
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

The dynamics of imperfect information

Galliani, P.

Publication date
2012

Link to publication

Citation for published version (APA):
Galliani, P. (2012). The dynamics of imperfect information. Institute for Logic, Language and
Computation.

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:26 Jul 2022

https://dare.uva.nl/personal/pure/en/publications/the-dynamics-of-imperfect-information(8b7ccb8a-7685-42d4-ae92-831e2c1fbdf3).html

Chapter 2

Logics of Imperfect Information

This chapter is a brief, and neither comprehensive nor impartial, introduction

to the field of logics of imperfect information. In Section 2.1, we will recall the

history of the development of these logics, from Branching Quantifier Logic to

Dependence Logic; and then, in Section 2.2, we will discuss in some detail the

definition and the known properties of Dependence Logic and of its variants.

Our treatment of Game Theoretic Semantics in Subsection 2.2.3 is somewhat

different from the usual one in that we only consider memory-free strategies for

our agents; but apart from this, the first two sections of this chapter can be

seen as little more than a very condensed and somewhat updated exposition of

[65].

Section 2.3, instead, contains novel results. Subsection 2.3.1 is a summary

of the main theorem of [8], in which Cameron and Hodges proved, through

a combinatorial argument, that no Tarski-like semantics exists for a logic of

imperfect information; and Subsection 2.3.2 contains a generalization of this

result developed by the author and published in [28].

Finally, this chapter ends with Section 2.4, in which we briefly introduce

some of the most important variants and extensions of Dependence Logic.

2.1 From Branching Quantifiers to Dependence

Logic

2.1.1 Branching Quantifiers

One aspect of First Order Logic which accounts for much of its expressive power

is the fact that this formalism permits nested quantification, and, in particular,

alternation between existential and universal quantifiers. Through this device, it

9

10 Chapter 2. Logics of Imperfect Information

is possible to specify complex patterns of dependence and independence between

variables: for example, in the sentence

∀x∃y∀z∃wR(x, y, z, w), (2.1)

the existential variable w is a function of both x and z, whereas the existential

variable y is a function of x alone.

As Skolem’s normal form for (2.1) illustrates, nested quantification can be

understood as a restricted form of second-order existential quantification: in-

deed, the above sentence can be seen to be equivalent to

∃f∃g∀x∀zR(x, f(x), z, g(x, z)). (2.2)

In First Order Logic, the notion of quantifier dependence or independence is

intrinsically tied to the notion of scope: an existential quantifier ∃y depends on

an universal quantifier ∀x if and only if the former is in the scope of the latter.

As observed by Henkin in [36], these patterns can be made more general. In

particular, one may consider branching quantifier expressions of the form

Q11x11 . . . Q1mx1m

. . .

Qn1xn1 . . . Qnmxnm

 , (2.3)

where each Qij is ∃ or ∀ and all xij are distinct. The intended interpretation

of such an expression is that each xij may depend on all xij′ for j′ < j, but not

on any xi′j′ for i′ 6= i: for example, in the sentence

(∀x ∃y
∀z ∃w

)

R(x, y, z, w) (2.4)

the variable y depends on x but not on z, and the variable w depends on z but

not on x, and hence the corresponding Skolem expression is

∃f∃g∀x∀zR(x, f(x), z, g(z)) (2.5)

If, as we said, quantifier alternation in First Order Logic can be understood as

a restricted form of second order existential quantification, then, as a compari-

son between (2.2) and (2.5) makes clear, allowing branching quantifiers can be

understood as a weakening of these restrictions.

How restricted is second order existential quantification in Branching Quan-

tifier Logic, that is, in First Order Logic extended with branching quantifiers

2.1. From Branching Quantifiers to Dependence Logic 11

As proved by Enderton and Walkoe in [18] and [73], the answer is not re-

stricted at all ! Branching Quantifier Logic is precisely as expressive as Exis-

tential Second Order Logic (Σ1
1). Hence, Branching Quantifier Logic can be

understood as an alternative approach to the study of Σ1
1, of its fragments and

of its extensions; and indeed, much of the research done on the subject (as well

as on the formalisms which we will describe in the next sections) can be seen as

an attempt to study Σ1
1 through the lens of these variants of first-order logic.

2.1.2 Independence Friendly Logic

One striking aspect of the history of logics of imperfect information is how, in

many cases, apparently minor modifications to the syntax of a formalism can

bring forward profound consequences and insights.

The development of Independence Friendly Logic [39, 37, 54], also called

IF Logic, is a clear example of this phenomenon. On a superficial level, the

language of IF Logic is a straightforward linearization of the one of Branching

Quantifier Logic: rather than dealing the unwieldy quantifier matrices of (2.3),

Hintikka and Sandu introduced slashed quantifiers ∃v/V with the intended in-

terpretation of “there exists a v, chosen independently from the variables in V ”.

For example, the sentence (2.4) can be translated in IF Logic as

∀x∃y∀z(∃w/{x, y})R(x, y, z, w) (2.6)

This – at first sight entirely unproblematic – modification led to a number of

important innovations on the semantical side.

Game-theoretical explanations for the semantics of branching quantifiers

predate the development of IF Logic; but it is with IF Logic that the Game

Theoretic Semantics [40] for First Order Logic was extended and adapted to

a logic of imperfect information in a formal way. In Subsection 2.2.3, we will

present in detail a successor of the Game Theoretic Semantics for IF Logic; but

for now, we will limit ourselves to saying that, in the Game Theoretic Semantics

for IF Logic, slashed quantifiers correspond to imperfect information moves in

which the corresponding player has to select a value for the quantified variable

without having access to the values of the slashed variables.

One interesting phenomenon that IF Logic brings in evidence is signalling.

Even if a quantified variable is specified to be independent from a previous

variable, it is possible to use other quantifiers occurring between the two in

order to encode the value of the supposedly “invisible” variable. For example,

12 Chapter 2. Logics of Imperfect Information

it is easy to see that the sentence

∀x(∃y/{x})(x = y), (2.7)

corresponding to the Branching Quantifier expression

(∀x
∃y

)

(x = y), (2.8)

is not true in any model with at least two elements: indeed, it is not possible

for y to be chosen independently from x and still be equal to x in all possible

cases.

However, the variant of (2.7) given by

∀x∃z(∃y/{x})(x = y), (2.9)

which may be represented in Branching Quantifier Logic as

(∀x ∃z
∀z′ ∃y

)

(z = z′ → x = y), (2.10)

is instead valid: even if the value of y is to be chosen independently of the value

of x, it is possible to let z = x and then choose y = z (or y = z′, in the case of

the Branching Quantifier formulation).

Signalling, at first, was considered a problematic phenomenon: for example,

the variant of IF Logic presented in [38] attempts to prevent it by requiring

existential variables to be always independent on previous existential variables.

However, such attempts are not without drawbacks (Janssen’s paper [47] con-

tains an in-depth discussion of this topic), and most of the modern work on IF

Logic tends instead to treat signalling as a useful, if subtle, property of IF Logic

([54]).

Although the Game Theoretic Semantics for IF Logic is a relatively straight-

forward generalization of the Game Theoretic Semantics for First Order Logic,

there is no obvious way of extending Tarski’s compositional semantics to the

case of IF Logic. In [42], however, Hodges succeeded in finding such a gener-

alization, the Team Semantics which we will describe in Subsection 2.2.1.1 In

Team Semantics, satisfaction is predicated over sets of assignments (which, fol-

lowing [65], we will call teams), and not over single assignments; and the notion

of informational independence contained in the game-theoretical interpretation

1The name “Team Semantics” originates from Väänänen’s work on Dependence Logic [65],
and is now the most common name for this semantical framework.

