
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Generalized belief propagation on tree robust structured region graphs

Gelfand, A.E.; Welling, M.

Publication date
2012
Document Version
Final published version
Published in
Uncertainty in Artificial: proceedings of the Twenty-Eight conference (2012): August 15-17,
2012 Catalina Island, CA

Link to publication

Citation for published version (APA):
Gelfand, A. E., & Welling, M. (2012). Generalized belief propagation on tree robust structured
region graphs. In K. Murphy, & N. de Freitas (Eds.), Uncertainty in Artificial: proceedings of
the Twenty-Eight conference (2012): August 15-17, 2012 Catalina Island, CA (pp. 296-305).
AUAI Press. http://www.auai.org/uai2012/proceedings.pdf

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:09 Mar 2023

https://dare.uva.nl/personal/pure/en/publications/generalized-belief-propagation-on-tree-robust-structured-region-graphs(71da9caa-7e78-4b0c-a899-bc11d99c34b2).html
http://www.auai.org/uai2012/proceedings.pdf


Generalized Belief Propagation on Tree Robust Structured Region Graphs

Andrew E. Gelfand
Dept. of Computer Science

University of California, Irvine
Irvine, CA 92697-3425, USA

Max Welling
Dept. of Computer Science

University of California, Irvine
Irvine, CA 92697-3425, USA

Abstract

This paper provides some new guidance in the
construction of region graphs for Generalized
Belief Propagation (GBP). We connect the prob-
lem of choosing the outer regions of a Loop-
Structured Region Graph (SRG) to that of find-
ing a fundamental cycle basis of the correspond-
ing Markov network. We also define a new class
of tree-robust Loop-SRG for which GBP on any
induced (spanning) tree of the Markov network,
obtained by setting to zero the off-tree interac-
tions, is exact. This class of SRG is then mapped
to an equivalent class of tree-robust cycle bases
on the Markov network. We show that a tree-
robust cycle basis can be identified by proving
that for every subset of cycles, the graph obtained
from the edges that participate in a single cycle
only, is multiply connected. Using this we iden-
tify two classes of tree-robust cycle bases: pla-
nar cycle bases and “star” cycle bases. In exper-
iments we show that tree-robustness can be suc-
cessfully exploited as a design principle to im-
prove the accuracy and convergence of GBP.

1 Introduction

Loopy belief propagation (BP) on Markov networks (MNs)
[16, 29, 5, 22, 1, 17] has remained an active area of research
for more than a decade. Much progress has been made in
characterizing its fixed points [26, 33, 9], improving and
understanding its convergence properties [26, 4, 11, 12],
designing convergent alternatives [32, 35, 9, 7, 8, 19], de-
veloping new message passing algorithms based on alter-
native convex objectives [27, 28, 10, 25], and extending BP
to GBP based on larger clusters (also known as the Kikuchi
approximation or Cluster Variation Method) [14, 20, 34].

Despite all this progress, very little attention has been paid
to the question of how to actually choose the outer regions

(clusters, cliques) for any of the GBP algorithms. This is
surprising given that GBP has the potential to improve the
accuracy of BP by orders of magnitude without necessar-
ily adding all that much computational burden. Moreover,
GBP is very sensitive to the choice of outer regions; a bad
choice can lead to poor convergence behavior and little im-
provement in accuracy, while a good choice can result in
fast convergence and an accurate approximation.

Some guidance on choosing regions has appeared in the
literature. In [30] a (greedy) region pursuit algorithm was
proposed that ranks candidate clusters by sending a lim-
ited set of messages through the network. This approach
is computationally expensive because all candidate clus-
ters need to be evaluated. Moreover, the algorithm has no
way of deciding when to stop adding regions. A similarly
expensive “wrapper” approach based on the edge deletion
method was published in [2]. A scheme that utilizes mini-
bucket elimination to choose regions in a two layer region
graph (called a join graph) is presented in [3]. In this re-
gion graph, inner regions represent the separators and con-
nections between outer and inner regions are chosen so that
the running intersection property holds.

Two desirable properties of region graphs on partially or-
dered sets (posets) - k-connectedness and k-balancedness
- were proposed in [18, 23]. Those authors also show that
the Cluster Variation Method (CVM) [14, 20, 34] yields
a region graph that is totally connected and balanced and
that the join-graph construction is only 1-connected and 1-
balanced. Structured Region Graphs (SRGs) introduced in
[31] also inherit the total connectedness and balancedness
properties. Another desirable property of region graph con-
structions discussed in [34] is that the sum of all counting
numbers should equal 1. This property ensures exact re-
sults for infinitely strong interactions. A condition called
maxent-normality, which ensures that the free energy is
maximal in the limit of zero interactions, was also intro-
duced in [34]. Maxent-uniqueness was strengthened in [31]
to guarantee that uniform beliefs are the unique fixed points
of GBP.

