain position (Fig. 1). The light source
emits light that is scattered or absorbed by material
inside the voxels. The usual tactic for calculating
the amount of light reaching the material is to cal-
culate the amount of absorbing material between
the actual voxel and the light source. The most ac-
curate way is to sample back from each voxel to
the light source (Fig. 1a) (Kajiya 1984). The total
number of samples is relative to n3 � n, giving an
2(n4) illumination algorithm. The high computa-
tional complexity can be reduced to 2(n3) by cal-
culating the illumination value of a voxel from the
illumination value of voxels that are one layer
closer to the light source (Ebert and Parent 1990)
(Fig. 1b). As Fig. 2 illustrates, the bilinear interpo-
lation causes a strong and perceptually inexplica-
ble blur of shadows. The complexity of 2(n4)
can also be simplified by reducing the voxel size
in the shadow buffer (Ebert and Parent 1990; Le-
voy 1990d). When reduction of factor r is applied
in each direction, the computational complexity
diminishes to 2(n4/r4). The shadow becomes
somewhat broader, but the calculation time is
shorter.
Another approach is to trace along a set of rays
from the light source into the volume, where each
ray hands over an amount of light to each voxel it
passes (Fig. 1c). Illumination is optimal [2(n3)]
when each voxel is hit only once (Voort et al.
1993); however, with a low hit density, rippled il-
lumination patterns arise at strongly absorbing
boundaries because not all surface voxels are di-
rectly illuminated by the light source (Fig. 3).

Comparing both strategies, we see that there is a
clear trade-off between quality and speed.

3.2 Viewing phase

There are many techniques to speed up the render-
ing process. An overview is given in Table 1.
Adaptive subdivision is a technique to reduce the
number of rays in image regions with less detail.
This technique is often implemented in conjunc-
tion with adaptive refinement. The first update
shows only regions with high detail, while other
regions are interpolated. More detail is shown in
subsequent refresh iterations. Adaptive ray termi-
nation is a technique in which sampling along a
ray is broken off when the opacity along the ray
exceeds a threshold. Voxel group projection pro-
jects similar voxels simultaneously. Presence ac-
celeration skips empty voxels in sampling along
a ray. Adaptive sampling decreases the number
of samples in homogeneous regions. Template
based viewing speeds up rendering of parallel
views by using fixed ray templates. Shear-warp
projection efficiently projects the volume data
on the view. Local volume update speeds up ren-
dering of varying volume data by casting rays on-
ly for parts where the volume has changed. View
movement shifts, rather than recalculates, the view
when the view is translated. Blur prevention pre-
vents unnecessary image blurring if the volume
changes, but it is difficult to predict where this
happens.
The techniques can be sorted in two categories:
those that cast rays into the volume to calculate
how much light reaches the view and voxel meth-
ods that project the light of voxels onto the view.
Some methods also accelerate the rendering of un-
segmented volumes, while others only accelerate
the rendering of segmented volumes.
To compare the performance of various tech-
niques, we estimate the acceleration factor ex-
pressed as lower and upper bounds, as for many
techniques the performance depends on the config-
uration of the volume data. For each technique, we
estimate the difference between the final view and
the view rendered without the acceleration tech-
nique.
Looking at Table 1, we see that some techniques
result in large image errors. These techniques
clearly trade quality for speed. We chose not to
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Fig. 1a±d. Three techniques to illuminate the volume:
a sample from voxel to light source to calculate the amount
of absorbing material; b use light information at previous
layer to calculate illumination value; c follow a bundle of
rays from light source through the volume; the light ray gives
off part of the intensity to the voxels it passes

Fig. 2. Illumination artefacts with back interpolation: layer n
is processed first, then layer n + 1. The value of voxel 7 is
based on interpolating the values of voxels 3 and 4. In re-
peating the procedure for the next layers, the shadow gets
broader

Fig. 3a±c. Origin of ripples in illuminating the volume with
a bundle of light rays: a seven illumination rays ± each voxel
describes which ray hits the voxel and in which order;
b resulting illumination buffer with ripple pattern at right
side; c effect on rendering a 50�50�50 cube



use them, as we want to offer the user a clear view
with no missing details. Nonetheless, we accept a
low-quality first view update as long as the final
view shows all details. A second conclusion we
draw from Table 1 is that, without hardware, one
technique alone is not sufficient to obtain interac-
tive volume rendering. In addition, the perfor-
mance of some techniques depends so much on
the configuration of the volume data that a con-
stant acceleration is not guaranteed. We have tried
to alleviate this problem by combining accelera-
tion techniques. As there are more acceleration
techniques available for ray casting, our renderer
uses the following techniques: adaptive refine-
ment, adaptive subdivision, adaptive ray termina-
tion, template based viewing, local volume update,
view movement and blur prevention.

