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Abstract

This paper investigates the network structure of interbank markets, which
has proved to be important for financial stability during the crisis. First,
we describe and map the interbank network in the Netherlands, an excep-
tion in the literature because of its small and open banking environment.
Secondly, we follow recent analyses of interbank markets of Germany and
Italy in estimating the Core Periphery model, using data for the Netherlands
instead. We find a significant Core Periphery structure and discuss model
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1. Introduction

Understanding complex interbank markets is crucial for managing financial

stability, as became clear during the financial crisis. Whereas the relevance

of the network structure prior to crisis was mentioned only infrequently, it

has now caught the attention of both academics (Tirole [30]) and policy

makers (Haldane [22]). Systemic risk and contagion have become keywords

in finance, and debate on their precise content and implications is ongoing.

The network structure has two important implications for policy mak-

ers. First, the network structure is ultimately determined by deeper market

forces that need to be unravelled in order to anticipate monetary policy

responses. Traditionally, the interbank market is considered as a market

that banks can use to co-insure against – idiosyncratic – liquidity shocks

(cf. Bhattacharya and Gale [5]). Interbank exposures can also be seen as

a peer-monitoring device (Flannery [16], Rochet and Tirole [27]) and may

thus improve market discipline. In a broader context, some have argued

that relationships matter in the interbank market. Cocco et al. [10] show

that borrowers pay a lower interest rate on loans from banks with whom

they have a stronger relationships. Such relationship will be reflected in the

network structure.

Secondly, the actual distribution of links between banks affects the sta-

bility of the systems and the possible contagion after large shocks. In a

seminal contribution, Allen and Gale [2] use stylised examples showing that

the fragility of the system depends crucially on the structure of interbank

linkages. If a network is ‘complete’, i.e. all nodes (banks) are connected

to all other nodes, a shock to a single bank can easily be shared between

the banks and thus the stability of the system is safeguarded. If instead

the network becomes clustered, spillover of some of the nodes can become

substantial. The examples in Allen and Gale [2] are clearly simplified and

subsequent research has shown that many other aspects are relevant. For

instance, Gai et al. [18] build a model around unsecured claims, repo activity

and shocks to collateral haircuts. They show that systemic liquidity crises
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as seen in the 2007-2008 crisis can arise with funding contagion spreading

throughout the network.1

Given limitations in data sources, the empirical analysis of the relevance

of financial networks is still lagging theoretical work. In the literature so

far, network structures have been mapped for several countries and these

empirical networks have been used for (deterministic) stress test exercises.2

As noted by Upper [31] in an overview of this literature, the estimated

contagious effects are limited. This is not surprising as the data generally

only covers a single market and because behaviour conditional on defaults

does not change.3 The –limited– empirical work that makes use of the tools

of network theory, and comes closest to our approach, is discussed in the

next section.

The goal of this paper is to find empirical methods providing a stronger

connection between observed interbank markets and theoretical models. To

this end we will analyse a long running panel of bank links for the Nether-

lands. We will estimate measures of complex system network theory as well

as a Core Periphery (CP) structure recently suggested by Craig and von Pe-

ter [13]. Moreover, we will test these attributed network properties formally

and see whether the data contains enough information to select one model

over the other.

Getting a better picture of the network structure will be a crucial step

in developing systemic risk assessments of the interbank market. The idea

of the Core Periphery model a small set of Core banks is highly connected,

while Periphery banks are not connected with each other but only to the

Core. Figure 1 gives a preview of the results. It shows that there are

1Other contributions have been made by, amongst others, Ahnert and Nelson [1] and
Castiglionesi et al. [9], although these models do not explicitly model the network structure
but rather the exposure to a common shock.

2See for instance Upper and Worms [32], van Lelyveld and Liedorp [33], and Degryse
and Nguyen [14].

3See Co-Pierre Georg (Universidad Carlos III de Madrid, Multilayer Financial Net-
works) for efforts to model multi-layered markets.
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few missing links in the Core, and also relatively few existing links in the

Periphery.

