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We propose a method for identifying accurate reaction coordinates among a set of trial coordi-
nates. The method applies to special cases where motion along the reaction coordinate follows a
one-dimensional Smoluchowski equation. In these cases the reaction coordinate can predict its own
short-time dynamical evolution, i.e., the dynamics projected from multiple dimensions onto the re-
action coordinate depend only on the reaction coordinate itself. To test whether this property holds,
we project an ensemble of short trajectory swarms onto trial coordinates and compare projections
of individual swarms to projections of the ensemble of swarms. The comparison, quantified by the
Kullback-Leibler divergence, is numerically performed for each isosurface of each trial coordinate.
The ensemble of short dynamical trajectories is generated only once by sampling along an initial
order parameter. The initial order parameter should separate the reactants and products with a free
energy barrier, and distributions on isosurfaces of the initial parameter should be unimodal. The
method is illustrated for three model free energy landscapes with anisotropic diffusion. Where ex-
act coordinates can be obtained from Kramers-Langer-Berezhkovskii-Szabo theory, results from the
new method agree with the exact results. We also examine characteristics of systems where the
proposed method fails. We show how dynamical self-consistency is related (through the Chapman-
Kolmogorov equation) to the earlier isocommittor criterion, which is based on longer paths.

© 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4775807]

INTRODUCTION

Accurate reaction coordinates are of paramount impor-
tance for simulations of activated processes, as they enable
correct free energy calculations,!? efficient calculations of
true rate constants,® and perhaps most importantly, provide
invaluable mechanistic insight.!"# Recent years have seen sub-
stantial advances in our understanding of reaction coordi-
nates and in computational methods to obtain them.”’ Some
of these advances>!!~1%23 were enabled by transition path
sampling’?® and related methods®*~? that generate barrier
crossing trajectories without biasing the natural dynamics
along a priori chosen reaction coordinates. Several of these
trajectory-based methods seek reaction coordinates that can
accurately predict the committor at each configuration. The
committor at a configuration X, denoted pg(x), is the frac-
tion of trajectories initiated with random momenta from x that
reach the product state B before reaching the reactant state A.

One motivation for obtaining reaction coordinates is to
reduce the dynamics of activated processes in high dimen-
sional systems to a simple Smoluchowski model for mo-
tion along a one-dimensional reaction coordinate. Reduction
to such a Smoluchowski model (or, equivalently, an over-
damped Langevin equation) would provide valuable mech-
anistic insight. However, reduction to a low dimensional
Smoluchowski equation is only possible for activated pro-
cesses that obey special conditions: (1) the transition paths

0021-9606/2013/138(5)/054106/13/$30.00

138, 054106-1

should follow a single channel (or transition tube®) repre-
senting the dynamical bottleneck in phase space, (2) dynam-
ics projected along the reaction coordinate must be in the
high friction (diffusive) limit,* and (3) there must be a clear
separation of time scales®® between the reaction time and
all faster relaxation times within the metastable state to en-
sure that a reaction coordinate exists.?! These restrictions may
exclude many interesting applications. For example, exten-
sively studied activated processes such as Sy2 reactions®? and
ion-pair dissociation in solution®>3* have inertial dynamics
that prevent reduction to a Smoluchowski model. Another
example is protein folding, which involves a complex net-
work of pathways between many intermediates.!®37-37:83 A
recent study accurately mapped the committor for protein
folding intermediates,'® but the existence of multiple chan-
nels with disparate mobilities prevents a simple reduction to
a low dimensional Smoluchowski model. Nevertheless, there
are activated processes that can be described by low dimen-
sional Smoluchowski equations. For example, such a reduc-
tion has been successful for nucleation processes in lattice
models®® and atomistic simulations of simple systems.3%40
Depending on the supersaturation, nucleation can involve
high free energy barriers and therefore involves a clear time
scale separation. Theoretical studies additionally suggest that
nucleation trajectories pass through a single dynamical bot-
tleneck and that a nucleus size variable largely controls the

© 2013 American Institute of Physics
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committor probability.*!=** Thus it should be possible to map
atomistic or otherwise high dimensional models of some nu-
cleation processes onto one-dimensional Smoluchowski mod-
els. In the context of nucleation, Smoluchowski equations
and associated mean first passage time calculations provide
an equivalently one-dimensional alternative to the sometimes
problematic one-dimensional framework of classical nucle-
ation theory.+40

A one-dimensional Smoluchowski description requires
knowledge of the free energy as a function of the re-
action coordinate and the diffusivity as a function of a
reaction coordinate.”’ Given a reaction coordinate, there
are established computational methods for computing these
properties.*®#-33 However, a key obstacle is often identifying
a one-dimensional reaction coordinate. Transition path sam-
pling data can be used to identify reaction coordinates sys-
tematically in some systems.>'2716:23:42.54.55 Unfortunately,
there are nucleation problems that are not amenable to a
transition path sampling approach. For example, in crystal
nucleation from a supersaturated solution there is currently
no proper way to control the supersaturation along a tran-
sition path without disrupting the dynamics for solute in-
sertions or solvent-solute swaps.’® In other cases, for exam-
ple, in methane hydrate nucleation,”’ the transition paths are
prohibitively long for transition path sampling simulations.
Therefore, it would be useful to identify optimal reaction
coordinates using only short time dynamics, and not full-
length transition paths. In this paper we aim to develop such
a method.

The new method is based on the fact that when reduc-
tion of an activated process to a Smoluchowski model is pos-
sible, the physical collective variable that predicts the com-
mittor must also accurately predict its own stochastic drift
and diffusion dynamics along the transition pathway, while
other collective variables cannot. Thus, when a physical reac-
tion coordinate obeys a Smoluchowski equation, it might be
identified as that collective variable that is sufficient to pre-
dict its own evolution toward reactants and products. This
principle suggests a dynamical self-consistency criterion to
screen candidate reaction coordinates using short trajectory
data in some systems. We show here that the new criterion is
closely related to the standard committor analysis for reaction
coordinate optimization. However, unlike earlier isocommit-
tor criteria,>>® the new criterion does not require informa-
tion about the long time fate of trajectories. Our method for
screening candidate reaction coordinates does not require a
computation of committors® or committor realizations.'? In-
stead, the proposed method needs as input an initial collective
variable for harvesting an ensemble of initial configurations
from which the short trajectory data are generated.

The paper is organized as follows. We start with some
theoretical background on the one-dimensional Smolu-
chowski equation and its relation to the algorithm for our
approach. We illustrate the method on model potentials with
varying degrees of diffusion anisotropy. Two of the examples
have a quadratic potential with a coordinate independent (but
still anisotropic) diffusion tensor so that accurate reaction
coordinates can be obtained from the Kramers-Langer-
Berezhkovskii-Szabo®3%® theory for comparison. The
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first example is pertinent to studies of polymorph selection
during nucleation from a mixture of oppositely charged
colloids.**-61:62 A second example reveals analogies between
anisotropic diffusion over a narrow saddle and the dynamical
caging and frozen solvent regimes of the inertial Grote-Hynes
theory.*!=*3%3 Finally, a third example illustrates how the
method can fail when certain requirements are not met by the
initial order parameter. We end with concluding remarks.