2.1. From Branching Quantifiers to Dependence Logic 13

of slashed quantifiers is now represented as

TS-∃-slash: M |=X (∃x/V)φ if and only if there exists a function F : X →
Dom(M) such that

1. If s, s′ ∈ X assign the same values to all variables other than those

in V then F (s) = F (s′);

2. For X [F/v] = {s[F (s)/v] : s ∈ X}, it holds that M |=X[F/v] ψ.

As we will see in Subsection 2.3.1, Cameron and Hodges proved in [8] that

it is not possible to create a compositional semantics for IF Logic in which,

over finite models, the satisfaction is predicated in terms of single assignments;

and, as we will see in Section 2.3.2, this result can be extended to the infinite

case if we add a further, natural requirement to our semantics. So, in a sense,

Team Semantics is the optimal compositional semantics for logics of imperfect

information.

2.1.3 Dependence Logic

In Branching Quantifier Logic and IF Logic both, independence and indepen-

dence are predicated about quantifiers. We can say that a given quantifier ∃y
is dependent, or independent, on another quantifier ∀x: but neither of these

languages offers any instrument to assert that a variable y is dependent, or

independent, on another variable x.

Väänänen’s Dependence Logic (which we will abbreviate as D) arises from

the observation that this need not be the case: in the framework of Team

Semantics, one may certainly ask whether, with respect to a team X , y is

functionally dependent on x, in the sense that

∀s, s′ ∈ X, s(x) = s′(x) ⇒ s(y) = s′(y). (2.11)

This notion of functional dependence is one of the central concepts of Database

theory, and has been studied extensively in this context[58, 13]. On the level of

sentences, Dependence Logic is equivalent to IF Logic or Branching Quantifier

Logic; and the same can be said even about open formulas, as long as the set

Var of all relevant variables is known and finite (see [65] for the details). How-

ever, the possibility of enquiring directly about dependencies or independencies

between free variables is no small advantage.

In Dependence Logic, the assertion that y is functionally dependent on x

is written as = (x, y), and, analogously, the assertion that y is functionally

dependent on an empty sequence of variables (that is, that y is constant) is

14 Chapter 2. Logics of Imperfect Information

written =(y). It may be instructive to attempt to reproduce the example of

signalling of the previous section in this language: whereas (2.7) is translated

as

∀x∃y(=(y) ∧ x = y), (2.12)

(2.9) is translated as

∀x∃z∃y(=(z, y) ∧ x = y) (2.13)

Differently from the case of IF Logic, the functional dependency of y from

z is now explicitly declared; and that cannot be avoided, because the Locality

Theorem (Proposition 2.2.8 here) states that only the variables which occur free

in a Dependence Logic subformula are relevant for its interpretation. Hence,

Dependence Logic makes the phenomenon of signalling far less mysterious than

it is in IF Logic: instead of a “spooky action at a distance” of a variable z over

a subformula (∃y/{x})(x = y) in which such variable does not occur, we now

have the perfectly plain fact that if y is a function of z and z can be a function

of x then y can be a function of x.2

In Section 2.2, we will discuss the language and the semantics of Depen-

dence Logic in more detail. For now, it will suffice to point out out that the

development of Dependence Logic has led to a wealth of model-theoretic results,

some of which we will recall in Subsection 2.2.2, which advanced significantly

our understanding of this class of logics; and that, furthermore, this formalism

proved itself highly amenable to the development of variants and extensions,

some of which we will describe in Section 2.4.

2.2 Dependence Logic and its Extensions

2.2.1 Team Semantics

Hodges’ Team Semantics [42, 65] is the fundamental semantical framework for

Dependence Logic, and its interpretation in terms of doxastic states lies at the

root of much of its work. In this subsection, we will recall its definition; then in

Subsection 2.2.2 we will point out some useful properties of Dependence Logic,

and in Subsection 2.2.3 we will define an equivalent Game Theoretic Semantics.

As is common in the study of Dependence Logic, we will assume that all

formulas are in Negation Normal Form3. Hence, the language of Dependence

2This is, in essence, nothing more than William Ward Armstrong’s axiom of transitivity

for functional dependence ([4]).
3The reason for this choice, in brief, is that dual negation in Dependence Logic is not a

semantic operation, in the sense that not much can be inferred about the falsity conditions
of a sentence from its truth conditions. See [7] for the formal statement and proof, and [51]

2.2. Dependence Logic and its Extensions 15

Logic will be defined as follows:

Definition 2.2.1. Let Σ be a first order signature. The Dependence Logic

formulas over this signature are given by

φ ::= R~t | ¬R~t | =(t1 . . . tn) | φ ∨ φ | φ ∧ φ | ∃vφ | ∀vφ

where R ranges over all relation symbols of our signature, ~t ranges over all tuples

of terms of the required lengths, n ranges over N, t1 . . . tn range over the terms

of our signature, and v ranges over the set Var of all variables of our language.4

As can be seen from this definition, the language of Dependence Logic ex-

tends the one of First Order Logic with dependence atoms =(t1 . . . tn), whose in-

tended interpretation is “the value of tn is a function of the values of t1 . . . tn−1”.

The set Free(φ) of all free variables of a formula φ is defined precisely as in

First Order Logic, with the additional condition that all variables occurring in

a dependence atom =(t1 . . . tn) are free in it; and as usual, a formula with no

free variables will be called a sentence.

As we said, a team is a set of assignments:

Definition 2.2.2. LetM be a first order model and let ~v be a tuple of variables.

A team X over M with domain Dom(X) = ~v is a set of variable assignments

from ~v to Dom(M).5

Given a team X and a tuple ~w ⊆ Dom(X), we define Rel~w(X) as the relation

{s(~w) : s ∈ X}. The relation corresponding to a team X will be Rel(X) =

RelDom(X)(X) = {s(Dom(X)) : s ∈ X}.
We now have all the ingredients to give the formal definition of the Team

Semantics of Dependence Logic.

Definition 2.2.3. Let M be a first-order model. Then, for all teams X over

M and all Dependence Logic formulas φ over the same signature of M and with

Free(φ) ⊆ Dom(X), we write M |=X φ if and only if the team X satisfies φ in

M . This satisfaction relation respect the following rules:

TS-lit: For all first-order literals α, M |=X α if and only if for all s ∈ X ,

M |=s α in the usual first order sense;

for the extension of this result to open formulas.
4Expressions of the form =(t1 . . . tn) are usually written =(t1, . . . , tn), with commas sepa-

rating the terms. In this work, we will be quite free in omitting or using commas depending
on which choice is more readable.

5Hence, the domain of a team is only defined up to permutations and repeated elements.
This is entirely unproblematic; but if one wishes to avoid this, there is no harm assuming that
the set of all variables is linearly ordered. Also, we will be quite free in using set-theoretical
terminology when referring to tuples of variables.

16 Chapter 2. Logics of Imperfect Information

TS-dep: For all n ∈ N and all terms t1 . . . tn, M |=X=(t1 . . . tn) if and only if

any two s, s′ ∈ X which assign the same values to t1 . . . tn−1 also assign

the same value to tn;

TS-∨: For all ψ1 and ψ2, M |=X ψ1 ∨ ψ2 if and only if X = X1 ∪X2 for two

subteams X1 and X2 such that M |=X1
ψ1 and M |=X2

ψ2;

TS-∧: For all ψ1 and ψ2, M |=X ψ1∧ψ2 if and only ifM |=X ψ1 andM |=X ψ2;

TS-∃-strict: For all variables v and formulas ψ, M |=X ∃vψ if and only if there

exists a function F : X → Dom(M) such that M |=X[F/v] ψ, where

X [F/v] = {s[F (s)/v] : s ∈ X};

TS-∀: For all variables v and formulas ψ, M |=X ∀vψ if and only if M |=X[M/v]

ψ, where

X [M/v] = {s[m/v] : s ∈ X,m ∈ Dom(M)}.