Figure 1: Errors of the CP model (right) for the Dutch interbank market on
2005Q1 in the core (left) and in the periphery (right). For the core banks,
the errors are the missing links, whereas for the periphery the links between
any two periphery banks are drawn.

The remainder of this paper is structured as follows. First we place our

contribution within the existing network literature in Section 2. Section 3

describes our data set and empirical approach. Section 4 contains our main

estimation results including a discussion on testing and model selection. In

Section 5, we briefly relate our results to financial stability implications.

Section 6 concludes.

2. Related network literature

Mathematical network or graph theory has been applied to many different

fields such as biology, technological networks, and information science.4 One

4Newman [26] provides a comprehensive review.
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of the earliest theoretical models of a network was introduced by Erdös and

Rényi [15]. In their random graphs, each possible link between any two

nodes can occur with a certain independent and identical probability.

The benchmark Erdös-Rényi model has severe limitations in empirical

applications: it doesn’t allow for some nodes to have a very high degree of

connections. This property of a long tail in the degree distribution has been

widely observed and led to the development of scale-free models by Barabási

and Albert [4], where the probability of forming another link increases pro-

portionally with degree. Theoretically, a scale-free network displays a power

law in the degree distribution.

Currently, the empirical work on the interbank exposures almost exclu-

sively builds on the scale-free model. In one of the earliest descriptions of

interbank network topology, Boss et al. [7] fit power laws on two different

regions in the degree distribution for Austria. Using data from Brazil, Cont

et al. [12] connect a systemic risk measure from the stress test exercises with

local network characteristics, after calculating various properties of the net-

work including the scale-free parameter. Finally, Mart́ınez-Jaramillo et al.

[25] also find large degree heterogeneity in the Mexican interbank market.

Taking a broad perspective, it seems that still a lot of research is necessary

to have an insightful model of the interbank network.

In reviewing the interbank network literature, it is useful to contrast

interbank exposures treated in this paper with overnight interbank transac-

tions. Whereas interbank exposures refer to stock variables on the balance

sheet, interbank transactions are flow variables. Fricke and Lux [17] sum-

marise the findings of the overnight interbank literature, and name explicitly

the apparent scale-free distributions as the main finding.

However, the statistical support for many of these claims has recently

been called into question (Stumpf and Porter [29]). The problem boils down

to the fact that scale-freeness is an asymptotic property, and even in the

largest datasets there are few observations of extreme degrees. In the present

context of the Dutch interbank market, with around 100 banks, it is even
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more difficult to test for scale-freeness.

The difficulty with the random graph and the scale-free network is that

they are purely stochastic, as links are formed following some probability

distribution. For many social and economic environments, it might be useful

to also consider network formation models where nodes form links strategi-

cally. Goyal [21] shows that under a large set of assumptions, equilibrium

networks may arise in which there is one single ’star’-node to which all other

nodes are connected. Babus [3] applies a related model to financial markets

and also finds a star network, which is claimed to reproduce a qualitative

feature of subset of core banks that intermediate between other banks.

Whereas the stochastic network models can be said to be too random, the

strategic models are too little random, because the models ultimately result

in a star structure. In the following two subsections, we discuss two different

mechanisms that generalise of the star structure: Preferential Attachment

and Core Periphery. The aim is to maintain the asymmetry in degree but

in a less extreme way than the star. Both mechanisms can be important for

interbank markets. In Section 4 we will discuss which of the two mechanisms,

if any, is found to be more important in the data.5

2.1. Preferential Attachment

Preferential Attachment refers to the mechanism that was introduced in

Barabási and Albert [4] to generate scale-free networks. In a similar spirit,

Jackson and Rogers [23] propose a network growth model where each period

a new link is added with a fixed outdegree, connecting to existing nodes

depending on their current indegree. For banks something similar may apply,

in the sense that they want to interact with a reliable counterparty that is

5Another related concept is k-cores: the sets of nodes with at least degree k. As will
become clear soon, nodes in in higher k-cores are more likely to belong to the Core (and
not to the Periphery), but the interpretation of the Core is economically more interesting.
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used by many other banks.6

As an extreme form of Preferential Attachment, Cohen-Cole et al. [11] use

a network model with strategic complementarities. Banks are assumed to

simultaneously engage in producing ’loan quantities’, and every bank wants

to be connected to the most active players. The resulting network outcome

is a nested split graph. This model therefore predicts a single but strong

condition that has to be satisfied:

Condition PA: Every bank is either unconnected or connected to all

banks with a degree higher than his own.