THEORY

When projected onto suitable collective variables some
activated processes can be modeled by diffusion on a free
energy landscape. The mathematical description of such pro-
cesses is an overdamped Langevin equation or equivalently
a Smoluchowski equation.?’ In the most general case, the
Smoluchowski equation can be written in terms a multidi-
mensional free energy landscape, and a coordinate dependent
diffusion tensor,

?)_S — e+ﬂF(q)i {eﬁF(q)D(q)ﬁ} , (1)
t aq aq
where q denotes the multidimensional collective variables
pertinent to the reaction coordinate, F(q) is the free energy
landscape, and D(q) is the coordinate dependent diffusion ten-
sor, and &(q, 1) = p(q, H)/exp[—BF(q)] is the ratio of the time
dependent probability density p(q, ¢) to the equilibrium distri-
bution exp[—BF(q)], i.e., the Kramers crossover function.?®
The Smoluchowski equation is most easily constructed
for a single coordinate ¢:*® the free energy landscape
F(q) requires only a one-dimensional potential of mean force
calculation*® and the coordinate dependent diffusion coef-
ficient D(q) is scalar. The resulting Smoluchowski equation is

0 a 0
9 _ grora) 9| s py 251 ?)
at daq aq

Established methods exist to compute the
38,49-53,64 45,46

diffusivity” and free energy profiles once
an accurate scalar reaction coordinate g is known. The mean
first passage time, the rate, the committor, and the committor
isosurfaces are then also easy to obtain. For example, solving
the backward Kolmogorov equation with boundary condi-
tions pp(gp) = 1 and pp(ga) = O gives the committor along
the scalar coordinate ¢g:7 41863

Jon explBF(q) —In D(g)ldq
J explBF(q) = In D(q)ldq’

The integration limits g4 and gp correspond to the boundaries
of the stable states A and B, respectively. g4 and g should be
carefully specified so that A and B include the typical fluctua-
tions from their respective equilibrium positions but A and B
should not encroach on the barrier region. For systems with a
high activation barrier along the transition pathway, contribu-
tions to the integrals in Eq. (3) come primarily from regions
near the free energy maximum. If the boundaries g4 and gp
are chosen on opposite sides of, and many kg T below the free
energy maximum, then the committor pg is not sensitive to
the precise location of g4 and gp. For activation barriers much

ps(qo) = 3)
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higher than kgT, a mean first passage time calculation gives
the rate constant from state A to B as®

-1
kaop = |:/ gﬂF(q)flnD(q)dq/ eﬁF(q)dq:| ) 4)
N A

The integral subscripts N and A denote integration over the
barrier region and stable basin of state A, respectively.%>° For
high activation barriers, nearly all contributions to the integral
with ¢*#F@ come from regions near the barrier maximum.
Likewise nearly all contributions to the integral with e~ #F@
come from regions near the reactant minimum.

Equations (3) and (4) accurately describe the commit-
tor and the interconversion kinetics for a one-dimensional
Smoluchowski equation (2) between reactant (A) and prod-
uct (B) states. However, D(g) and F(q) are obtained by pro-
jections of the multidimensional diffusion tensor and energy
landscape. Unless the local diffusivity D(g) and local mean
force —dF/dq are perfectly independent of all coordinates
other than ¢, the one-dimensional Smoluchowski model (and
all results obtained from it) must be regarded as an approx-
imation. In practice, one-dimensional and low-dimensional
Smoluchowski models are usually inexact, but conceptually
useful, approximations to the dynamics of multidimensional
systems.

Several strategies for constructing Smoluchowski models
for high dimensional systems have recently emerged. The first
strategy assumes the knowledge of the important collective
variables, often two or more, and then examines the behavior
of short trajectory “swarms,” i.e., trajectories launched with
random Maxwell-Boltzmann momenta from specific config-
urations on the free energy landscape.®’” The drift and time-
dependent covariance of the swarms reveal the local potential
of mean force and the local coordinate dependent diffusion
tensor.*0-30:67.68 These properties can be statistically com-
bined to map the entire free energy landscape and the coor-
dinate dependent diffusion tensor.** The accuracy of Smolu-
chowski models constructed in this way depends critically on
whether the a priori chosen collective variables are pertinent
reaction coordinates. For example, Berezhkovskii and Szabo
have shown that errors in the reaction coordinate will arti-
ficially magnify the reaction rate as computed from a mean
first passage time.°

Kramers-Langer-Berezhkovskii-Szabo (KLBS) theory®
shows, in principle, how the optimal one-dimensional reaction
coordinate can be obtained from a multidimensional space.
KLBS theory considers a multidimensional free energy F(q)
and diffusion tensor D(q) where the components of q(x) are
collective variables that depend on the more detailed (per-
haps atomistic) coordinates x. Suppose that F(q) has a sad-
dle point at q*. The free energy can be expanded around the
saddle point as BF(q! + 8q) = BF: + 5qTAsq where A is a
matrix of second derivatives of the free energy with respect
to q at location q. Multidimensional extensions of Kramers
theory>® by Langer,’’ and Berekzhkovskii and Szabo,® show
that the matrix products AD and also DA will have exactly
one negative eigenvalue. The negative eigenvalues of AD and
DA correspond to eigenvectors that point along the maximum
flux® and the reaction coordinate® directions, respectively.
Berezhkovskii and Szabo showed that, when the free energy
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is quadratic and when the diffusion tensor is coordinate inde-
pendent, a variational maximization of the mean first passage
time identifies the optimal one-dimensional reaction coordi-
nate direction in the space of q.° Their result also confirms
that the optimal reaction coordinate is the committor.® How-
ever, application of their elegant result requires knowledge of
the multidimensional free energy F(q) and the multidimen-
sional diffusion tensor D(q). Both objects are difficult to ob-
tain for more than pairs of two coordinates. Thus it has not
been possible in practice to use the variational KLLBS theory
to identify reaction coordinates from hundreds of candidate
coordinates.

A (different strategy for obtaining low dimensional
Smoluchowski models combines the unbiased dynamical tra-
jectories from transition path sampling with likelihood max-
imization to identify an accurate one-dimensional reaction
coordinate.” 21471623 The strategy based on transition path
sampling, such as the KLBS theory, identifies a reaction co-
ordinate that accurately predicts the committor. However, as
noted in the Introduction, transition path sampling is not fea-
sible for all systems. We propose that the optimal reaction
coordinate can alternatively be identified by screening can-
didate coordinates for short-time dynamical self-consistency.
Before discussing the algorithm, we must show when and how
dynamical self-consistency is equivalent to the more familiar
concept that reaction coordinates should accurately parame-
terize the committor.> "8

The short time Greens functions for the Smoluchowski
equations (1) and (2) are well known. Examples can be found
in work on coarse molecular dynamics,**%° and diffusion
maps.’%7! Most treatments construct the short time Green’s
functions from Gaussians with a mean drift velocity d{q)/dt
= —DJBF/9q, and a time dependent variance, determined by
the rate at which a swarm of trajectories spreads around the
drifting mean, ([¢g-(¢)]*) = 2Dt.% However, complications
can arise when using the Gaussian Greens functions explic-
itly. First, extra terms appear when diffusivity is coordinate
dependent. Thorough outlines of coordinate dependent diffu-
sion in one and higher dimensions are given in recent works
by Hummer and co-workers.*® "2 Second, even with constant
diffusivity D, short time estimates for the mean and variance
in g become inaccurate at times long enough that trajectories
see changes in the gradient of the free energy.*® These com-
plications are circumvented in our treatment by working with
abstract numerical Greens functions, instead of Gaussian ap-
proximations.