If φ is a sentence, we say that a model M satisfies φ, and we write M |= φ, if

and only if M |={∅} φ.6

There exists an alternative semantics for existential quantification, which

arises naturally from Engström’s treatment of generalized quantifiers in Depen-

dence Logic ([19]) and which allows one to select more than one new variable

value for assignment. We will call it the lax semantics for existential quantifi-

cation, in comparison to the strict semantics TS-∃-strict which we described

above; and we will define it formally as

TS-∃-lax: For all variables v and formulas ψ, M |=X ∃vψ if and only if7 there

exists a function H : X → Parts(Dom(M))\{∅} such that M |=X[H/v] ψ,

where

X [H/v] = {s[m/v] : s ∈ X,m ∈ H(s)}.

For logics satisfying the Downwards Closure Property (Proposition 2.2.7 here),

the two formulations are equivalent modulo the Axiom of Choice, and TS-∃-
strict has the advantage of being terser; but as we will see in Chapter 4, for such

formalisms as Independence Logic (Subsection 2.4.1) or Inclusion/Exclusion

6The choice of {∅} as the initial team is entirely arbitrary. Because of Propositions 2.2.6
and 2.2.8, a Dependence Logic sentence is either satisfied by all assignments or only by the
empty one.

7Here, and through all of this work, we will write Parts(A) for the set of all subsets of A.

2.2. Dependence Logic and its Extensions 17

Logic (Chapter 4) only TS-∃-lax respects the property of locality (Proposition

2.2.8 here).

We end this section by introducing a family of derived connectives which

will be useful for some parts of the rest of this work.

Definition 2.2.4. Let ψ1 and ψ2 be two Dependence Logic formulas, let ~t be

a tuple of terms, and let u1 and u2 be two variables not occurring in ~t, in ψ1 or

in ψ2. Then we write ψ1 ⊔~t ψ2 as a shorthand for

∃u1∃u2(=(~t, u1)∧ =(~t, u2) ∧ ((u1 = u2 ∧ ψ1) ∨ (u1 6= u2 ∧ ψ2))).

Proposition 2.2.5. For all formulas ψ1 and ψ2, all tuples ~t of terms, all models

M with at least two elements8 whose signature contains that of ψ1 and ψ2 and all

teams X whose domain contains the free variables of ψ1 and ψ2, M |=X ψ1⊔~tψ2

if and only if X = X1∪X2 for two X1 and X2 such that M |=X1
ψ1, M |=X2

ψ2,

and furthermore

s ∈ Xi,~t〈s〉 = ~t〈s′〉 ⇒ s′ ∈ Xi

for all s, s′ ∈ X and all i ∈ {1, 2}.

As a special case of “dependent disjunction”, we have the classical disjunc-

tion ψ1 ⊔ ψ2 := ψ1 ⊔∅ ψ2: and by the above proposition, it is easy to see that

M |=X ψ1 ⊔ ψ2 ⇔M |=X ψ1 or M |=X ψ2

as expected.

2.2.2 Some Known Results

In this section, we will recall some properties Dependence Logic. All results are

from Väänänen’s book [65] unless specified otherwise.

The following four propositions hold for all first-order models M with at

least two elements, all formulas φ over the signature of M and all teams X , and

can be proved by structural induction on φ:

Proposition 2.2.6 ([65], §3.9). M |=∅ φ.

Proposition 2.2.7 (Downwards Closure: [65], §3.10). If M |=X φ and Y ⊆ X

then M |=Y φ.

8In general, we will assume through this whole work that all first-order models which we
are considering have at least two elements. As one-element models are trivial, this is not a
very onerous restriction.

18 Chapter 2. Logics of Imperfect Information

Proposition 2.2.8 (Locality: [65], §3.27). If Y is the restriction of X to the

free variables of φ then

M |=X φ⇔M |=Y φ.

Proposition 2.2.9 ([65], §3.30 and §3.31). If φ is a first-order formula,

M |=X φ if and only if for all s ∈ X, M |=s φ in the usual first order sense.

The next theorem relates Dependence Logic to Σ1
1 on the level of sentences:

Theorem 2.2.10 ([65], §6.3 and §6.15). For any Dependence Logic sentence φ

there exists a Σ1
1 sentence Φ such that M |= φ if and only if M |= Φ. Conversely,

for any Σ1
1 sentence Φ there exists a Dependence Logic sentence φ which is

satisfied if and only if Φ is satisfied.

Exploiting the equivalence between Dependence Logic and Σ1
1, Väänänen

then proved a number of model-theoretic properties of Dependence Logic. Here

we report the Compactness Theorem and the Löwenheim-Skolem Theorem for

Dependence Logic:

Theorem 2.2.11 ([65], §6.4). If T is a set of Dependence Logic sentences over

a finite vocabulary and all finite T ′ ⊆ T are satisfiable then T itself is satisfiable.

Theorem 2.2.12 ([65], §6.5). If φ is a Dependence Logic sentence that has an

infinite model or arbitrarily large finite models then it has models of all infinite

cardinalities.

What about open formulas? Given a Dependence Logic formula, it is pos-

sible to consider the family of all teams which satisfy it; but which families

of teams correspond to the satisfaction condition of some Dependence Logic

formula?

Because of Proposition 2.2.7, it is clear that not all families of teams which

correspond to Σ1
1-definable relations are expressible in terms of the satisfac-

tion conditions of Dependence Logic formulas. However, [65] has the following

result:9

Theorem 2.2.13 ([65], §6.2). Let Σ be a first order signature, let φ(~v) be a

Dependence Logic formula with free variables in φ, and let R be a relation symbol

not in Σ with arity |~v|. Then there exists a Σ1
1 sentence Φ(R), over the signature

of Σ ∪ {R}, such that

M |=X φ⇔M |= Φ(Rel(X))10

9An analogous result was found in [43] with respect to IF Logic.
10Here we write M |= Φ(Rel(X)) to say that if M ′ is the unique extension of M to Σ∪{R}

such that RM′
= Rel(X) then M ′ |= Φ.

2.2. Dependence Logic and its Extensions 19

for all models M with signature Σ and all team X with domain ~v.

Furthermore, R occurs only negatively in Φ.

In [50], Kontinen and Väänänen proved a converse of this result:

Theorem 2.2.14. Let Σ be a first order signature, let R be a relation symbol

not in Σ, let ~v be a tuple of distinct variables with |~v| equal to the arity of R,

and let Φ(R) be a Σ1
1 sentence over Σ∪ {R} in which R occurs only negatively.

Then there exists a Dependence Logic formula φ(~v), with free variables in ~v,

such that

M |=X φ⇔M |= Φ(Rel(X))

for all models M with signature Σ and all nonempty teams X with domain ~v.

We finish this subsection by mentioning an easy corollary of this result which

will be of some use in Chapter 6:

Corollary 2.2.15. Let P be any predicate symbol and let φ(~v, P) be any Depen-

dence Logic formula with Free(φ) = ~v. Then there exists a Dependence Logic

formula φ′(~v) such that

M |=X φ′(~v) ⇔ ∃P s.t. M |=X φ(~v, P)

for all suitable models M and for all teams X whose domain contains ~v.

Proof. By Theorem 2.2.13, there exists a Σ1
1 sentence Φ(R,P), in which R

occurs only negatively, such that

M |=X φ(~v, P) ⇔M |= Φ(X(~v), P)

for all M and all nonempty X with domain Free(φ) = ~v.