Figure 2: Example of a nested split graph as perfect Prefential Attachment

AB C

D

E

F

G

In the example of Figure 2, bank A has 6 links, B and C 5 links and D,

E, F and G 3 links. It can easily be checked that the condition is satisfied.

The darker filled nodes corresponds with the more preferable counterparties.

Note that there is some freedom in nested split graphs, as e.g. additional

links from D to F and from E to G could be added that would not violate

the condition.

6Note that Preferential Attachment is essentially a mechanism that does not depend
on the direction on the link, whereas the direction (i.e. borrowing or lending) is crucial in
understanding an interbank relationship.
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Cohen-Cole et al. [11] are the first to estimate a microfounded network

model on interbank data. The main problem with this representation is the

interpretation of the link in the interbank market. Instead of a strategic

complementarity, a loan between banks can perhaps better be interpreted

as fulfilment of liquidity needs of borrowers, who are happy to be served by

a single lender if possible. It is therefore the question to what extent the

mechanism of Preferential Attachment will be a useful property for describ-

ing the data.

2.2. Core Periphery structure

Another possible generalisation of the star network is a Core Periphery net-

work, where there are multiple Core banks that intermediate between the

Periphery banks, which in turn do not interact with each other. In the social

sciences, the formal notion of Core Periphery structures was introduced by

Borgatti and Everett [6]. Craig and von Peter [13], followed by Fricke and

Lux [17], have recently applied this concept to interbank markets.

The Core Periphery structure is grounded in two implicit assumptions.

First, there are not supposed to be different communities of banks that clus-

ter together for geographical and historical reasons.7 Community detection

can be seen as complementary to Core Periphery structures. Within the

small open banking sector of the Netherlands, community structure is not

expected to play an important role. Second, there is an imposed distinction

between systemically important and unimportant banks. Fricke and Lux

[17] also consider and estimate a continuous version of the Core Periphery

structure; however, the conclusion is that this adaptation of the model alone

does not increase the fit of the model.

To test the concept of an interbank Core Periphery network in a quantita-

tive way, Craig and von Peter [13] introduce a strict definition. In a perfect

7Boss et al. [7] show that different communities in the Austrain interbank market
correspond to federal provinces. See also Girvan and Newman [19].
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Core Periphery structure, the following three conditions are satisfied:

Condition CP1: Core banks are all bilaterally linked with each other.

Condition CP2: Periphery banks do not lend to each other.

Condition CP3: Core banks both lend to and borrow from at least one

periphery bank.

These requirements are illustrated in Figure 3. Banks A, B and C are core

banks and all lend to each other bilaterally. These banks also intermediate

between the remaining periphery banks: for example, bank A intermediates

between D and E. Note that Condition CP3 still leaves a lot of freedom in

how the links between Core and Periphery are arranged. Some periphery

banks, like bank E and F, may lend and borrow at the same time, as long

as they are not connected to other periphery banks.

Figure 3: Example of a perfect Core Periphery structure

A

C B

D E

FH

G

Of course, in practice there is generally not a perfect division between

the core and the periphery in the data. Any chosen set of core banks will

generally have errors within each of the two layers, for example the absence
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of links between core banks A and B (violating Condition CP1) or the pres-

ence of links between periphery banks D and E (violating Condition CP2).

Furthermore, a core bank that does not borrow from the periphery, for ex-

ample bank C after its link from G is removed (violating Conditio CP3),

produces errors for every periphery bank to which it could have lent.8 For

any classification of core banks and periphery banks, the number of errors

with respect of the (perfect) CP model can be counted.