To explain and justify our treatment we need to define
several distributions. First, we define the conditional equilib-
rium probability distribution pgq(Xy|qo) for configurations x,
on the g isosurface of a collective variable g(x) as

PE(X0)d[q(Xe) — qo]
[ dxpeox)8lg(x) — qol’

where 8[q] denotes the Dirac delta function and pgq(x)
= exp(—BEX))/ f dx exp(—pBE(x)) is the equilibrium Boltz-
mann distribution, with E(x) the potential energy, 8 = 1/kgT
the reciprocal temperature, and kg Boltzmann’s constant. We
also define the transition probability p(x,t|X,) as the distribu-
tion observed after a time ¢ for a swarm of trajectories initiated

PEQ(Xolq0) = (5)
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FIG. 1. Schematic depicting a projection of short trajectory swarm data
(gray) from an initial point xo (black) to specific coordinates q; and q, at
later times.

from a configuration x,. p(X,t|X,) will not appear explicitly in
the final algorithm, but it plays an important role in construct-
ing the projected transition probabilities. For any collective
variable g the time-evolved swarm from configuration x to
configurations X at time t can be projected onto g as

P(q.t1x9) = /dX<3[61 —q(X)]p(x, 1]Xy), (6)

which is the transition probability from x, to q(x) after a
time t. Figure 1 illustrates this projection.

In special cases where a one-dimensional Smoluchowski
model is valid for the reaction coordinate g, then P(q, tXo)
would simply be the Green’s function solution of the Smolu-
chowski equation. Thus for these special cases the transition
probabilities along g(x) have a dynamical self-consistency

property
P(q,t|qo) = P(q,t|x0) VXq on q(xo) = qo. @)

Conversely, the hypothetical self-consistency in Eq. (7) can
help identify reaction coordinates in special cases where the
reaction coordinate follows a one-dimensional Smoluchowski
equation. We note that Eq. (7) can be viewed as a type of dy-
namical closure property. However, closure usually implies an
approximation to a hierarchy of equations. Here we do not in-
voke a closure approximation, but rather determine the extent
to which the dynamics of different variables naturally display
a “closure.”

Short-time dynamical self-consistency (when it exists) is
related to the earlier committor definitions of the reaction co-
ordinate. The committor analysis procedure of Du et al.?> and
Geissler et al.’® examines whether isosurfaces of a trial reac-
tion coordinate g(x) coincide with isocommittor surfaces. A
committor distribution for configurations on an isosurface of
q that is not sharply peaked indicates that ¢ alone is not suf-
ficient to predict the long time dynamics along the g-axis.*’?
In the committor analysis context, a long time is sufficient for
relaxation into one of the stable basins A or B, but still much
shorter than the reaction time on which trajectories might re-
emerge from A or B (i.e., the mean first passage time).! In-
stead of using Eq. (3) or the long time dynamics to com-
pute the committor along an accurate reaction coordinate, one

J. Chem. Phys. 138, 054106 (2013)

might use the short time dynamics in combination with the
Chapman-Kolmogorov equation.?® If there exists a g(x) for
which the dynamics between A and B can be entirely reduced
to a one-dimensional Smoluchowski equation, then for that
q(x) the long time transition probabilities are given formally
by

P(q.nAt|qy) = /"'/”qv Atlg" V). Pq®, Atlg™")

x P(qW, Atlgo)dqgVdqg® ---dg" V.

®)

After a time nAt that is longer than the transition path time but
much shorter than the mean first passage time, the committor
can then be evaluated as

p(qo) = / P(q. nATlgo)h5(q)da, ©)

where hg(g) = 1 for values of g in state B and otherwise hg(q)
= 0. Thus instead of seeking coordinates that give a sharply
peaked committor distribution, our method seeks coordinates
q for which swarms launched from any point on a g(x) = qo
isosurface give similar projections onto the g-axis. This dy-
namical self-consistency criterion is illustrated in Figures 2
and 3.

We emphasize that dynamical self-consistency alone is
not sufficient to ensure reaction coordinate accuracy. Exam-
ples can be constructed where unimportant coordinates can
also predict their own dynamical evolution. Consider for ex-
ample overdamped dynamics with constant and isotropic dif-
fusion on a two-dimensional bistable potential energy sur-
face BV(x, y) = K(x*—1)> + y? where K > 1. Clearly x is
the reaction coordinate for transitions between x = —1 and
x = 1. Indeed x does predict, regardless of y, its own short
time evolution, i.e., P(x, t|xg, yo) = P(x, t|xp). However, the
variable y also predicts its own evolution. Specifically, y re-
laxes at the same rate towards a distribution centered at y = 0
when initiated from any isosurface y = yy, regardless of x.
Yet, y does not even separate the stable basins at x = —1 and

(=2
ﬂ‘

n/

20
(other coordmates)

30

f]o

20

q (trial coordinate)
10

FIG. 2. For a reaction coordinate whose dynamics follow a one-dimensional
Smoluchowski equation, swarms of trajectories from different individual con-
figurations on each isosurface will drift and diffuse similarly. Therefore, for
each isosurface, the projection of the individual swarms should each resem-
ble the combined projection of all swarms (depicted to the right of the free
energy surface). In the case depicted above, the individual swarms behave
differently from each other, and therefore differently from their combined
projection.
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FIG. 3. If the dynamics of g follow a one-dimensional Smoluchowski equa-
tion, dynamical self-consistency should apply at all isosurfaces of g. (Left)
For a poor reaction coordinate ¢(x) the value of ¢ alone is not a good predic-
tor of drift or diffusion from the configuration x. (Right) If ¢ shows dynamical
self-consistency for all isosurfaces of g from reactant A to product B, then ¢
is an accurate reaction coordinate.

x = 1. The coordinate y in this example is a dynamically
closed but spurious coordinate. The simple requirements of
bistability and lack of bistability on isosurfaces of A can elim-
inate many spurious candidates like the variable y in this
example. For a good reaction coordinate, the drift direction
along the reaction coordinate should “split,” drifting away
from some isosurface g = g between states A and B. Spu-
rious coordinates like y may be more difficult to recognize in
realistic applications. Thus, as with all other coordinate iden-
tification methods, a final committor analysis is recommended
to validate the optimal reaction coordinates.!!