Now consider Φ′(R) := ∃PΦ(R,P): by Theorem 2.2.14, there exists a for-

mula φ′(~v) such that, for allM and all nonemptyX with domain ~v, M |=X φ′(~v)

if and only if M |= Φ′(X(~v)).

By Proposition 2.2.8, the same holds for teams whose domains contain prop-

erly ~v; and if X is empty then by Proposition 2.2.6 we have that M |=X φ(~v, P)

andM |=X φ′(~v). Therefore, φ′(~v) is the formula which we were looking for.

Definition 2.2.16. Let φ(~v, P) be any Dependence Logic formula. Then we

write ∃Pφ(~v, P) for the Dependence Logic formula, whose existence follows from

Corollary 2.2.15, such that

M |=X ∃Pφ(~v, P) ⇔ ∃P s.t. M |=X φ(~v, P)

20 Chapter 2. Logics of Imperfect Information

for all suitable models M and all (empty or nonempty) teams X .

Also worth recalling in this subsection is Jarmo Kontinen’s PhD thesis [48],

which contains a number of results about the finite model theory of Dependence

Logic and of fragments thereof. We will not summarize such results here; but we

will mention that in that work Jarmo Kontinen proved that the model checking

problems for even very simple fragments of Dependence Logic are already NP-

complete, and that even relatively small fragments of it do not admit a 0-1

law. We will not make use of these results in the remainder of this work; but

the techniques that have been employed in that thesis, and in particular the

notion of k-coherence that was defined in it, appear to hold no small promise

for further clarifying the finite model theory of Dependence Logic and of its

extensions.

2.2.3 Game Theoretic Semantics

As we mentioned, the Game Theoretic Semantics for logics of imperfect infor-

mation predates the Team Semantics which we discussed in the previous section.

Dependence Logic and the other formalisms which we will examine here take

Team Semantics as their starting point11: however, the role of the interplay

between Team Semantics and Game Theoretic Semantics in the study of logics

of imperfect information is not to be underestimated.

The Game Theoretic Semantics which we describe here differs in some details

from the one defined in [65]: most importantly, here we will only admit memory-

free strategies, which do not look at the past history of the play in order to select

the next position. For the purpose of Dependence Logic, or of any other logic

of imperfect information satisfying the principle of locality, this will not be

problematic: but this should be taken in consideration if one wished to adapt

the results of this work of such a logic such as IF Logic, in which locality fails.12

Definition 2.2.17. Let φ be any Dependence Logic formula. Then Player(φ) ∈
{E, A} is defined as follows:

1. If φ is a first-order literal or a dependence atom, Player(φ) = E;

2. If φ is of the form ψ1 ∨ ψ2 or ∃vψ then Player(φ) = E;

11This differs from the case of IF Logic, in whose study Game Theoretic Semantics is instead
generally taken as the fundamental semantical formalism and Team Semantics is treated as a
sometimes useful technical device.

12The failure of locality in IF Logic is easily seen. Consider any model M with two elements
0 and 1, consider the two teams X = {(x := 0, z := 0), (x := 1, z := 1)} and let φ be
(∃y/{x})(x = y). Then clearly M |=X φ, but for the restriction X′ = {(x := 0), (x := 1)} of
X to Free(φ) it holds that M 6|=X′ φ.

2.2. Dependence Logic and its Extensions 21

3. If φ is of the form ψ1 ∧ ψ2 or ∀vψ then Player(φ) = A.

The positions of our game are pairs (ψ, s), where ψ is a formula and s is an

assignment. The successors of a given position are defined as follows:

Definition 2.2.18. Let M be a first order model, let ψ be a formula and let

s be an assignment over M . Then the set SuccM (ψ, s) of the successors of the

position (ψ, s) is defined as follows:

1. If ψ is a first order literal α then

SuccM (ψ, s) =

{ {(λ, s)} if M |=s α in First Order Logic;

∅ otherwise,

where λ stands for the empty string;

2. If ψ is a dependence atom then SuccM (ψ, s) = {(λ, s)};

3. If ψ is of the form ∃vθ or ∀vθ then SuccM (ψ, s) = {(θ, s[m/v]) : m ∈
Dom(M)};

4. If ψ is of the form θ1 ∨ θ2 or θ1 ∧ θ2 then SuccM (ψ, s) = {(θ1, s), (θ2, s)}.

We can now define formally the semantic games associated to Dependence

Logic formulas:

Definition 2.2.19. Let M be a first-order model, let φ be a Dynamic Depen-

dence Logic formula, and let X be a team. Then the game GMX (φ) is defined as

follows:

• The set I of the initial positions of the game is {(φ, s) : s ∈ X};

• The set W of the winning positions of the game is {(λ, s′) : s′ is an assignment};

• For any position (ψ, s′), the active player is Player(ψ) and the set of

successors is SuccM (ψ, s′).

Definition 2.2.20. Let GMX (φ) be as in the above definition. Then a play of

this game is a finite sequence ~p = p1 . . . pn of positions of the game such that

1. p1 ∈ I is an initial position of the game;

2. For every i ∈ 1 . . . n− 1, pi+1 ∈ SuccM (p1).

If furthermore SuccM (pn) = ∅, we say that ~p is complete; and if pn ∈ W is a

winning position, we say that ~p is winning.

22 Chapter 2. Logics of Imperfect Information

So far, we did not deal with the satisfaction conditions of dependence atoms

at all. Such conditions are made to correspond as uniformity conditions over

sets of plays:

Definition 2.2.21. Let GMX (φ) be a game, and let P be a set of plays in it.

Then P is uniform if and only if for all ~p, ~q ∈ P and for all i, j ∈ N such that

pi = (=(t1 . . . tn), s) and qj = (=(t1 . . . tn), s′) for the same instance of the

dependence atom =(t1 . . . tn),

(t1 . . . tn−1)〈s〉 = (t1 . . . tn−1)〈s′〉 ⇒ tn〈s〉 = tn〈s′〉.

It is not difficult to see that, due to the structure of Dependence Logic

formulas, the above condition only needs to be verified for |~p| = |~q| and i = j.

We will only consider positional strategies, that is, strategies that depend

only on the current position.

Definition 2.2.22. Let GMX (φ) be as above, and let ψ be any expression such

that (ψ, s′) is a possible position of the game for some s′. Then a local strategy

for ψ is a function fψ sending each s′ into a (θ, s′′) ∈ SuccM (ψ, s′).

Definition 2.2.23. Let GMX (φ) be as above, let ~p = p1 . . . pn be a play in it,

and let fψ be a local strategy for some ψ. Then ~p is said to follow fψ if and

only if for all i ∈ 1 . . . n− 1 and all s′,

pi = (ψ, s′) ⇒ pi+1 = fψ(s′).

Definition 2.2.24. Let GMX (φ) be as above. Then a global strategy (for E) in

this game is a function f associating to each expression ψ occurring in some

nonterminal position of the game and such that Player(ψ) = E with some local

strategy fψ for ψ.

Definition 2.2.25. A play ~p of a gameGMX (φ) is said to follow a global strategy

f if and only if it follows fψ for all subformulas ψ of φ with Player(ψ) = E.

Definition 2.2.26. A global strategy f for a game GMX (φ) is said to be winning

if and only if all complete plays which follow f are winning.

Definition 2.2.27. A global strategy f for a game GMX (φ) is said to be uniform

if and only if the set of all complete plays which follow f respects the uniformity

condition of Definition 2.2.21.

The following result then connects the Game Theoretic Semantics and the

Team Semantics for Dependence Logic:

2.2. Dependence Logic and its Extensions 23

Theorem 2.2.28. Let M be a first-order model, let X be a team, and let φ

be any Dependence Logic formula. Then M |=X φ if and only if the existential

player E has a uniform winning strategy for GMX (φ).