The optimal core is defined by the core producing the smallest number of

errors, and finding the optimal core is similar to running a regression. The

domain contains all possible cores, so that the number of core banks does not

have to be specified. The Hamming distance, as the chosen fitness measure

is sometimes called, is known to produce for some pathological networks

cores that are not connected. This danger could be circumvented by using

a Pearson correlation measure of fit, as done by Boyd et al. [8]. However, in

our context we will be quite sure that the networks intuitively correspond

to a core periphery structure, as the core will be very dense.

For small networks, the solution can easily be found by an exhaustive

search. However, because the size of this domain rises exponentially with the

number of banks, Craig and von Peter [13] propose a sequential optimisation

algorithm with a reduced, linear running time. Starting with an initial

random partition, the algorithm iteratively improves the outcome by moving

banks generating most errors to the other group. Craig and von Peter

[13] devote considerable attention to check the robustness of this ‘greedy’

algorithm, in order to assure that the core found does not depend on the

initial partition.

Craig and von Peter [13] estimate the Core Periphery model in the Ger-

man interbank market. With a data set of roughly 1800 banks over 68

8This way of counting errors is convenient, as it imposes a restriction on the core-
periphery links. Alternatively, each violation of Condition 3 could count for 1 error. This
would yield the more conventional Rand distance and would put less emphasis on the
relation between the core and periphery, leading to bigger optimal cores.
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quarters (1991Q1-2007Q4), they show that the model gives a good fit (pro-

ducing few errors) and is stable over time. We will apply the same method

to the Dutch data, placing more emphasis on the significance of the model

and comparing it with the Preferential Attachment mechanism described

previously.

3. Data description

Financial institutions interact on many levels. Sometimes these interactions

are very short-lived with contractual obligations expiring before the end

of the trading day. Other contracts, such as for instance swaps, can be

long-running and can last up to 30 years. Our data combines all of these

interactions on a quarterly reporting frequency. We use prudential reporting

of balance sheet positions of Dutch banks. Each quarter banks have to report

the interbank assets and liabilities to the market as a whole. We limit the

sample to exposures up to one year. In addition, banks have to report

exposures to their largest counter parties. Assuming that the distribution of

interbank exposures is equal to the distribution of claims in general, given by

the large exposure reporting, we construct a matrix of interbank exposures

for the Dutch banking market.

Data are available from 1998Q1 until 2008Q4 with the number of report-

ing banks varying between 91 and 102. About 50 banks report every quarter

during the sample period. To get a feel for the data we show the overall

domestic market volume in Figure 4.9 In the long run the volume has been

growing, dropping markedly in the financial crisis. The two vertical lines

indicate 1) the beginning of the crisis in August 2007 once the subprime

mortgages made the headlines, and 2) the bankruptcy of Lehman Brothers

9Unfortunately, we have to restrict our attention to only the Dutch banks as informa-
tion about exposures between foreign countparties is not available to us. This limitation
leads to retain about 15% of the total interbank exposures in the Netherlands. The
growth in total volume is relatively high and, interestingly, the drop after the bankruptcy
of Lehman Brothers is more pronounced. Possibly this can be explained by a ’return to
home market’-argument.
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on 15 September 2008. Computed network measures such as path length

tell a similar story: the network became more connected over time with a

marked reversal due to the crisis.

Figure 4: Domestic market volume over time, 1998Q1-2008Q4
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In order to apply unweighted or binary network models to our dataset,

we reduce our weighted links to binary links. We use the same e 1.5 million

threshold as Craig and von Peter [13] to determine the most important

links. For every period a sparse network remains of about 8% of the possible

number of links. This makes the Dutch interbank network much denser than

the German network (where less than 1% of possible links materialise). It

seems that the main difference of the German market compared is the large

number of small banks, with relatively less links above the threshold.

Imposing any threshold necessarily involves some arbitrariness. In the

present context, a higher threshold will result in fewer qualifying links and

consequently a smaller Core. However, this dependency does not change the

qualitative feature of the interbank market consisting of two groups. A more

interesting question is how the threshold value affects the explanatory power

of the Core Periphery model. We found that this effect is moderate, although

the fit of the model could be improved by choosing a higher threshold. More

characteristics of the data can be found in Appendix A.
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The first property of a binary network to check is the degree distribution.