METHOD

Similar to the likelihood maximization methods,'% !4 the
new method makes no a priori assumptions about the reaction
coordinate ¢ or the subspace of component variables q. We
do, however, require a collection of initial trajectory swarms.
An initial order parameter that may be a poor reaction coordi-
nate helps to focus the swarm data in the relevant part of con-
figuration space. Let this initial order parameter be denoted
A(x). The free energy as a function of A(X) is then

BF.(A) = —In f dx e PE®§[L — A(x)]. (10)

Some caveats should be considered in choosing A(x). As
noted above, within the stable reactant and product basins,
many coordinates will self-consistently evolve toward the sta-
ble minima. The initial coordinate will help eliminate unim-
portant dynamics within the stable basin from consideration.
The initial variable A(x) should therefore give a bistable free
energy landscape with a maximum at some location Ap,ax that
clearly separates basins A and B. Additionally, the ensem-
ble of configurations on the surface A(x) = A, should not
be bimodal. In some cases a suitable coordinate A(X) is eas-
ily found, and as shown below A(x) can even be orthogonal
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to the true reaction coordinate in some cases. In other cases,
these requirements on A(x) are, unfortunately, only met when
A(x) is already a reasonable reaction coordinate.

When coordinate dependent diffusion is important, then
it is the modified free energy SF; (1) — InD(}) that should be
bistable with a clear separation between A and B. Methods to
obtain the coordinate dependent diffusivity D()) are described
elsewhere 3®4931:53 Once A(x) and the modified free energy
BF;()) — InD()\) have been obtained, we define a dimension-
less and scale invariant bias potential A(x):

AX) = BE(X) — 28 F,(A(X)) + In D(A(X)). an

The bias potential A(x) weights configurations in the
same way that they would enter a mean first passage time cal-
culation with A as the reaction coordinate. It is easily verified
that [e=A®§[A—A(x)]dx = e"PFM/D()), and that the stable
basins have negligible support in the density exp[—A(x)]. An
important feature of the bias potential A(x) in Eq. (11) is its
invariance”* for transformations between monotonically re-
lated coordinates A; and A, (see the Appendix for a deriva-
tion). This feature diminishes the dependence of the resulting
sampling of initial points on the choice of the initial coordi-
nate A(x). In contrast, using a simpler biasing potential such as
windows between hard walls will introduce such dependence.
The potential A(x) is illustrated in Figure 4 for a model po-
tential energy surface.

The distribution exp[— A(x)] should be sampled to har-
vest initial points for the trajectory swarm calculations. The
swarms at points sampled from exp[—A(x)] can be used to
test many alternative trial reaction coordinates, and thus the
data collection step will not have to be repeated. The re-
mainder of the manuscript gives all formulas with quantities
weighted by the factor exp[— A(x)]. Note that in practical ap-
plications these weighting factors represent data points sam-
pled from the distribution exp[—A(x)].

Suppose we wish to test a trial reaction coordinate g for
dynamical self-consistency. Using the data harvested during

(=N
¥

other coordinate

A (initial coordinate)

FIG. 4. The solid curves are contours of the actual free energy landscape
BF(q1, q2) with a saddle point at the round dot. The coordinate g; has been
used as the initial coordinate, i.e., A(x) = ¢1(x). The dotted contours are
curves of constant A. Note that A is peaked where the original landscape
had a saddle point.



054106-6 Peters et al.

the sampling of exp[—A(x)] we can construct (a sample of)
the conditional distribution

e "5[g(xo) — go]
[ dxe2®8[g(x) — gol’
The combined projection of all trajectory swarms initiated

from the g(x) = qo isosurface (weighted by their probability
in the exp[— A(x)] distribution) is given by

Pr(Xolqo0) = (12)

PP, 1]g0) = / dx, / dxo 81a(x,) — q1p(xs. 11%0)P (Xol40)-

(13)
If g is a reaction coordinate for which a valid one-dimensional
Smoluchowski equation exists, then Eq. (7) holds for all
points on isosurface g(X) = qo, i.e., the projections of indi-
vidual swarms onto g should be identical to the distribution
P™(g,t|qo). The similarity or difference between two proba-
bility distributions can be quantified by the Kullback-Leibler
divergence Agp,”

AkL[Pi]|P2] = /dXPI(X)ln(Pl(X)/PZ(X))- (14)

Note that AKL[P1||P2] 75 AKL[P2||P1] unless Pl = P2. The
reference (P,) and comparison (P;) distributions should be
chosen (when possible) so that P,(x) is non-zero at all x
where P;(x) is non-zero. The analysis below uses this con-
vention to ensure a non-singular formulation. Mathematically,
the Kullback-Leibler divergence is the likelihood of a prob-
ability distribution given some “binned” data.”® In the con-
text of equilibrium statistical mechanics, Agp[P;]|P2] > 0 is
the Gibbs inequality.”” Agy. has been used to optimize proto-
cols for non-equilibrium work calculations,’® and to optimize
coarse grained models from all-atom simulations.”*™! To de-
tect dynamical self-consistency at ¢gq, test whether each in-
dividual projected swarm from x on the isosurface g(x) = qo
has zero Kullback-Leibler divergence relative to the combined
projection of swarms from different points on the isosur-
face g(x) = qo. The exp[— A(x)] weighted average Kullback-
Leibler divergence between the individual swarms P(q, t|Xp)
and their combined projection P*)(q, t|qo) is

A [go] = f dx0p(%0ld0) Ak LP(q. 11x0)|| PP(q. 1140)].

(15)
When Ag ®[go] = 0, the projected dynamics from the spe-
cific isosurface g(x) = go have perfect self-consistency. Some
positive deviation from zero will always occur because of
sampling noise, but additional deviations from zero indicate
a loss of information about the dynamics upon projection to
the variable g. To obtain a global measure of dynamical self-
consistency, the contributions from each isosurface of g(x)
must be integrated,

(AkrlgX®)]) s = / dgop™(qo)AY) [g0]. (16)

The notation (Agp[g(X)])s indicates that the quantity in Eq.
(16) is a functional of the map ¢(x) from any configura-
tion x to the reaction coordinate g. Note, however, that all
x-dependence was integrated away in Eq. (15). The distri-
bution p*(g) in Eq. (16) is a projection of the distribution
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exp[—A(x)] onto trial coordinate g
PP (go) = Z;! / dxe N O5g(0) — gol.  (17)

with Z, = fdx exp[—A(x)]. To see that Eq. (16) is an
exp[—A]-weighted average of Agp for projections of the
swarms onto the trial coordinate g, assemble all of the pieces
together to obtain

(Axilqool) , = 2" / dgo { / dxoe 5[ (x0) — o]

x Ag[P(q, t1x0)|| PP (g, t|qo)]} . (18)

A reaction coordinate with the dynamical self-consistency
property should be a functional minimizer of (Agp[g(X)])a.
An algorithm for computing (Agp[g(x)]) o is given below.