4 Volume-rendering accelerations
for interactive analysis

In contrast to rendering single views, interactive
visualization renders views of a large coherence.
Renderers capable of recognizing the coherence

can save time if there is no need to recalculate
the parts. The first point is to let the renderer rec-
ognize whether the illumination phase is indeed
necessary. In practice, the illumination phase only
needs to be recalculated upon a change of the light
source, a change in the volume data, or a changed
absorption of fluorophores in the illumination
phase. Other changes, such as colour or absorption
of fluorophores in the viewing phase, do not re-
quire new illumination calculations.
The second point is that, with many user interac-
tions, only part of the view changes. Examples
are changes in colour of a part of the volume data,
manipulation (movement or rotation) of a 3D ob-
ject or translation of the view. A renderer that rec-
ognizes the coherence in these situations will ac-
celerate the viewing phase considerably.

4.1 Illumination phase

For the illumination of the confocal image, we
have to choose between two illumination tech-
niques: (1) start from a voxel and calculate how
much light it receives or (2) follow light rays
through the volume. The computational complexi-
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Table 1: Properties of volume render acceleration techniques

Technique Voxel/raya Segmen-
tationb

Acceleration
factor

Image error
(percentage)c

Ease of im-
plementationd

Adaptive subdivision (Levoy 1990a,
Shu and Lin 1991, Akimoto et al. 1991)

r No 5±10 3±10 0

Adaptive refinement (Levoy 1990a, this paper) r No 5±50 30�>0 0
Adaptive ray termination (Levoy 1990b) v/r No 1±100 0±1 +
Voxel group projection (Laur and Hanrahan 1991) v Yes 10±100 10 0
Presence acceleration (Zuiderveld et al. 1992;

Danskin and Hanrahan 1992)
v Yes 3±10 0 +

Adaptive sampling (Danskin and Hanrahan 1992) r No 2±3 3±10 �
(Lacroute and Levoy 1994) v No 2±3 3±10 �

Template based viewing (Yagel and Kaufman 1992) r Yes 5 10e 0
(this paper) r No 2 0±1 �

Shear-warp projection (Lacroute and Levoy 1994) v No 2±3 5 0
v Yes 1±2 5 �

Local volume update (Shen 1994; this paper) r No 3±500 0±1 +
Blur prevention (this paper) r No 1±5 0 0
View movement (this paper) v/r No 1±100 0 +

a Image rendered by (v) projecting voxels; (r), casting rays
b Segmentation of data set required before acceleration technique can take effect
c RGB difference, black and white differ 100% (see Eq. 1)
d � difficult, 0 normal, + easy
e 0% error for binary volumes



ties are 2(n4) and 2(n3). In both cases, the illumi-
nation is accelerated if a small loss in quality is al-
lowed by reducing the size of the light buffer (in-
verse of shadow buffer) by a factor r. To reduce
ripple patterns caused by the second approach,
voxels are illuminated with more than one ray by
increasing the ray density by a factor r. With these

modifications, the complexities become O n4

r4

� �
and

O r n3

r3

� �
: The ratio between the complexities of

these two methods is n
rr ; which means that, for con-

focal images in general, n = 100, boiling down to
an image of one million voxels. In most images,
strong absorbing boundaries are rare, and setting
r to 1 provides sufficient quality. Only in extreme
cases must the ray density be increased. The ratio
then diminishes to 100

r : We see that r should be
very large for back sampling to be superior to
ray illumination. Therefore, we prefer to illuminate
the data set with a bundle of rays.
For a fast and uniform illumination of the data set,
we use the same sampling technique as in tem-
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Fig. 4. Template-based viewing of binary volumes