Indeed, the distribution of the number of links per node is the distinguishing

feature of scale-free networks compared to random graphs and was also

analysed by Boss et al. [7] and later studies. We show selected distributions

of in- and outdegree in Figure 5 (i.e. the first period, the last period and

the overall aggregate over all periods).10 By convention these distributions

are plotted as the inverse cumulative distribution (showing the proportion

of nodes with degree higher than k) on a log-log scale. Scale-free networks

have in the limit infinitely many nodes displaying a power law in the degree

distribution, corresponding to a straight line in such plots.

The plots do not suggest a scale-free network and we therefore did not

try to fit a power law on these degree distributions. Rather, the distribution

of indegree looks like a concave decreasing function, similar to the binomial

distribution of the Erdös-Rényi random graph or the exponential distribu-

tion of random growth models. However, for almost all periods there is a

jump in the outdegree distribution indicating more heterogeneity in outde-

gree than in indegree. This discontinuity in degree is a first indication to a

clear distinction between Core and Periphery.

10 Boss et al. [7] only consider the overall degree distribution. However, its interpretation
is not clear because each data point refers to multiple banks over all periods.
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Figure 5: In- and outdegree distributions for 1998Q1 (left), 2008Q4 (right)
and over all periods (down)
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4. Estimation results

Given our empirical network, we now want to find which of the two mecha-

nisms best describes the data: Preferential Attachment or Core Periphery.

For our procedure we first estimate the Core Periphery model, finding the

number of core members and errors for every period. Secondly, we simulate

networks with Preferential Attachment, using a data generating process that

takes into account the size and density of the actual network. For each of

these simulated networks, we calculate the error score of the Core Periphery

structure, and then construct an empirical distribution function. Finally,

we use the error score as a test statistic, to test whether the actual number

of errors is likely to be drawn from the empirical distribution function.11

4.1. Estimating the core

As our first step, we use the sequential optimisation algorithm developed

by Craig and von Peter [13].12 In our dataset with around 100 banks, the

optimal core varies between 10 and 19 banks. Figure 6 plots the core size per

period. Although in the first three periods a relatively large core is found

of respectively 18, 19 and 16 banks, the core size thereafter stays relatively

stable between 10 and 15 banks.

There are two points to be noted with respect to the core size. First,

the relative core size is closely related with the density of the network. As

the density of the network clearly depends heavily on the data construc-

tion, one should therefore be careful not to take the core size too literarily.

Second, there is no correlation with the total volume in the interbank mar-

11This procedure is in the same spirit as a PE-test for non-nested regression models.
Having fit one of the two models, it tests whether the other model still has additional
power. To fully replicate this idea we would also have to generate a empirical distribution
function from CP-networks on a test-statistic for Preferential Attachment. However, both
methods for generating randomised CP-networks and for testing Preferential Attachment
are not yet developed.

12The original code for identifying the core was graciously provided by Ben Craig and
Goetz von Peter.
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Figure 6: Number of Core banks over time, 1998Q1-2008Q4
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threshold stayed relatively stable which leads to a stable core size.

To compare across periods, the error score of the optimal core expresses

the number of errors compared to the CP model as a proportion of the

number of actual links. This expression should not be considered as a per-

centage, because errors occur due to both the absence and presence of links.

Rather, the point is that error scores above 1 indicate that the CP model

gives more errors than an empty network without links. Having an error

score below 1 is therefore a first requirement in evaluating the fit of the CP

model.

In Figure 7, the error score is shown to be between 0.21 and 0.38, with an

average of 0.29. The fit is worse than found in the German market (around

0.12), but better than in the Italian equivalent (0.42).13 In Appendix B we

visualise the fit of the CP model in the first period. We also plot all errors

in both the Core and the Periphery for all 44 periods to show that most of

13We also tried a higher threshold of e 1 billion, in which case the density of the Dutch
interbank market is 0.5%, very close to the density in the German market. The average
error score decreases to 0.15.
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the errors occur in the periphery, where the perfect CP structure dictates a

very large empty subgraph.