ALGORITHM

1) Umbrella sample with a bias potential Vy;,5(x) along an
initial coordinate A(x) to obtain BF, (1) and if applicable
InD(A). BF;.()) should be bistable with a maximum be-
tween A and B at some position Ay.. Additionally, the
distribution of configurations on surface A = An.x should
not be bimodal. Data from regions beyond the reactant
and product minima should not be included. Store the
configurations from each sampled window.

2) In each A-window, the data was originally sampled ac-
cording to the weight exp(—BE(X) —BVpias(A)) where
Viias(A) was the bias used for umbrella sampling.
Reweight the data by assigning each configuration the
weight exp(BVpias(A) + 28F,(A) — InD(A))/N where N
is the number of configurations in the A-window.

3) Sample exp(—A(x)) by resampling the aggregate um-
brella sampling data according to the weights assigned
in step (2). Because of the factors of N in the reweight-
ing, the data from all of the A-windows can be combined
for sampling.

4) For each sampled configuration in step (3), generate a
swarm of short trajectories. We report calculations with
1000 trajectories per swarm in this study, but 100 trajec-
tories per swarm gave similar results. The swarm tra-
jectories should be of much longer duration than the
velocity-velocity correlation time so that a description
based on diffusive dynamics is appropriate. To minimize
computational effort, the swarm trajectories should also
be much shorter than the time required to relax to reac-
tant and product states.

5) Select a trial coordinate ¢ and divide the range of ¢ into
uniformly and narrowly spaced windows. Bin the data
sampled in step (3) into the g-windows. (It has already
been sampled according to the appropriate distribution).
Within each g-window, combine all of the swarm data
into a projected swarm using Eq. (13). For each config-
uration in the g-window, compute the Kullback-Leibler
divergence between its individual swarm and the pro-
jected swarm, Eq. (15). Sum the total Kullback-Leibler
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divergence over all sampled configurations from all win-
dows. Divide by the total number of individual swarms.
This is the expression in Eq. (18).

For applications involving molecular simulation, only
steps (1) and (4) of the algorithm will involve simulations for
data generation. The data generation steps involve a free en-
ergy calculation and the generation of swarms. The cost of
these steps should be comparable to the cost of other methods
that reconstruct free energy landscapes and optimize reaction
paths based on swarms.%* ¢

We recommend some pre-screening tests for each trial
reaction coordinate. In real applications the importance or
unimportance of some coordinates may not be obvious a pri-
ori, so a quantitative pre-screening of trial coordinates is im-
portant. A(x), when properly defined, is a good order param-
eter, which means it should be able to distinguish between
A and B. Data obtained in calculating F;(A) can therefore
be used to pre-screen trial reaction coordinates before using
the dynamical self-consistency test in step (5) of the algo-
rithm. For example, a correlation coefficient between the trial
coordinate and the initial coordinate A can be computed us-
ing only data from states A and B. The absolute value of
this correlation coefficient should be near unity for viable
trial coordinates. Here, data from basins A and B should
contribute equally regardless of their relative free energies,
otherwise the correlation coefficient will reflect only corre-
lations within the more stable basin. One could alternatively
require that projections of states A and B onto each trial co-
ordinate give non-overlapping distributions. Using these pre-
screening tests, many coordinates related to irrelevant sad-
dles and shallow minima can be immediately eliminated from
consideration.

RESULTS

We illustrate the dynamical self-consistency test for iden-
tifying accurate reaction coordinates with three simple ex-
amples employing two-dimensional model potentials with
anisotropic diffusion.

Example I: Nucleation with anisotropic structure
formation kinetics

The model

The first example is taken from research on the effects of
diffusion anisotropy in nucleation kinetics. Sear®' employed
a simple model free energy landscape of the form,

BF(nr,ns) = BAF{l — (np +ns —ny)*/nj} — xnpns,

(19)
where np and ng denote the number of fast and slow spins in
the nucleus (see Figure 5). Thus, nr represents a fast coor-
dinate and ng represents a slow coordinate. n; is the location
of the barrier top along either ny when ng is frozen or along
ng when ny is frozen. Note that ngp, ng > 0 because cluster
sizes are non-negative quantities. AF; represents the free en-
ergy barrier if either of the two coordinates nf or ng are frozen
at zero. The xngng term lowers the free energy barrier when

J. Chem. Phys. 138, 054106 (2013)
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FIG. 5. The free energy landscape for a model of nucleation where the nu-
cleus size can change along either fast (nr) and slow (ng) mobility directions.

the coordinates evolve together along the np = ng line. Sear
used parameters that yield a small 8 kT free energy barrier
with extremely large diffusion anisotropy.®' As outlined by
Berezhkovskii and Zitserman,’' the escape pathways in this
limit become dependent on the initial conditions. In particu-
lar, trajectories started at a given value of ng, whether large or
small, will escape before ng can change. In some cases, the
diffusion anisotropies used by Sear were factors of a million
different for motion in different directions.®' Our parameters
were chosen to avoid the Berezhkovskii-Zitserman regime?!
of extreme diffusion anisotropy, where the reaction coordi-
nate is thought not to exist. We use BAF; = 32, ny = 64, and
x = 3/160, which results in a saddle point at location (np,
ng) = (20, 20). The model free energy landscape is shown in
Figure 5.

The dynamics on the free energy landscape is modeled
using kinetic Monte Carlo®>83 with separate attachment and
detachment rates for the slow (ng) and fast (ng) degrees of
freedom. Following Sear,' the kinetics for ng evolution are
given relative to the kinetics for ny evolution. The rate of at-
tachment for the ny coordinate, i.e., the rate constant for np
— np + 1, is !, The rate of detachment, i.e., the process ng
— np — 1, 1is given by r’lexp[,BF(np, ns)-BF(np—1, ng)]. The
corresponding attachment rate for the ng degree of freedom is
slower by a factor of s, and is thus equal to st ~!. Analogous to
the np variable, the detachment rate for the ng variable is equal
to st~ lexp[BF(ng, ng)-BF(ng, ng—1)]. The factor s therefore
controls diffusion anisotropy on the free energy landscape.

From the diffusion anisotropy and the quadratic free en-
ergy, the KLBS theory can provide accurate reaction coordi-
nates for purposes of comparison. Ingredients in this theory
are the diffusion tensor D, which, apart from a multiplicative
scalar that has no effect on the reaction coordinate, is

D—]0 20
o s | (20)

and the second derivative matrix A of the free energy

2 2 2
Ao 9°BF/dny  0°BF/dnrdng . 1)
0*BF[dnsdny  92BF/onk |,

A and D were used only to provide exact reaction coordinates
from KLBS theory. The dynamical self-consistency test does
not require either quantity.
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FIG. 6. The free energy as a function of the initial coordinate A = nr + ng.