Fig. 5. Illumination with ray templates. The base plane contains start and stop indices of individual rays

Fig. 6a±c. Calculation of start indices of the base plane of Fig. 5: a calculate indices for rays passing the volume edges; b fill
horizontal strips. When strip starts and ends with the same edge index, all rays of the strip enter the volume at the same index;
c idem for vertical strips

6a 6b 6c



plate-based viewing (Fig. 4). This means that all
light rays are assumed to run parallel, which cor-
responds to a light source at infinity. The rays
with an intermediate distance of one voxel pro-
vide uniform illumination. The face of the volume
of which the normal vector has the minimal angle
between the light rays and is closest to the light
source is the principal face. By illuminating the
volume, we follow every ray from the base plane
(parallel to the principal face) until the ray leaves
the volume or has lost all intensity. With template
rays, each voxel is illuminated once. To reduce
the ripple pattern, the hit density r is increased
by reilluminating the volume with ray templates
that have been calculated with different initial off-
sets.
The computational complexity of template-based
illumination is 2(tsn

3 + ti n2), where ts denotes
the time per sample for an illumination calculation
and ti denotes the time needed to calculate at which
sample a ray enters or leaves the volume. If
ts << ti, for instance, when the illumination stops
after a few samples due to a strong absorbing vol-
ume object, the illumination phase can be acceler-
ated, not when entrance and exit points of a ray are
calculated on the fly, but when they are calculated
beforehand. When considering the entrance points
of the rays passing through the edges of the vol-
ume, we see that, when starting from the same
sample position, the rays in the same strip start
from the same position (Figs. 5, 6a). Thus, only
the entrance and exit positions have to be calculat-
ed for rays through the edges of the volume, and
the indices of the other rays have to be filled in
by looking at the indices of the edge rays
(Fig. 6b±c). This gives a computational complexi-
ty of 2(ts n3 + tf n2 + ti 8n), where the filling time tf
is far lower than ti.
When only a part of the volume changes, as is the
case with interactive manipulation, not all illumi-
nation rays need to be recalculated. These rays
are determined by projecting the affected volume
onto the base plane. An extra plane parallel to
the base plane (refresh surface) stores the rays that
need to be recalculated. We chose to represent the
affected volume by the closest encompassing
block, as the projection is easy to calculate. After
all affected volumes have been projected on the re-
fresh surface, the surface is traversed to see which
illumination rays need to be recalculated. As the il-
lumination angle has not changed since the previ-

ous situation, we can use the same entrance and
exit points. This means no calculation for this sit-
uation (ts = ti = 0) is required. If the fraction of re-
calculated rays is given by f, the computational
complexity becomes 2(fts n3).

4.2 Viewing phase

In the viewing phase we combine several acceler-
ation techniques from Table 1. Some have already
been described in the literature; others are new.
First, we describe how template-based viewing is
adapted to visualize grey-value volumes. Second-
ly, we describe an adaptive refresh scheme from
which more profit is gained from the coherence be-
tween views in interactive visualization.
We have modified template-based viewing on sev-
eral points for a more appropriate visualization of
grey-value volumes. The first modification is not
calculating the total view on the base plane and
then projecting it on the screen, but rather starting
from the screen and determining which rays have
to be traced. In this way we avoid tracing invisible
rays that fall outside the view, as well as a projec-
tion of the total view if only a part changes. The
modification also makes template-based viewing
suitable for acceleration by adaptive refinement
techniques.
The second modification is interpolating along the
ray because, with the original implementation,
grey-value volumes are rendered with poor quality.
We considered four interpolation strategies: (1) in-
terpolation in template-based viewing, (2) nearest-
neighbour interpolation, (3) bilinear interpolation,
and (4) trilinear interpolation. The interpolation
strategies are illustrated in Fig. 7; the correspond-
ing qualities of a zoom operation for rendering a
grey-valued volume are shown in Fig. 8.
(1) With the interpolation strategy used in the orig-
inal implementation of template-based viewing,
samples are restricted to one ray template. Al-
though the rendering time is short (0.2 s on a 86
SPECfp92 machine), the corresponding quality is
poor.
(2) Template-based viewing can be improved by
letting the template alter its shape, if the template
ray does not exactly intersect the view pixel at the
centre. This is implemented as follows. In addition
to the volume position, we also store the differ-
ence with the theoretical ray for each sample posi-
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tion of the template. The template is chosen below
the theoretical ray in each direction, in such a way
that the difference is always positive and maxim-
ally one voxel. For each view pixel, we select the
template ray that starts below this view pixel. The
template is traversed, and at each sample position,
the differences are added up. If the sum exceeds
0.5, the sample position is moved to a higher po-
sition. This resulting interpolation strategy corre-
sponds to nearest-neighbour interpolation. Com-
pared to the strategy 1, the rendering time is much
longer (1.0 s), and the quality is only slightly bet-
ter.
(3) A second improvement is to alter the shape of
the template, and to use the remaining difference
for bilinear interpolation. The rendering is approx-
imately twice as long as with the previous strategy
(1.9 s), but the quality is considerably improved.