Figure 7: Error score over time, 1998Q1-2008Q4
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Interestingly, the fit is clearly worse in the last four quarters, after the

subprime crisis had started to spread. This might be an indication that the

CP structure, as far as it a good description of the Dutch market, dissolved

during the crisis. This is further supported by the more regular degree

distribution in the last period (Figure 5) and the large number of errors in

the core (Figure B.16), particularly in period 44. Using a longer dataset up

to 2010 in the Italian market, Fricke and Lux [17] established a significant

structural break in 2008Q4, and a similarly deteriorated fit of the model.

We also calculate the transition matrix between the states of being in

the core and in the periphery, and being inactive in the interbank market

(’Exit’). Most importantly, the transition from core to core indicates that

on average 83% of the core banks stay in the core the next period. As we

found that the number of core banks is quite stable, the flow from and to

the core is in absolute terms almost equal. The higher persistence in the
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periphery merely reflects that it consists of much more banks.
Core Periphery Exit

Core 83% 16% 1%

Periphery 2% 96% 2%

Exit 0% 2% 98%



4.2. Significance

In Table 1, the empirical results of the CP model for the Netherlands are

summarised and compared to Germany and Italy. So far, we haven’t said

anything about the significance of the Core Periphery structure, or whether

it has more explanatory power than Preferential Attachment. These ques-

tions will be answered by both simulated distribution functions and a re-

cently proposed analytical method.

Table 1: Comparing CP model for the Dutch interbank market to Germany (Craig
and von Peter [13]) and Italy (Fricke and Lux [17]).

Netherlands Germany Italy

Description

Total number of banks 100 1800 ±120
Network density 8% 0.4% ±15%
Average number of core banks ± 15 ± 45 ± 30
Average core size ± 15% ± 2.5% ± 25%

Fit
Error frequency, as % of links 29% 12% 42%
Transition prob. core→core 83% 94% 83%

Figure 8 plots the empirical distribution function for a 1000 generated

Erdös-Rényi random graphs and a 1000 scale-free networks. Regarding the

Erdös-Rényi random graphs, the Dutch interbank data fits much better to

the CP model and this is not surprising. If the probability of forming a link

is completely random, i.e. not dependent on the number of already existing

links, the generated networks have a barely skewed degree distribution. In

fitting these random networks to a CP model, an optimal core is found with

a core size that is too small. Note that the probability of randomly ending

17



up in a perfect CP structure (with zero errors) is theoretically positive, but

practically negligible for finite numbers of replications.

For the scale-free networks, we have used the growth model of Jackson

and Rogers [23]. Although growth models are generally used to find the

limiting distribution, we let the model grow until we have the required num-

ber of nodes (e.g. 103 for 1998Q1). In each step a node is added with a

fixed outdegree, such that the ultimate density will be identical to the actual

network. The actual error score is much lower than the entire distribution

of the generated scale-free networks.14 This means that the hypothesis that

the actual network is drawn from the distribution of scale free networks is

rejected in favour of the CP mechanism.

Figure 8: Empirical distribution function of number of errors for 1998Q1,
1000 Jackson Rogers scale free networks and 1000 random graphs.

14A drawback of the chosen data generating process is that is requires a significant
number of initial nodes that are fully connected to each other, to make the procedure
operational. This leads to higher core sizes, and less randomness in the simulation because
of the small sample. Fricke and Lux [17] chose a procedure to generate scale-free networks
based on Goh et al. [20]
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As typical in the complex network literature, it is also possible to test

whether the network outcomes are significant given the same degree distri-

bution, i.e. under the configuration model. Typically this is done by the

so-called local rewiring algorithm, where two separated links in the actual

network are broken and the nodes are reconnected reversely. The distri-

bution of the error score under the configuration model indicates whether

or not, given the degree distribution, there is additional evidence for the

CP structure caused by the ’ordering’ of the links. We do not find this

evidence, because the larger part of the empirical distribution is left of the

error score of the actual network (Figure 9). However, this test cannot give

any indication of whether the CP structure is plausible in itself.15

Figure 9: Empirical distribution function of number of errors for 1998Q1,
1000 permutations without destroying the degree distribution.