Simulations

The collective variable used to compute the weighting for
initial conditions of the swarms was chosen along the diago-
nal in the free energy landscape, i.e., A = np + ng. Figure 6
shows the projected free energy SF;(A) as a function of A.
The activation barrier is approximately 17 kT. Because the
diffusion tensor is coordinate independent, the InD(g) term
is a constant in the construction of the potential A(ng, ng)
= BF(np, ng) — 2PF,(ng + ng). We performed simulations
with different settings of the anisotropy s = 1.0, 0.3, 0.1, and
0.03. For each point in the discrete space (nr, ns) we initial-
ized a swarm. Individual swarms contain 1000 short trajecto-
ries, each of duration 4.07, but the method gave similar re-
sults with 100 trajectories per swarm. For a few initial points,
Figure 7 shows histograms of the endpoints of 1000 trajecto-
ries (a “swarm”) after they have evolved for a duration 2.0t.
(A shorter time 2.0t was used for the graphic to prevent the
spreading packets from overlapping in the figure.)

Optimization of the reaction coordinate

Next, we use the dynamical self-consistency test to op-
timize the reaction coordinate. We represent trial reaction
coordinates g by the angle 6 with the np-axis as shown in
Figure 8. The dynamical self-consistency test results are
shown in Figure 9. With isotropic diffusion, i.e., s = 1.0, the
initial coordinate A = np + ng, is the correct reaction coor-
dinate, so the optimum predicted by our method should be at
corresponding 8 = /4. As s becomes increasingly small the
optimal reaction coordinate rotates toward the ng direction,
i.e., the optimal angle 6 grows toward /2.

(a) s=1.0 I‘ S

p(n,At|ng)- f

®) s=0.1_T——

p(n,At| no

np 40 0

FIG. 7. Histograms of endpoints of 1000 trajectories 2.0t after initiation.
Each figure shows nine swarms initiated at nine different points on the free
energy landscape. In (a) the anisotropy is s = 1.0, and in (b) the anisotropy
is s = 0.1. Differences in the way the swarms drift are difficult to visually
discern, but the dynamical self-consistency test can detect differences.
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Ga

FIG. 8. The trial reaction coordinate g can be represented by the angle 6
between the direction of progress along ¢ and the np-axis.

As expected from KLBS theory, the reaction coordinate
rotates toward ng for stronger diffusion anisotropy. However,
the nature of the free energy surface does not allow the re-
action coordinate to rotate as far as the ng or np axes (0
=m/2 or 8 =0). If g is progress along the vector (cos 6, sin 9),
then the dividing surface must be parallel to the vector v
= (sin@, —cos #). The quadratic form v, TAv, must be pos-
itive to construct a dividing surface partition function. The
saddle point in the free energy of Eq. (19) is broad in the di-
rection normal to the minimum free energy path, i.e., the path-
way is not a narrow tube. Because of the broad saddle, the op-
timal 6 must always be in the interval 0.4257 < 6 < 0.751x.
Figure 9 shows that for s = 0.03, the optimal 6 is approaching
the upper bound of 0.425rx.

Reactive trajectories for s = 0.03 resemble two-step nu-
cleation trajectories. Fluctuations to large ng occur with lower
frequency than fluctuations to equivalently large ng. However,
when fluctuations to large ng do occur, they persist for a long
time, giving the nr degree of freedom ample time to cross the
effectively lowered barrier. Once the saddle region has been
crossed the trajectory can proceed downward on the free en-
ergy landscape moving primarily in the ng direction. The sys-
tem gets farther and farther from the minimum free energy
pathway as it proceeds. Peters has suggested this effect of dy-
namical anisotropy as a mechanism for metastable polymorph
selection.*’ The red trajectory in the schematic Figure 10 il-
lustrates this dynamical two-step behavior.

0.06
0.05
0.04 -

0.03 A

<AKL[Q(X)]>A

0.02

0.01

0.00 T T T
0.0 0.1 0.2 0.3 0.4 0.5

0/n

FIG. 9. exp[—A] weighted Kullback-Leibler divergences for different trial
reaction coordinates (represented by 6) and for different values of the diffu-
sion anisotropy, s = 1.0, 0.3, 0.1, 0.03.
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FIG. 10. Illustrating three mechanistic regimes that prevail for different de-
grees of diffusion anisotropy. When s ~ 1, the diffusion tensor is isotropic and
most pathways follow the minimum free energy path. When s < 1, but not ex-
tremely small, a two step nucleation mechanism prevails with initial motion
along the slow coordinate before escape in the np-direction. Finally, when s
is extremely small the Berezhkovskii-Zitserman (BZ) regime prevails. In the
BZ-regime, trajectories can escape in the ng-direction with the ng degree of
freedom frozen.

In the Berezhkovskii-Zitserman (BZ) regime, i.e., when
s ~ 0 becomes extremely small, escaping trajectories will en-
tirely avoid the saddle point as seen in the work by Sear.®! The
blue trajectory in Figure 10 schematically illustrates an escape
path in the BZ-regime. Finally, when s = 1, we have isotropic
diffusion, and typical trajectories follow the minimum free
energy path (MFEP). The gray line in Figure 10 approximates
the MFEP for the free energy landscape of Eq. (19).

Example II: A narrow tube landscape
The model

This second example tests the method for a narrow tube
free energy landscape and with different choices for the ini-
tial collective variable A. Again the model has slow and fast
degrees of freedom ng and ng. The free energy landscape now
has the coordinate ng bilinearly coupled to the ny degree of
freedom,

BF(np.ns) = BAF {1 — (np —ny)’/ni} + x(ns — np)’.
(22)

The parameters are BAF; = 18, ny = 20, and x = 1/16. In
this model, AF; is the free energy barrier when ng relaxes

FIG. 11. Narrow tube type free energy landscape as a function of fast (nr)
and slow (ng) coordinates. The saddle point is at (nfr, ng) = (20, 20).
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adiabatically in response to changes in np. But because ng is
the slower degree of freedom adiabatic relaxation cannot ac-
tually occur. For these parameters, the free energy landscape
(shown in Figure 11) confines the transition paths to a narrow
tube. The differences between the free energy landscapes of
Figures 5 and 11 have important consequences for the dynam-
ics. When ng is dynamically frozen in the broad landscape of
Figure 5, escape can still occur in the np direction. In contrast,
when ng is dynamically frozen in narrow tube landscape, ng
is dynamically caged within a small range of ng-values which
are thermally accessible at constant ng. Because of the har-
monic valley shape of the narrow tube, motion toward the
barrier top by either coordinate induces the other coordinate
to follow. Counter-intuitively, this property means that nar-
row tubes admit a wider range of admissible trial reaction
coordinates.

The effect of the choice of A

Using the above-mentioned narrow tube model we tested
the sensitivity of our method to the choice of the initial col-
lective variable A. Figures 12(a) and 12(b) show projections
of the free energy onto the choices A = ng and A = np coordi-
nates, respectively. Dynamical self-consistency optimizations
were separately performed, first using A = ng, and then using
A= nr.

Swarms were generated at each point of the (np, ng)
landscape. The two initial collective variables yield differ-
ent A(np, ng) potentials, so the data is weighted differently
in the two cases. The dynamical self-consistency test given in
Eq. (17) was applied to different reaction coordinates, again
represented using the angle 6, for different degrees of the dif-
fusion anisotropy s (see Figure 13).