The proof of this result is essentially identical to the corresponding proof

of [65]. However, since the Game Theoretic Semantics which we just defined

is slightly different from the one of that book and since this proof will be the

model for a number of similar results of later chapters, it will be useful to report

it in full.

Proof. The proof is by structural induction on φ.

1. If φ is a first-order literal and M |=X φ then M |=s φ for all s ∈ X . But

then the only strategy available to E in GMX (φ) is winning for this game,

and it is trivially uniform.

Conversely, suppose that M 6|=s φ for some s ∈ X . Then the initial

position (φ, s) is not winning and has no successors, and hence E does not

have a winning strategy for this game.

2. If φ is a dependence atom =(t1 . . . tn) then the only strategy available

to E for this game sends each initial position (=(t1 . . . tn), s) (for s ∈ X)

into the winning terminal position (λ, s). This strategy is uniform if and

only if any two assignments s, s′ ∈ X which coincide over t1 . . . tn−1 also

coincide over tn, that is, if and only if M |=X=(t1 . . . tn).

3. If φ is a disjunction ψ1∨ψ2 and M |=X φ then X = X1∪X2 for two teams

X1 and X2 such that M |=X1
ψ1 and M |=X2

ψ2. Then, by induction

hypothesis, there exist two winning uniform strategies f1 and f2 for E in

GMX1
(ψ1) and GMX2

(ψ2) respectively. Then define the strategy f for E in

GMX (ψ1 ∨ ψ2) as follows:

• If θ is part of ψ1 then fθ = (f1)θ;

• If θ is part of ψ2 then fθ = (f2)θ;

• If θ is the initial formula ψ1∨ψ2 then fθ(s) =

{
(ψ1, s) if s ∈ X1;

(ψ2, s) if s ∈ X2\X1.

This strategy is clearly uniform, as any violation of the uniformity con-

dition would be a violation for f1 or f2 too. Furthermore, it is winning:

indeed, any play of GMX (ψ1 ∨ ψ2) in which E follows f strictly contains a

play of GMX1
(ψ1) in which E follows f1 or a play of GMX2

(ψ2) in which E

follows f2, and in either case the game ends in a winning position.

24 Chapter 2. Logics of Imperfect Information

Conversely, suppose that f is a uniform winning strategy for E in GMX (φ).

Now let X1 = {s ∈ X : fφ(s) = (ψ1, s)}, let X2 = {s ∈ X : fφ(s) =

(ψ2, s)}, and let f1 and f2 be the restrictions of f to the subgames cor-

responding to ψ1 and ψ2 respectively. Then f1 and f2 are uniform and

winning for GMX1
(ψ1) and GMX2

(ψ2) respectively, and hence by induction

hypothesis M |=X1
ψ1 and M |=X2

ψ2. But X = X1 ∪X2, and hence this

implies that M |=X φ.

4. If φ is ψ1∧ψ2 for some ψ1 and ψ2 and M |=X ψ1∧ψ2, then M |=X ψ1 and

M |=X ψ2. By induction hypothesis, this implies that E has two uniform

winning strategies f1 and f2 for GMX (ψ1) and GMX (ψ2) respectively. Now

let f be the strategy for GMX (ψ1 ∧ ψ2) which behaves like f1 over the

subgame corresponding to ψ1 and like f2 over the subgame corresponding

to ψ2 (it is not up to E to choose the successors of the initial positions

(ψ1 ∧ ψ2, s), so she needs not specify a strategy for those). This strategy

is winning and uniform, as required, because ψ1 and ψ2 are so.

Conversely, suppose that E has a uniform winning strategy f for GMX (ψ1∧
ψ2). Since the opponent A chooses the successor of the initial positions

{(ψ1 ∧ ψ2, s) : s ∈ X}, any element of {(ψ1, s) : s ∈ X} and of {(ψ2, s) :

s ∈ X} can occur as part of a play in which E follows f . Now, let f1
and f2 be the restrictions of f to the subgames corresponding to ψ1 and

ψ2 respectively: then f1 and f2 are uniform, because f is so, and they

are winning for GMX (ψ1) and GMX (ψ2) respectively, because every play of

these games in which E follows f1 (resp. f2) starting from a position (ψ1, s)

(resp. (ψ2, s)) for s ∈ X can be transformed into a play of GMX (ψ1 ∧ ψ2)

in which E follows f simply by appending the initial position (ψ1 ∧ ψ2, s)

at the beginning.

5. If φ is ∃vψ for some ψ and variable v ∈ Var and M |=X φ then there exists

a F : X → Dom(M) such that M |=X[F/v] ψ. By induction hypothesis,

this implies that E has a uniform winning strategy g for GMX[F/v](ψ). Now

define the strategy f for E in GMX (∃vψ) as

• If θ is part of ψ then fθ = gθ;

• fφ(∃vψ, s) = (ψ, s[F (s)/v]).

Then any play ofGMX (φ) in which E follows f contains a play ofGMX[F/v](ψ)

in which E follows g, and hence f is uniform and winning.

Conversely, suppose that E has a uniform winning strategy f forGMX (∃vψ).

Then define the function F : X → Dom(M) so that for all s ∈ X ,

2.3. Sensible Semantics 25

fφ(∃vψ, s) = (ψ, s[F (s)/v]), and let g be the restriction of f to ψ. Then g

is winning and uniform for GMX[F/v](ψ), and hence by induction hypothesis

M |=X[F/v] ψ, and finally M |=X ∃vψ.

6. If φ is ∀vψ for some ψ and variable v ∈ Var and M |=X φ then M |=X[M/v]

ψ. By induction hypothesis, this implies that E has a uniform winning

strategy f for GMX[M/v](ψ). But then the same f is a uniform winning

strategy for E for GMX (φ), since Player(φ) = A and any play of GMX (φ)

in which E follows f contains a play of GMX[M/v](ψ) in which E follows f .

Conversely, suppose that E has a uniform winning strategy f for GMX (φ).

Then the same f is a uniform strategy for E in GMX[M/v](ψ), and hence by

induction hypothesis M |=X[M/v] ψ, and therefore M |=X φ.

As this theorem illustrates, a team X satisfies a formula φ in a model M if

and only if E has a strategy which is winning and uniform for the corresponding

semantic game and for any initial assignment in X . This can be seen a first

hint of the doxastic interpretation of Team Semantics: indeed, M |=X φ if and

only if a hypothetical agent, who believes that the initial assignment (state of

things) s belongs in X , can be confident that they will win the semantic game

GM (φ).

2.3 Sensible Semantics

This section contains Cameron and Hodges’ result about the combinatorics of

imperfect information ([8]) and their generalization to the infinite case developed

by the author in [28].

The significance of these two results for the purpose of this work is the

following: by observing that there exists no natural semantics for Dependence

Logic in which the satisfaction relation is predicated over single assignments,

we obtain some justification for our choice of Team Semantics as the natural

framework for the study of logics of imperfect information.

2.3.1 The Combinatorics of Imperfect Information

As we recalled in Subsections 2.2.1 and 2.2.2, Team Semantics is a compositional

semantics for logics of imperfect information in which Dependence Logic or

26 Chapter 2. Logics of Imperfect Information

IF Logic formulas are interpreted as downwards-closed13 sets of teams, which,

following Hodges, we will call suits.14

As Hodges showed in [45], the choice of these kinds of objects comes, in

a very natural way, from a careful analysis of the Game Theoretic Semantics

for IF-Logic; but is it possible to find an equivalent semantics whose meaning-

carrying entities are simpler? In particular, is it possible to find such a semantics

in which meanings are sets of assignments, as in the case of Tarski’s semantics

for First Order Logic?