So far we restricted ourselves to the significance of the model in the first

period only. The reason is that the simulation methods is computationally

very demanding, because (1) many iterations of the local rewiring algo-

rithm are required for every permutation of the original network and (2) for

15In fact, in a perfect CP structure, there are no possible permutation possible that
would generate errors from this structure. The empirical distribution function would
therefore consist of a single point, not providing any information.
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every simulated network the optimal core has to be found. Squartini and

Garlaschelli [28] have recently developed an analytical method that can ran-

domize the network more efficiently, on every period given the density (the

random graph model) or the degree distribution (the configuration model).16

Figure 10 shows the z-score over all periods: the observed number of errors

expressed in standard deviations from the expected value under both null

models.17

Figure 10: Z-scores for the number of errors under the random graph model
(blue, down) and the configuration model (black, up).

The analysis with the more advanced method confirms the earlier con-

clusions. We favour the Core Periphery structure over Random graphs or

Preferential Attachment models, because the error score in the data is much

higher than is expected by networks generated by these models. The good

fit seems to be fully attributed to the degree distribution, with a small sub-

set of banks having many links, removed sharply from the majority of banks

16Unfortunately, this method cannot be used to generate scale-free networks.
17We are much indebted to Tiziano Squartini and Diego Garlaschelli for constructing

this plot.
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having only a few. In fact the z-score under the configuration model is in

most periods exactly 0, indicating that the actual number of errors matches

its expectation.

5. Stability implications

In this final section, we investigate how belonging to the core is related to

bank characteristics. As Craig and von Peter [13] already showed, Core

banks tend to be the larger banks. However, as Figure 11 shows, the Core

also tends to have a much lower buffer, defined as the Tier1 capital over the

total assets. 18

Figure 11: Average buffer, 1998Q1-2008Q4
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Figure 11 plots the average buffer over the respective Core and Periphery

members every period. To test for the difference more formally, we stack the

panel data to cross section19 and regress the buffer on a time-varying con-

stant and the Core dummy. The coefficient for Core membership is estimated

18Data is the same as in Liedorp et al. [24].
19This simplification is justified because we are only interested in the intrinsic difference
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at -0.102, indicating a 10.2 percentage point decrease in the conditional mean

of Core bank buffers relative to Periphery bank buffers. The coefficient is

significant at the 1% level, the R2 equals 0.035 and the F-statistic equals

2.77, which is significant as well on every reasonable level.

6. Conclusions

The Core Periphery model is an useful tool to represent interbank data, and

recently researchers have started to apply the model to available datasets.

Using a Dutch panel of bank connections from 1998Q1 until 2008Q4, we find

an optimal core of around 15 out of the 100 active banks. While the point

estimates of the Core Periphery model for our dataset (error score, core per-

sistence) are less convincing than for the German interbank market, they are

significant. The estimated representation is found to be better than random

graphs or scale-free networks: neither complete randomness nor Preferential

Attachment seems to fit the Core Periphery structure sufficiently.

We also showed that the Core Periphery model affects financial stability.

Not only is the Core important for providing interbank lending throughout

the Periphery, it also tends to have lower relative buffers. These findings sug-

gest two complementary reasons to impose higher regulatory requirements

on the systemically important Core banks. The Core Periphery structure

deteriorated considerably during the financial crisis. The general analysis

so far opens up new opportunities for systemic risk assessments of the in-

terbank market, especially as more granular data is becoming available for

the eurozone.

between Core and Periphery banks, and not in dynamic effects of banks moving into or
out of the Core.
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[8] Boyd, J. H., De Nicolò, G., Jalal, A. M., 2006. Bank risk-taking and

competition revisited: New theory and new evidence. Working paper,

IMF.

[9] Castiglionesi, F., Ferriozi, F., Lorenzoni, G., 2010. Financial intergra-

tion and liquidity crises. Working Paper.

[10] Cocco, J. a. F., Gomes, F. J., Martins, N. C., 2010. Lending Relation-

ships in the Interbank Market. Journal of Financial Intermediation.

[11] Cohen-Cole, E., Patacchini, E., Zenou, Y., 2011. Systemic risk and

network formation in the interbank market. CEPR Discussion Papers

8332.