The two choices of A give optimal coordinates that are
very similar as shown in Table I. Note that the dynamical self-
consistency test for the narrow tube landscape can identify co-
ordinates that are effectively orthogonal to the initial collec-
tive variable A. For example, in the case where s = 0.03, the
optimal reaction coordinate corresponds to 6 =~ /2, which is
nearly orthogonal to the initial choice A = np.

An analogy can be made between Grote-Hynes theory®
and the results of this example. The Grote-Hynes the-
ory employs a generalized Langevin equation’® to model
non-adiabatic inertial dynamics in barrier crossings.’>6%8%
Pollak® and others®® have noted that the one-dimensional

(a) L= ng (b) A=ng
20 20
~ 20 .- -
= . >
=, 10 <10
&£ &
5 5
S 20 30 % 10 20 30
nS nF

FIG. 12. Projections of the free energy onto different initial coordinates.
(a) The initial coordinate was A = ng. (b) The initial coordinate was
A =np.
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FIG. 13. (AkLl[ql)a for different coordinates (represented by the angle 6 as
shown in Figure 8). (a) The initial coordinate was A = ng. (b) The initial
coordinate was A = nr. In both cases the optimal coordinate (the minimum)
rotates toward ng as the diffusion tensor becomes more anisotropic.

Grote-Hynes model is equivalent to the inertial dynamics near
a saddle point in a multidimensional harmonic energy land-
scape. In the multidimensional model of Pollak,?’ dynamical
caging emerges as the effect of slow solvent degrees of free-
dom that non-adiabatically trap the faster coordinate of the
generalized Langevin equation. By redefining the reaction co-
ordinate to include slower solvent components, Pollak®> ob-
tained a reaction coordinate whose (inertial) dynamics were
independent of all other collective variables.?> %

The Grote-Hynes and Pollak models consider inertial
dynamics, while we considered purely diffusive dynamics.
However, the narrow tube and large anisotropy of the model
system in Figure 11 correspond to strong coupling between

TABLE I. Comparison between reaction coordinates from the dynamical
self-consistency test and from KLBS theory. Coordinates identified by dy-
namical self-consistency are summarized for two different initial coordinates.
For narrow tube potential energy landscapes the dynamical self-consistency
test can correctly identify accurate reaction coordinates even for an inaccurate
initial coordinate A.

Optimal 0 Optimal 6
K AgKL(A = ng) AKL(A = nF) (KLBS)
1.00 0.21x 0.21m 0.1957%
0.30 0.297 0.337 0.3387
0.10 0.427 0.427 0.4257
0.03 0.467 0.507 0.472n

J. Chem. Phys. 138, 054106 (2013)

slow and fast modes in Pollak’s analysis.%> Like Pollak we
find an optimal reaction coordinate that is redirected toward
the slower mode, ng. Like Pollak we also find the optimal co-
ordinate as that with (diffusive) dynamics that are indepen-
dent of the other coordinates.

Example lll: When isosurfaces of A give
a bimodal distribution

In this example, we consider a two-dimensional em-
pirical valence bond (EVB) potential. The potential is con-
structed from a Morse function: m(x) = 100(exp[—2(x—1)]
— 2exp[—(x—1)]) and an exp-4 function: g(y) = exp[—y*/
256]. These are used to obtain a potential energy surface as
an adiabatic EVB ground state V(x, y) by solving the secular
equation

gy — 1.5m(px +2)—-V c
c gy +15mR2 —¢x)—V

with ¢ = 20.0 and ¢ = 0.025. Simple Metropolis Monte
Carlo trajectories at kgT = 1.0 with trial moves that are
unit steps in £x or ty directions at each step were used for
the dynamics. The discrete random walk, similar to an over-
damped Langevin dynamics after several steps, drifts in the
direction —dV/d(x, y). The potential and the minimum en-
ergy path from the saddle to the two minima are shown in
Figure 14. This example is complicated because the barrier
is extremely narrow in the reaction coordinate direction and
wide in the transverse direction. The saddle region is there-
fore a broad sharp ridge rather than a narrow tube. A sec-
ond source of difficulty is that the optimal reaction coor-
dinate is not a linear combination of x and y, but rather a
nonlinear vertical energy gap between the diabatic states. A
third difficulty is that the stable basins are much longer in
the y-direction than in the x-direction. Therefore within the
basins, y decorrelates more slowly than x. If y were rescaled
to obtain nearly circular basins, then the diffusion would be-
come anisotropic with the variable y being slow. But even
though y decorrelates more slowly than x within the basins,
the dynamical bottleneck (and hence the slowest decorrelation

ol
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40 0 40 40 0 40

FIG. 14. Contour plots of (a) the EVB potential V(x, y) with the mini-
mum energy path between the reactant and product minima, (b) the potential
A(X, y) constructed with A chosen as the end-to-end direction along the min-
imum energy path, and (c) the potential A(x, y) constructed with the ideal
energy gap coordinate for A. Contour spacings are 5kgT in all plots.
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FIG. 15. (AkLr[ql)a for different linear trial coordinates q(x, y) represented
by the angle 6. The initial coordinate A(X, y) gives a hysteretic free energy
F,. (1) if sampled imperfectly. Coordinates similar to A clearly do not have dy-
namical self-consistency, but other coordinates are not clearly distinguished
in (AgL[q])a.

time) arises from the high barrier between the basins in the
x direction.

We first illustrate what happens when the initial coordi-
nate A does not meet the aforementioned requirements. The
initial coordinate A = 0.732x-0.681y changes along the end-
to-end vector along the minimum energy path. Figure 14(b)
shows an arrow in direction u;, = VA/||VA||, and the potential
A(x, y) which results from the choice & = 0.732x-0.681y.
A(x, y) has two minima because the distribution on the
dividing surface A = 0, ie. (S[A(x, y)]) 'exp[—BV(X,
VI8[A(X, y)], is bimodal. The bimodality indicates that
A = 0.732x-0.681y does not fully remove the unstable di-
rection from the A isosurfaces. Neither of the minima in the
potential A(x, y) coincide with the saddle point region of the
original potential. Figure 15 shows the value of (Aky [q])a for
each trial reaction coordinate g from 6 = —n/2 to 0 = 7 /2.
Coordinates which are similar to the initial coordinate A (indi-
cated by the vertical arrow) have isosurfaces with support near
both minima of A(X, y). These coordinates are clearly iden-
tified as being incorrect because swarms in these two basins
evolve differently. In contrast, isosurfaces of coordinates that
are very different from A can have support in one of the two
basins, but never both. These coordinates are essentially indis-
tinguishable. Thus the dynamical self-consistency test fails to
identify a reaction coordinate for the same reasons that lead
to a bimodal distribution on A = (. (The correct coordinate,
by a tiny margin, does minimize (Agy[q])a, but there seems
to be no physical reason to trust that result.)