In [8], a negative answer to this question was found, and the corresponding

argument will now be briefly reported. In that paper, Cameron and Hodges

introduced the concept of “adequate semantics” for IF-Logic, which can be

easily adapted to Dependence Logic:

Definition 2.3.1. An adequate semantics for Dependence Logic is a function

µ that associates to each pair (φ,M), where φ is a formula and M is a model

whose signature includes that of φ, a value µM (φ), and that furthermore satisfies

the following two properties:

1. There exists a value TRUE such that, for all sentences φ and all modelsM ,

µM (φ) = TRUE if and only if M |= φ (according to the Game Theoretic

Semantics);

2. For any two formulas φ, ψ and for any sentence χ and any model M

such that µM (φ) = µM (ψ), if χ′ is obtained from χ by substituting an

occurrence of φ in χ with one occurrence of ψ then

µM (χ) = TRUE ⇔ µM (χ′) = TRUE.

The first condition states that the semantics µ coincides with the Game

Theoretic Semantics on sentences, and the second one is a very weak notion

of compositionality (which is easily verified to be implied by compositionality

in the frameworks of both [44] and [46], the latter of whom can be seen as a

descendant of that of [56]).

They also proved the following result:

13Because of Proposition 2.2.7, which is easily seen to hold for IF Logic too.
14More precisely, in Cameron and Hodges’ paper formulas are interpreted as double suits,

that is, pairs of downward-closed sets of sets of assignments which intersect only in the empty
set of assignment. This is because their logic admits a “dual negation” ¬φ as a primitive
operator, and hence their semantics has to keep track explicitly of the truth and the falsity

conditions of formulas. For our purposes, this difference is not significant: indeed, as Cameron
and Hodges proved in Proposition 5.2 of their paper, the number of double suits has the same
asymptotic behaviour of the number of suits modulo a factor of two.

2.3. Sensible Semantics 27

Definition 2.3.2. Let M be a first order model, and let k ∈ N. The a k-suit

over M is a set R of k-ary relations over Dom(M) which is downwards closed, in

the sense that

R ∈ R, S ⊆ R⇒ S ∈ R

for all R,S ∈ Dom(M)k.

Proposition 2.3.3. Let f(n) be the number of 1-suits over a model M with n

elements. Then

f(n) ∈ Ω
(

22n/(
√
π⌊n/2⌋)

)

Cameron and Hodges then verified that there exist finite models in which

every 1-suit corresponds to the interpretation of a formula with one free variable,

and hence that15

Proposition 2.3.4. Let µ be an adequate semantics for Dependence Logic, let

x be any variable, and let n ∈ N. Then there exists a model An with n elements,

such that

|{µAn
(φ(x)) : FV (φ) = {x}}| ≥ f(n).

Furthermore, the signature of An contains only relations.

From this and from the previous proposition, they were able to conclude

at once that, for any k ∈ N, there exists no adequate semantics (and, as a

consequence, no compositional semantics) µ such that µM (φ) is a set of k-tuples

whenever FV (φ) = {x}: indeed, the number of sets of k-tuples of assignments

in a model with n elements is 2(nk), and there exists a n0 ∈ N such that

f(n0) > 2(nk

0). Then, since µ is adequate we must have that |{µAn0
(φ(x)) :

FV (φ) = {x}}| ≥ f(n0) > 2n
k

0 , and this contradicts the hypothesis that µ

interprets formulas with one free variables as k-tuples.

However, as Cameron and Hodges observe, this argument does not carry over

if we let M range only over infinite structures: indeed, in Dependence Logic (or

in IF-Logic) there only exist countably many classes of formulas modulo choice

of predicate symbols16, and therefore for every model A of cardinality κ ≥ ℵ0

there exist at most ω · 2κ = 2κ distinct interpretations of IF-Logic formulas

in A. Hence, there exists an injective function from the equivalence classes of

formulas in A to 1-tuples of elements of A, and in conclusion there exists a

semantics which encodes each such congruence class as a 1-tuple.

15Again, Cameron and Hodges’ results refer to double suits and to IF-Logic rather than to
Dependence Logic, but it is easy to see that their arguments are still valid in the Dependence
Logic case.

16This is not the same of countably many formulas, of course, since the signature might
contain uncountably many relation symbols.

28 Chapter 2. Logics of Imperfect Information

Cameron and Hodges then conjectured that there exists no reasonable way

to turn this mapping into a semantics for IF-Logic:

Common sense suggests that there is no sensible semantics for [IF-

Logic] on infinite structures A, using subsets of the domain of A

as interpretations for formulas with one free variable. But we don’t

know a sensible theorem along these lines.

What I will attempt to do in the rest of this section is to give a precise, natu-

ral definition of “sensible semantics” according to which Cameron and Hodges’

conjecture may be turned into a formal proof: even though, by the cardinality

argument described above, it is possible to find a compositional semantics for

IF-Logic assigning sets of elements to formulas with one free variable, it will be

proved that it is not possible for such a semantics to be also “sensible” according

to this definition.

Furthermore, we will also verify that this property is satisfied by Team Se-

mantics, by Tarski’s semantics for First Order Logic and by Kripke’s semantics

for Modal Logic: this, in addition to the naturalness (at least, according to the

author’s intuitions) of this condition, will go some way in suggesting that this

is a property that we may wish to require any formal semantics to satisfy.

2.3.2 Sensible Semantics of Imperfect Information

Two striking features of Definition 2.3.1. are that

1. The class M of all first order models is not used in any way other than as

an index class for the semantic relation: no matter what relation exists

between two models M and N , no relation is imposed between the func-

tions µM and µN . Even if M and N were isomorphic, nothing could be

said in principle about the relationship between µM (φ) and µN (φ)!

2. The second part of the definition of adequate semantics does not describe

a property of the semantics µ itself, but rather a property of the synonymy

modulo models relation that it induces. This also holds for the notion of

compositionality of [44], albeit not for that of [46]; in any case, in neither

of these two formalisms morphisms between models are required to induce

morphisms between the corresponding “meaning sets”, and in particular

isomorphic models may well correspond to non-isomorphic meaning sets.

These observations justify the following definition:

2.3. Sensible Semantics 29

Definition 2.3.5. Let L be a partial algebra representing the syntax of our

logic17 for some fixed signature18 and let M be the category of the models of L

for the same signature19. Then a sensible semantics for it is a triple (S,Me, µ),

where

• S is a subcategory of the category Set of all sets;

• Me is a functor from M to S;

• For every M ∈ M, µM is a function from L to SM = Me(M) ∈ S, called

the meaning set for L in S

and such that

1. For all φ, ψ, χ ∈ L and for all M ∈ M, if µM (φ) = µM (ψ) and χ′ is

obtained from χ by substituting an occurrence of φ as a subterm of χ

with an occurrence of ψ, then χ′ ∈ L and µM (χ) = µM (χ′);

2. If f : M → N is an isomorphism between two models M,N ∈ M, then

µN = µM ◦ Me(f) for all formulas φ ∈ L.

The first condition is, again, a weak variant of compositionality, plus a ver-

sion of the Husserl Property of [44]: if two formulas have the same interpretation

in a model M then the operation of substituting one for the other sends gram-

matical expressions into grammatical expressions with the same interpretation

in M . One could strengthen this notion of compositionality after the fashion

of [46], by imposing an algebraic structure over each set SM with respect to

the same signature of L and by requiring each µM to be an homomorphism

between L and M , but as this is not necessary for the purpose of this work we

will content ourselves with this simpler statement.