(4) We compared the three interpolation strategies
described with digital differential analyser (DDA)
sampling in combination with trilinear interpola-
tion. The sampling step has been chosen to be
the size of one voxel. The third interpolation strat-
egy can be considered as a special case of strategy
4, where the sampling step has been chosen in such
a way that each sample lies on a plane through the
voxel centres. In Fig. 7c, the sampling step is 1.4
times the size of a voxel. With trilinear interpola-
tion, the rendering time is 2.5 times longer than
with strategy 3 (5.0 s), but the increase in quality
is hardly visible.
Comparing the four interpolation strategies, we
clearly see a trade-off between rendering speed
and rendering quality. The first interpolation strat-
egy is by far the fastest and should be used when
each view pixel maps to a different ray template,
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Fig. 7a±d. Interpolation strategy: a template-based viewing; b nearest-neighbour interpolation; c bilinear interpolation;
d trilinear interpolation

Fig. 8. Rendering quality of zooming in on a grey-value volume with the interpolation strategies of Fig. 7 (volume 80�70�16;
views 128�128): a template-based viewing; b nearest-neighbor interpolation; c bilinear interpolation; d trilinear interpolation



or if the transparency of the volume object is high
and sharp transitions hardly occur. In other cases,
the bilinear interpolation strategy should be used,
as it offers the best quality with a minimum of cal-
culation time.
In the next step, we developed an adaptive scheme
to make more use of the coherence between subse-
quent views. First, we converted the refresh
scheme of Akimoto et al. (1991) to enable succes-
sive refinement. In the original implementation,
the view is built in several passes (Fig. 9). In the
first pass, the exact colour is determined by tracing
each pixel on a raster with spacing d. In subsequent
passes, the colour variation of the neighbouring
pixels v, is compared to a threshold a. If v > a,
the colour is determined from ray tracing; other-
wise, by interpolating the pixel colours of the four
neighbouring pixels. For successive refinement, it
is necessary to store the variation values in a re-
fresh surface to avoid redundant variation calcula-
tions. A value in the refresh surface, a refresh val-
ue r, is coded in an integer with the following
meaning:
r > 0: v = r, colour interpolated
r<0: v = �r, colour from ray tracing
r = ¥: variation should be determined from neigh-
bour pixels.

The refreshing is started by setting all refresh val-
ues to ¥.
After the first iteration, the view is refined by re-
ducing the variation threshold a or spacing d. Each
time, all pixels are accessed in the same order. If
the variation value of an interpolated pixel is high-
er than a, the colour of the pixel is determined
from ray casting, and the refresh value is negated.
It broadcasts its change to the pixels that depend
on this pixel. If the value is lower, the pixel colour
does not change. Updates end when all pixels have
been ray traced. The final error therefore is 0%.
With adaptive refinement, views are rendered with
more and more detail. The first update can be
speeded up by using a high variation threshold,
but has the disadvantage of low quality. A better
quality can be obtained by recognizing that, for us-
er interactions, large parts of the view usually re-
main the same. We distinguish four types of user
interaction:

± Change of total view, e.g. change in view angle
or rendering quality

± Change of an unknown part of the view, e.g. the
changing part may be difficult to calculate
(change in colour or absorbing capacities of part
of the volume data)

± Change of a localized part of the view, e.g.
movement of 3D cursor

± Translations of the view, e.g. during close in-
spection.