23



[12] Cont, R., Mousa, A., Bastos e Santos, E., 2010. Network structure and

systemic risk in banking systems. Working Paper.

[13] Craig, B., von Peter, G., 2010. Interbank Tiering and Money Center

Banks. BIS Working Paper 322.

[14] Degryse, H., Nguyen, G., 2007. Interbank exposures: An empirical ex-

amination of contagion risk in the Belgian banking system. Interna-

tional Journal of Central Banking 3, 123–171.
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Appendix A. Other characteristics of the data

In this appendix we present additional characteristics of the data that are

not fundamental to our discussion, but provide a better overall understand-

ing of the Dutch interbank market. First of all, we consider the loan size

distribution over all periods. Figure A.12 plots this inverse cumulative dis-

tribution (of loans in e 1000) in log-log scale. The plot shows that around

92% of the links is estimated below 100 = 1∗ e 1000. As these small loans

are due to the data construction (see below) rather than actual banking

agreements, it is important to use some sort of threshold value as we do in

our analysis.

Moreover, the figure shows a wide dispersion of loans within the sample.

In fact, we could estimate a power law distribution on the right tail to see

whether loan sizes in the Netherlands display scale free behaviour. In a early

analysis of interbank network structure, Boss et al. [7] fit power laws to the

Austrian loans.

Figure A.12: Loan size distribution over all periods
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Now we turn to the effect of imposing the threshold. In Figure A.13,

both the total number of links and the ’signficant’ links above the thresh-

old of e 1.5 million are presented. Interestingly, the total number of links

shows a sharp drop after the beginning of the financial crisis in August 2007

where almost half of the links disappear permanently. This might also be

connected with the way the data is constructed. For the smaller loans, it

is assumed that the totals of the interbank assets and liabilities for a given

bank (observable from the balance sheet) follow the same distribution over

other banks as claims in general. Before the bankruptcy of Lehman Brothers

in September 2008, the payment system between banks was already under

stress, and this might have caused a direct effect on the estimation of the

small loans.20

Figure A.13: Number of links over time, 1998Q1-2008Q4
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Importantly, the number of links above the threshold shows a much

milder drop because of the crisis. The steady number of ’significant’ links

is therefore a much more reliable source of information. Also note that

20See Liedorp et al. [24] for a full description of the construction of the data set.
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while only around 1000 links remain, the remaining links cover practically

all market volume (more than 99.5%). This observation is in accordance

with the wide dispersion of link size as noted above. Thus in terms of vol-

ume only considering big loans is much less restrictive than our ignorance

of the identities of foreign counterparties.

Given the threshold of e 1.5 million, we can also find the correlation

between in- and outdegree of the nodes. It would seem that the correlation

should be quite high, as banks that are exposed to many banks should also

rely on many other banks. However, we find a relatively low correlation

coefficient of 0.40.21 Figure A.14 reveals that periods exist in which banks

have either an extreme in- or outdegree, most probably because of other

balance sheet considerations in that particular period.

Figure A.14: In- and outdegree per bank over all periods

21Fricke and Lux [17] estimate an asymmetric version of their continuous CP model,
allowing for difference in ’in-coreness’ and ’out-coreness. This interesting extension in fact
leads to improved fit of their data.
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Appendix B. Visualising errors in the CP model

This appendix shows two visualisations of the Core Periphery model.

Note that even for a relative small number of 100 banks, network plots very

quickly become inscrutable. Figure B.15 shows the interbank linkages of

Dutch banks in 1998Q1, where the estimated Core banks are placed in an

inner circle within the circle of Periphery banks.22 It is visible that the fitted

network incorporates a clear structure, while retaining the general nature

of the data. Figure B.16 focuses on the errors in all periods. For the core

banks, the errors are the missing links, whereas for the periphery the links

between any two periphery banks are drawn.

Figure B.15: Plot of the Dutch interbank market on 1998Q1 (left) and its
fit on the CP structure (right). The outer circle represents Periphery banks;
the inner circle of small white dots Core banks.

22These plots were made with the Pajek program.
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Figure B.16: Errors in the CP structure: Core (red, left) and Periphery
(grey, right)
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