As already indicated by the narrow range of g with uni-
modal dividing surface distributions in Figure 15, there is only
a narrow range of admissible choices for A. Because the sad-
dle is a broad sharp ridge, A must already be an accurate reac-
tion coordinate to satisfy the no-bimodality requirement. The
present method therefore cannot help identify coordinates for
passage over such broad sharp ridges except perhaps to make
fine adjustments to a coordinate that is already approximately
correct.

Even when the dynamical self-consistency test cannot
help find reaction coordinates, it can still determine whether
an accurate reaction coordinate obtained by another method
can accurately reduce the dynamics to a one-dimensional
Smoluchowski equation. To illustrate this point, we construct
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FIG. 16. (AxkL[ql)a for different linear trial coordinates q(x, y) represented
by the angle 6. The initial coordinate A(X, y) is the vertical energy gap be-
tween diabatic states of the EVB model.

A(X, y) by using the vertical energy gap for the coordinate
A(x). The resulting potential A(X, y) is shown in Figure 14(c).
Figure 16 again shows (Aky [q]) s for each trial reaction coor-
dinate q from 6 = —m/2 to 6 = /2. There are two minima in
(AxpLIq]) a- One is the spurious coordinate y which does not
separate the two basins and for which all surfaces y = y, have
bimodal distributions. y would therefore be discarded accord-
ing to the recommendations for screening trial coordinates.
The other minimum, within the “no bimodality” brackets, is
the optimal linear reaction coordinate: q = 0.9952x—0.098y.
Interestingly, the value of (Agp[q])a for the optimal linear
coordinate is similar to values obtained for the exactly
reducible quadratic free energy landscapes in examples 1 and
2 above. This suggests that dynamical self-consistency and
reduction to a one-dimensional Smoluchowski equation may
be achievable even in systems that initially appear to require
more variables.

For future directions in tests for dynamical self-
consistency, we note that there is a close link between
the bias function A(x, y) in this work and the factor
exp[—BV(x)]*|Vpg|* which appears in the functional for op-
timizing the committor function in transition path theory
(TPT).26-87:88 Consider the case where pg depends only on the
collective variable A with constant diffusion D, then by Eq.
(3) we have dpg/dA = exp[BF(A)] within a constant. There-
fore exp[—BV(x)]|dp/dA|*> = exp[—A (x)]. However, an im-
portant difference is that TPT can begin with several impor-
tant initial coordinates2® Aj, A, ..., A, while the method in
this work requires a single initial coordinate. Instead of the
exp[—A(x)] weights used in this work, a global metric for
dynamical self-consistency based on TPT might weight ori-
gins of the swarms by exp[—BV(x)]*|Vpg|? for a set of sev-
eral approximate initial coordinates. In cases like example III,
where a single suitable initial coordinate is difficult to iden-
tify, the more general multivariable framework of TPT might
help find accurate one-dimensional coordinates with dynam-
ical self-consistency. However, we reiterate that reduction to
a single coordinate with dynamical self-consistency is only
possible in special cases.

We also note another future direction which is suggested
by example III. When the single initial coordinate is chosen
poorly, A(x) develops two minima as seen in Figure 14(b).
Maximum information entropy measures could help identify
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the coordinate which separates these two minima (as one
of the many directions normal to A). The additional coordi-
nate, in combination with A, spans a two-dimensional space
which does contain the correct coordinate, as suggested by
Figure 14(b). Certainly, a systematic reduction from many di-
mensions to two would also be useful.

CONCLUSIONS

This work introduces a novel way to identify optimal
reaction coordinate by a dynamical self-consistency test.
Specifically, the dynamics of short trajectories launched from
an ensemble of configurations on isosurfaces of a trial co-
ordinate are projected back onto the trial coordinate. If the
dynamics of individual swarms at each point evolve like
swarms initiated from all other points on the same trial co-
ordinate isosurface, then the trial coordinate has a dynami-
cally self-consistent projection property. For certain systems
where the reaction coordinate evolution can be described by
a one-dimensional Smoluchowski model, coordinates which
are dynamically self-consistent in the transition pathway can
be identified as accurate reaction coordinates. We use the
Kullback-Leibler divergence’” to screen trial reaction coordi-
nates for dynamical self-consistency. The swarms of short dy-
namical trajectories used to screen trial coordinates are gen-
erated only once by sampling along an initial coordinate. The
initial coordinate should be a good order parameter for which
the free energy calculation gives no bimodality. Once initial
swarm data are generated, they can be used to test other trial
reaction coordinates, much like the strategy of the earlier like-
lihood maximization approach.'>!4

For free energy landscapes of the “narrow tube” type
as shown in Figure 11, the method is robust and insensitive
to the choice of the initial coordinate. The results includ-
ing dynamics with anisotropic diffusion tensors were consis-
tent with the exact reaction coordinates from KLBS theory.
The method also performed well for models with moderately
broad saddles that have been considered in the context of
nucleation.®”-%1-%° However, the proposed method performs
poorly for broad sharp ridges, i.e., when the barrier is nar-
row along the reaction coordinate and very wide in transverse
directions. For this type of landscape nearly all initial coordi-
nates give bimodal dividing surface distributions, so the only
viable choice for the initial coordinate becomes the unknown
reaction coordinate. The method is therefore less general than
methods based on full-length transition paths. Nevertheless,
the method may be useful in certain applications where transi-
tion path sampling simulations are not feasible. Furthermore,
the framework provides insight on the relationship between
reaction coordinates, committors, and short-time dynamics in
those special cases where dynamics along the reaction coor-
dinate can be described by a one-dimensional Smoluchowski
equation. Beyond finding reaction coordinates, the dynamical
self-consistency test can also assess whether reaction coordi-
nates obtained by other methods can yield an accurate one-
dimensional Smoluchowski model for the multidimensional
dynamics.
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APPENDIX: AN INVARIANCE OF A(x)

Equation (11) proposes the construction of a bias poten-
tial from an initial collective variable A;(x). Suppose instead
an alternative collective variable A, was used with A, being
some monotonic function A, = Ay(1;). As A; and X, depend
monotonically on each other, there is a one-to-one mapping
of the isosurfaces of the bias potential A(x) = constant. An
ideal biasing function should therefore weight configurations
identically under either of these two initial coordinate choices.
Equation (11) has such an invariance property’# for monoton-
ically related coordinates. Consider the bias potentials

A(x) = BEXX) — 2B8F1(A1(X)) + In D1(A (X)), (A1)
and
Ao (x) = BE(X) — 2B F2(A2(X)) + In Dy (A2(x)).

Now suppose that a monotonic function relates A, and Aq,
with Jacobian corrections for the change of coordinates the
two free energies are related,

(A2)

1

F>(A) = BFi(A) —1 a2 A3
BF(A2) = BFi1(A1) Hd)Lz- (A3)

Similarly, coordinate transformation of the local diffusion
constant gives

sy |?

di

Inserting Eqgs. (A3) and (A4) into Eq. (A2) gives
Eq. (A1). Therefore the biasing function as defined in Eq. (11)
is invariant among physically equivalent initial coordinates.

D>(A2) = D1(Ay) (A4)
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