We have accelerated the adaptive refinement
scheme to accommodate these interactions. The
first method of acceleration is blur prevention,
which avoids unnecessary blurring in areas where
the volume data do not change. When a new pixel
colour is calculated, it is compared to the old col-
our. If

R0ÿR1�G0ÿG1�B0ÿB1

3
< 1:5%; �1�

the difference is considered unnoticeable. In that
case, the broadcast to pixels depending on this pix-
el does not take place. For such a pixel, if the col-
our variation is lower than the variation threshold
and all neighbouring pixels did not broadcast, in-
terpolation is skipped. The result of the blur pre-
vention is not a faster rendering time, but a better
quality within the same amount of time.
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Fig. 9. Pixel calculation sequence for refresh surface.
First pass, calculate value of number 1 pixels, raster dis-
tance d = 4, offset from image origin (ox, oy). Second
pass, calculate the values of number 2 pixels based on
the value of four closest number 1 pixels. If their colour
variance exceeds a threshold, the pixel is calculated else
interpolated. The process is repeated for the other pixels.
Number 3 pixels are based on the value of the four closest
number 1 and 2 pixels; number 4 pixels on 1, 2 and 3 pix-
els; and number 5 pixels on 1, 2, 3 and 4 pixels



The second acceleration, local volume update, is
mostly used when data change in the volume, e.g.
in moving a 3D object. Then, the view changes at
several positions: the old and the new positions of
the object and its shadow. We mounted a table un-
derneath the volume data with an absorbing layer to
get a more effective shadow cue and a second view
from reflection. We allow an artefact and do not re-
render the shadow on other volume objects as these
shadows can be relatively large, but play only a mi-
nor role in the actual perception of the object. All
changed parts of the view are marked on the refresh
surface by making the refresh values positive. After
all parts have been drawn, the pixels that need to be
refreshed are calculated or interpolated with the de-
scribed adaptive refinement scheme. The speed-up
is proportional to the area of the changed parts di-
vided by the total view area.
The third acceleration, view movement, is based
on the strong correlation between two views when
translating one with respect to the other. In that
case, we round off a subvoxel translation to integer
pixel coordinates and shift the view together with
the refresh surface. The offsets of the raster (ox, oy)
change so that the same view positions lie on the
raster. After translating the view, a new part is un-
covered by setting the refresh values to ¥. The
speed-up is proportional to the area of the uncov-
ered part divided by the total view area.
The degree to which a user experiences interac-
tiveness depends on the loop that controls the
adaptive refinement process. In our implementa-
tion, the adaptive refinement process is controlled
by the spacing d and variation threshold a. After
each refinement, the value of d or a is decreased.
As d can only take a limited number of values,
we prefer d to depend on a and to control the re-
finement process through variable a. Before each
refinement sequence, a starts with the value a0
and decreases after each iteration by Da. Both a0
and Da are adjusted thereafter: a0 after the first re-
sponse, Da after the next refinements. It appears
that this control loop is insufficient for the routine
to come back at regular times, especially if d de-
creases from 2 to 1 and suddenly all remaining
rays are cast. We decided to allow the refinement
routine to return also if the number of cast rays ex-
ceeds a predefined maximum. By means of flags,
the routine remembers which rays have been
traced so that the refinement can easily be contin-
ued in the next call.

With these modifications, we expect the renderer
to generate views with higher quality in the same
amount of time, as it effectively uses the informa-
tion from the previous view. We shall illustrate this
with the interactive analysis of a confocal image of
a blood vessel and nerves of a cat retina.