The second condition, instead, tells us something about the way in which

isomorphisms between models induce isomorphisms between formula meanings,

that is, that the diagram of Figure 2.3.2. commutes whenever f is an iso-

morphism: if M and N are isomorphic through f then the interpretation

µN (φ) of any formula φ in the model N can be obtained by taking the in-

terpretation µM (φ) ∈ SM of φ in M and applying the “lifted isomorphism”

Me(f) : SM → SN .

17That is, the objects of L are the well-formed formulas of our logic and the operations of
L are its formation rules.

18If the notion of signature is applicable to the logic we are studying; otherwise, we implicitly
assume that all models and formulas have the same empty signature.

19The choice of morphisms in M is supposed to be given, and to be part of our notion of
model for the semantics which is being considered.

30 Chapter 2. Logics of Imperfect Information

M

N

f

M

SM

SN

Me(f)

S

L

µM

µN

Me

Figure 2.1: Diagram representation of Condition 2 of Definition 2.3.5 (sensible seman-
tics): if f : M → N is an isomorphism then µN (φ) = Me(f)(µN (φ)) for all formulas
φ ∈ L.

Before applying this definition to the case of Dependence Logic, let us verify

its naturality by checking that it applies to a couple of very well-known logics

with their usual semantics, as well as to Dependence Logic with team semantics:

Proposition 2.3.6. Let FO be the language of First Order Logic (for some

signature Σ which we presume fixed), and let M be the category of all first

order models for the same signature.

Furthermore, for every M ∈ M let SM be the disjoint union, for k ranging

over N, of all sets of k-tuples of elements of M20 and let Me be such that

Me(M) = SM for all M ∈ M and

Me(f)(H) = f↑(H) = {(f(m1) . . . f(mk)) : (m1 . . .mk) ∈ H} (2.14)

for all f : M → N and all H ∈ SM .

Now, let µ be the usual Tarski semantics, that is, for every model M and

formula φ(x1 . . . xk) with FV (φ) = {x1 . . . xk} let

µM (φ(x1 . . . xk)) = {(m1 . . .mk) ∈MK : M |=(x1:m1...xk:mk) φ(x1 . . . xk)}.

Then (S,Me, µ) is a sensible semantics for the logic (FO,M).

20In particular, this definition implies that SM contains distinct “empty sets of k-tuples”
for all k ∈ N.

2.3. Sensible Semantics 31

Proof. The first condition is an obvious consequence of the compositionality of

Tarski’s semantics: if Φ[φ] is a well-formed formula, φ is equivalent to ψ in the

model M and FV (φ) = FV (ψ) then Φ[ψ] is also a well-formed formula and it

is equivalent to Φ[φ] in M .

For the second one, it suffices to observe that if f : M → N is an isomor-

phism then

M |=s φ⇔ N |=f◦s φ (2.15)

for all assignments s and all First Order formulas φ.

Mutatis mutandis, the same holds for Kripke’s semantics for Modal Logic:

Proposition 2.3.7. Let ML be the language of modal logic and let M be the

category of all Kripke models M = (W,R, V), where W is the set of possible

worlds, R is a binary relation over W and V is a valutation function from

atomic propositions to subsets of W . Furthermore, for any M = (W,R, V) ∈ M
let SM be the powerset P(W) of W , and, for every f : M → N , let Me(f) :

SM → SN be such that

Me(f)(X) = {f(w) : w ∈ X}

for all X ⊆W .

Finally, let µ be Kripke’s semantics choosing, for each model M = (W,R, V)

and each modal formula φ, the set µM (φ) = {w ∈ W : M |=w φ}: then

(S,Me, µ) is a sensible semantics for (ML,M).

Proof. Again, the first part of the definition is an easy consequence of the com-

positionality of µ. For the second part, it suffices to observe that, if f : M → N

is an isomorphism between Kripke models,

M |=w φ⇔ N |=f(w) φ

for all w in the domain of M , as required.

Finally, Hodges’ Team Semantics for Dependence Logic, whose meaning

sets are the disjoint unions over k ∈ N of the sets of all k-suits, is also sensible:

indeed, for all isomorphisms f : M → N , all sets of k-tuples X and all formulas

φ(x1 . . . xk), M |=X φ(x1 . . . xk) if and only if N |=f↑(X) φ(x1 . . . xk), where f↑
is defined as in Equation 2.14.

Let us now get to the main result of this work. First, we need a simple

lemma:

32 Chapter 2. Logics of Imperfect Information

Lemma 2.3.8. Let (S,Me, µ) be a sensible semantics for (D,M), where D
is the language of Dependence Logic (seen as a partial algebra) and M is the

category of all First Order models. Suppose, furthermore, that TRUE is a dis-

tinguished value such that µM (φ) = TRUE if and only if M |= φ for all models

M and sentences φ. Then µ is an adequate semantics for Dependence Logic.

Proof. Obvious from Definition 2.3.1. and Definition 2.3.5.

Theorem 2.3.9. Let M be the class of all infinite models for a fixed signature,

let SM be the set of all sets of k-tuples of elements of M (for all k), and for

every f : M → N let Me(f) be defined as

Me(f)(X) = {f↑(s) : s ∈ X}.

for all sets of tuples X ∈ SM .

Then, for every k ∈ N, there exists no function µ such that

1. For all models M and formulas φ(x) with only one free variable, µM (S)

is a set of k-tuples;

2. M |= φ ⇔ µM (φ) = TRUE for all M ∈ M, for all φ ∈ D and for some

fixed value TRUE;

3. (S,Me, µ) is a sensible semantics for Dependence Logic with respect to

M.

Proof. Suppose that such a µ exists for some k ∈ N: then, by Lemma 2.3.8, µ

is an adequate semantics for Dependence Logic.

Let f(n) be the number of suits in a finite model M with n elements, let

h(n) = 22(nk)k

, and let n0 be the least number (whose existence follows from

Proposition 2.3.3.) such that f(n0) > h(n0). Furthermore, let An0
be the

relational model with n0 elements, defined as in Proposition 2.3.4., for which

Cameron and Hodges proved that any compositional semantics for Dependence

Logic must assign at least f(n0) distinct interpretations to formulas with exactly

one free variable x.

Now, let the infinite model Bn0
be obtained by adding countably many

new elements {bi : i ∈ N} to An0
, by letting RBn0 = RAn0 for all relations

R in the signature of An0
and by introducing a new unary relation P with

PBn0 = Dom(An0
).

It is then easy to see that, with respect to Bn0
, our semantics must assign

at least f(n0) different meanings to formulas φ with FV (φ) = {x}: indeed, if

2.4. Extensions of Dependence Logic 33

φ(P) is the relativization of φ with respect to the predicate P we have that

µAn0
(φ) = µAn0

(ψ) ⇔ µBn0
(φ(P)) = µBn0

(ψ(P)),

and we already know that |{µAn0
(φ) : FV (φ) = {x}}| = f(n0).

Now, suppose that µ is sensible and µBn0
(φ) is a set of k-tuples for every

formula φ(x): then, since every permutation π : Bn0
→ Bn0

that pointwise fixes

the element of An0
is an automorphism of Bn0

, we have that

Me(π)(µBn0
(φ)) = µBn0

(φ)

for all such π.

But then |µBn0
(φ) : FV (φ) = {x}| ≤ h(n0), since there exist at most 22(n0k)

k

equivalence classes of tuples with respect to the relation

b ≡ b
′ ⇔ ∃f : Bn0

→ Bn0
, f automorphism, s.t. f↑b = c.

Indeed, one may represent such an equivalence class by first specifying

whether it contains any element of An0
, then listing without repetition all el-

ements of An0
occurring in b, padding this into a list m to a length of k by

repeating the last element, and finally encoding each item bi of b as an integer

ti in 1 . . . k in such a way that

• If bi ∈ An0
, mti = bi and mti−1 6= mti whenever ti > 0;

• If bi 6∈ An0
, mti = mti−1 whenever ti > 0;

• ti = tj if and only if bi = bj .

In total, this requires 1 + k log(n0) + k log(k) bits, and therefore there exist at

most 2(n0k)
k such equivalence classes; and since each µBn0

(φ) is an union of

these equivalence classes, there are at most 22(n0k)
k

possible interpretations of

formulas with one free variable.

But this contradicts the fact that f(n0) > h(n0), and hence no such seman-

tics exists.

2.4 Extensions of Dependence Logic

In this last section of the chapter, we will briefly describe some variants of

Dependence Logic. We make no pretence of completeness: in particular, we

will not discuss Modal Dependence Logic [67] and its variants here, nor in any

other part of this thesis.

34 Chapter 2. Logics of Imperfect Information

2.4.1 Independence Logic

Independence Logic (I) is a formalism, developed by Grädel and Väänänen

([33]), which replaces the dependence atoms =(t1 . . . tn) of Dependence Logic

with21 independence atoms ~t2 ⊥~t1 ~t3, where the ~ti are tuples of terms not

necessarily of the same lengths and where

TS-indep: M |=X ~t2 ⊥~t1 ~t3 if and only if any for any two s1, s2 ∈ X with
~t1〈s1〉 = ~t1〈s2〉 there exists a s3 ∈ X with (~t1~t2)〈s1〉 = (~t1~t2)〈s3〉 and

(~t1~t3)〈s2〉 = (~t1~t3)〈s3〉.

This condition is best understood in terms of informational independence: in

brief, M |=X ~t2 ⊥~t1 ~t3 if and only if, in X , all the information about the value

of ~t3 which can be inferred by the values of ~t1 and ~t2 can already be inferred by

the value of ~t1 alone.

The downwards closure property of Proposition 2.2.7 does not transfer to

the case of Independence Logic: for example, the team

X =

x y

s1 0 0

s2 0 1

s3 1 0

s4 1 1

satisfies the independence statement x ⊥∅ y,
22, but the same cannot be said of

its subset

Y =

x y

s1 0 0

s4 1 1

in which, as it is easy to see, x and y are not informationally independent.

As pointed out in [33], a dependence atom =(t1 . . . tn) can be expressed

in Independence Logic as tn ⊥t1...tn−1
tn; and moreover, Theorems 2.2.10 and

2.2.13 can be adapted to the case of Independence Logic, although in the case of

the second one we lose the condition that R occurs only negatively, and hence

we have that

Theorem 2.4.1. Any Dependence Logic sentence is equivalent to some Inde-

pendence Logic sentence, and any Independence Logic sentence is equivalent to

21In this, Independence Logic can be thought of as a variant of Dependence Logic through
generalized dependence atoms, in the sense suggested by Jarmo Kontinen in the conclusion of
[48] and made explicit by Kuusisto in [53].

22As a shorthand, we will occasionally write ~t1 ⊥ ~t2 instead of ~t1 ⊥∅
~t2.

2.4. Extensions of Dependence Logic 35

some Dependence Logic sentence.

However, the problem of finding the equivalent of Theorem 2.2.14 for the

case of Independence Logic in order to characterize the definable classes of teams

of this logic was mentioned in [33] as an open problem:

The main open question raised by the above discussion is the follow-

ing, formulated for finite structures:

Open Problem: Characterize the NP properties of teams that cor-

respond to formulas of independence logic.

In Chapter 4, we will answer this question by proving that all Σ1
1 properties

(and hence, by Fagin’s Theorem, all NP properties) of teams corresponds to

formulas of Independence Logic.23

2.4.2 Intuitionistic and Linear Dependence Logic

In [3], Abramsky and Väänänen examined the adjoints of Dependence Logic

conjunction and disjunction. In other words, they introduced two downwards

closed connectives ψ1 → ψ2 and ψ1 ⊸ ψ2 such that

φ ∧ ψ |= θ ⇔ φ |= ψ → θ

and

φ ∨ ψ |= θ ⇔ φ |= ψ ⊸ θ

respectively.

The satisfaction conditions corresponding to these two requirements are:

TS-→: M |=X ψ → θ if and only if for all Y ⊆ X , M |=Y ψ ⇒ M |=Y θ;

TS-⊸: M |=X ψ ⊸ θ if and only if for all Y such that M |=Y ψ, M |=X∪Y θ.

Because of the similarity between these two rules and the semantics for impli-

cation in intuitionistic and linear logic respectively, the → operator has been

dubbed the “intuitionistic implication” and the ⊸ operator has been dubbed

the “linear implication”, and the languagesD(→) and D(⊸) obtained by adding

them to Dependence Logic have been dubbed Intuitionistic Dependence Logic

and Linear Dependence Logic respectively.

23This result, as well as all the content of that chapter except Section 4.6, has been published
by the author in [30].

36 Chapter 2. Logics of Imperfect Information

One interesting aspect of the linear implication operator, mentioned in [3],

is that it can be used to decompose a dependence atom in terms of constancy

atoms: indeed, for all models M , teams X , integers n ∈ N and terms t1 . . . tn,

one can verify that

M |=X=(t1 . . . tn) ⇔M |=X=(t1) → (. . .→ (=(tn−1) →=(tn)) . . .).

Intuitionistic and Linear Dependence Logic are strictly more expressive than

Dependence Logic: in particular, the set of sentences of these languages is closed

by contradictory negation, since for any model M and sentence φ

M |={∅} φ→ ⊥ ⇔ M |={∅} φ ⊸ ⊥ ⇔M 6|={∅} φ,

and therefore Intuitionistic Dependence Logic and Linear Dependence Logic

both contain Σ1
1 ∪ Π1

1. In [74], Yang proved that Intuitionistic Dependence

Logic is, in fact, equivalent to full Second Order Logic.

2.4.3 Team Logic

Team Logic T [66, 65] extends Dependence Logic with a contradictory negation

operator ∼ φ whose semantics is given by

TS-∼: M |=X∼ φ if and only if M 6|=X φ.

It is a very expressive formalism, which is equivalent to full Second Order Logic

over sentences; and furthermore, as Kontinen and Nurmi proved in [49], all

second-order relations which are definable in Second Order Logic correspond to

classes of teams which are definable in Team Logic.

The language of Team Logic is somewhat different from that of Dependence

Logic or of most other logics of imperfect information. The disjunction φ∨ψ of

Dependence Logic, with the corresponding rule TS-∨, is written in Team Logic

as φ⊗ ψ; instead, φ ∨ ψ in Team Logic represents ∼ ((∼ φ) ∨ (∼ ψ)), which is

easily seen to be equivalent to the “classical” disjunction which we defined as

φ⊔ψ in Subsection 2.2.1. Similarly, the universal quantifier ∀xφ of Dependence

Logic is written in Team Logic as !xφ, and ∀xφ is instead taken as a shorthand

for ∼ (∃x(∼ φ)). One surprising aspect of Team Logic is that a sentence φ ∈ T
can have four possible truth values:

⊥: No team satisfies φ;

⊤: Both ∅ and {∅} satisfy φ;

1: {∅} satisfies φ, but ∅ does not;

2.4. Extensions of Dependence Logic 37

0: ∅ satisfies φ, but {∅} does not.

Team Logic is the most expressive logic of imperfect information which we

will discuss in this work. It is a remarkably powerful formalism, about which

much is not known yet; and while this work is mostly concerned with more

treatable sublogics, it is the hope of the author that the ideas discussed here

(and, in particular, the doxastic interpretation of Chapter 7) may provide some

incentive for the study of this intriguing and powerful logic.