5 Interaction times

To illustrate how the modifications of the adaptive
refinement scheme affect the rendering time and
view quality, we interactively analyse the confocal
image of a blood vessel and nerves of a cat retina
(Fig. 10) with the help of the white 3D probe in the
bottom left corner. The image has been recorded
with two fluorescent dyes: one labels the blood
vessel, the other, the nerves. Each labelling results
in a grey-value volume image, while the cursor is
scan-converted into another grey-value image (ge-
ometry volume). Thus three volumes are passed in
rendering the view: vessel, nerve and geometry
volume. As the view has a size of 256 � 256 pix-
els, the quality offered by the interpolation tech-
niques shown in Fig. 7a and b is insufficient be-
cause several pixels would map to the same view
template. Therefore, we prefer the sampling quali-
ty as visualized in Fig. 7c. From the time to render
Fig. 7c, we estimate that Fig. 10 is rendered in 53 s
(4� larger view, 3� more volumes, 2� more sam-
ples along a ray). In practice, the rendering time
appears to be far shorter (20 s) due to the large ex-
tent of empty space around the volume.
Starting from the situation of Fig. 10, we simulate
the following interactions: a slight change in view
angle, darkening the colour of the nerves, moving
a 3D cursor and translating the view. For all inter-
actions, we do not need to reilluminate the volume
(only a small part of the volume is reilluminated
when the cursor is moved). Each time, the view
is calculated by two implementations: the first
one where the rendering of a view starts from
scratch after a change, and the second where we
have implemented our modifications. As a mea-
sure of quality, we calculate the mean difference
<E > between all pixel values of the current view
and the pixel values of the final view. The timings
are performed on a SGI Indy equipped with a
R4400SC CPU running at 150 MHz (86
SPECfp92, 82SPECint 92) with 64 MB main
memory.
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The difference for each view update with the two
implementations is shown in Fig. 11. Each marker
corresponds to one view update. If the rendering
starts from scratch, the difference for the first three
interactions similarly decreases with time
(Fig. 11a). The difference decreases more slowly
for the view translation, as a larger part of the vol-
ume is visible, which requires more volume traces.
If we apply our modifications, we get the graphs of
Fig. 11b. The first updates are shown in Fig. 12.
When comparing Fig. 11a and b, we see that, for
a change in view, the corresponding graphs are
similar. The reason is that almost all pixels get a
new colour upon a change in view angle. For the

change in nerve intensity, the difference E is lower
for the second implementation because there are
no unnecessary distracting interpolations. In mov-
ing the 3D cursor, the difference remains small, as
only a small part of the view is affected. Finally,
for translating the view, the difference for the sec-
ond implementation is about three times less, as
only 33% of the view needs to be re-rendered.
We conclude that the second implementation pro-
duces views with an equal or better quality in the
same time as the first implementation without
our modifications. The speed-up may vary from
0 (change in view angle) to 1500% (movement
of a 3D cursor).
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Fig. 10. Status before user interaction. Three grey-valued volumes
are rendered at the same time: vessel volume (red), nerve volume
(yellow), geometry volume with cursor (white). Volume size
167�153�33; voxel size 0.16�0.16�0.2 mm3; view 256�256. Confocal
image data published with courtesy of the authors (J.M. Messerli et al.
1993)

Fig. 11a, b. View error E (difference with final situation) as a func-
tion of update time for the four user interactions of Fig. 12: �
changing view angle; s darken nerves; + move 3D cursor; ¨ 33%
horizontal translation. Each marker corresponds with one view update



6 Conclusions

Several techniques have been studied to obtain in-
teractive rates for a volume renderer to be used for
analysing confocal images. Selective illumination,
only when and where it is necessary, increases the
interactive response by several orders of magni-
tude. Template-based illumination has been intro-
duced for an illumination that is faster than tracing
back from each voxel to the light source. At the
same time, the method gives no broadening effects

as with interpolating the illumination value from
the previous layer. The method can easily be
adapted to increase the number of rays that illumi-
nates a voxel. This enables a smooth control be-
tween speed and quality.
For the viewing phase, we adapted template-based
viewing for a grey-value volume to obtain a 2.5
times faster viewing method with the same quality
as in case of DDA sampling combined with trilin-
ear interpolation. Further speed-up is obtained by
taking more advantage of the coherence between
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Fig. 12a±d. First response with improved rendering techniques after four types of user interactions: a change view angle;
b darken nerves; c move 3D cursor; d 33% horizontal translation



two views. In suspending superfluous interpolation
and only redrawing the changed parts, we can ac-
celerate the rendering process up to 1500%.
All the techniques together give a first response
within 1 s for average-sized confocal images on
current workstations. As the speed of computers
increases, we expect a further reduction in re-
sponse time in the near future.
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