In [31] it was shown that Loop-SRGs - a specific class of



SRG with loop outer regions - satisfy all the desirable con-
ditions when the loop regions form a linearly independent
set of size #edges - #nodes + 1 - i.e. a cycle basis. Our
contribution can be seen as a refinement of the criteria pro-
posed in [31]. In particular, we show that to satisfy the de-
sirable conditions (e.g. non-singularity and sum of count-
ing numbers equal 1), the set of loop regions must form
a fundamental cycle basis. We also propose a condition
called “tree-robustness” that further restricts the choice of
loop regions. The idea of tree-robustness is to require GBP
on a SRG to be exact on every possible tree embedded in the
Markov Network, where an embedded tree is obtained by
zeroing out the interactions on the off-tree edges. For loop
SRGs, we show that this idea can be translated to an equiv-
alent problem in graph theory, namely that of finding tree-
robust cycle bases. We then characterize the class of tree
robust cycle bases and identify two families of tree robust
cycle bases. Finally, we demonstrate the performance of
GBP on Loop-SRGs constructed to satisfy tree-robustness.

2 Generalized Belief Propagation and
Structured Region Graphs

Belief Propagation (BP) [24] is an algorithm for computing
marginal probabilities in distributions taking the following
form:

p(x) =
1

Z

∏
a

fa(xa) (1)

where a indexes the factors in the model and f(xa) is a
function on xa, which is a subset of {x1, ..., xn}, the n
discrete-valued random variables in the distribution. In this
paper we assume p(x) to be comprised of only pairwise
factors but the extension to factor graphs is straightforward.

BP is a message passing algorithm that computes marginals
by iteratively sending messages from one node to its neigh-
boring nodes. It is most easily described in terms of mes-
sages passed along the edges of a factor graph [15] (factors
are pairwise interactions in this paper), which is a bipartite
graph comprised of factor nodes and variable nodes. The
edges in a factor graph connect each factor node a to the
variable nodes i for which xi ∈ xa. The belief bi(xi) at
variable node i is an approximation to the exact marginal
p(xi) and is defined as:

bi(xi) ∝
∏

a∈N(i)

ma→i(xi) (2)

where ma→i(xi) is a message from factor node a to vari-
able node i and N(i) is the set of factor nodes neighboring
variable node i. The belief ba(xa) over the variables xa is
defined in an analogous fashion, as a product of messages
from variable nodes to factor node a. These beliefs will be
exact if the factor graph contains no cycles.

An important limitation of BP is that messages are defined
on a single variable. This means that interactions between

variables may be lost during message passing. Generalized
Belief Propagation (GBP) [34] is a class of algorithms that
address this limitation. In GBP, messages over one or more
variable are passed among sets of nodes or regions. A re-
gion graph is a structure, analogous to the factor graph, that
helps organize the computation of GBP messages.

DEFINITION 1. A Region R is a set of variable nodes and
factor nodes such that if factor node a is in region R, all
variable nodes i where xi ∈ xa are also in R.

LetR denote the set of all regions. Let xR denote the set of
variables in region R and fR(xR) =

∏
a∈R fa(xa) be the

factors in region R. Every variable and factor must belong
to some region.

DEFINITION 2. A Region Graph (RG) is a directed graph
G(V,E), where each vertex v ∈ V is associated with a
region R ∈ R and the directed edges e ∈ E are from some
vertex vp to vertex vc if xRc ⊂ xRp , where xRi is the set of
variables in region Ri. In such cases, vertex (region) p is
the parent of vertex c.

Let pa(R) denote the parents, an(R) denote the ancestors
and de(R) denote the descendants of region R. Regions
with no parents will be referred to as outer regions; all other
regions are inner regions. The Bethe RG is a RG with outer
regions for each factor and inner regions for each variable.

Each region R is associated with a counting number κr
used to define the region-based free energy of a RG. Let
R(i) = {R ∈ R|xi ∈ xR} denote the set of regions con-
taining variable i. A RG is considered 1-balanced if:∑

R∈R(i)

κR = 1 ∀ i (3)

1-balancedness is satisfied if κR is defined recursively as:

κR = 1−
∑

A∈an(R)

κA (4)

A RG is 1-Connected if the subgraph consisting of the re-
gions R(i) is connected for all i. These conditions can be
strengthened by considering the set of regions containing a
larger set of variables - i.e. R(s) = {R ∈ R|xs ∈ xR}
for xs ⊆ {x1, ..., xn}. A RG is called totally connected
and balanced if it is connected and balanced for all sets of
variables that are subsets of an outer region - i.e. for any
xs ⊆ xR for outer region R [23]. Junction graphs [18] and
Join Graphs [3] are two-layer RG constructions satisfying
1-balancedness and 1-connectednesss, while CVM [14, 21]
ensures total connectivity and balancedness.

Many different GBP algorithms can be defined on RGs.
The parent-to-child (or canonical) GBP algorithm is one
such algorithm. It is defined in terms of messages sent from
a parent region to a child region. As in BP, the belief at a
particular region R is computed as a product of messages



into R. However, the messages do not come from the re-
gions neighboringR, but rather from regions external toR.
The belief bR(xR) at region R is given by:

bR(xR) ∝ fR(xR)
∏

P∈pa(R)

mP→R(xR) · (5)

∏
D∈de(R)

∏
P ′∈P ′(R)

mP ′→D(xD) (6)

where P ′(R) = {pa(D) \ {R ∪ de(R)}}. Figure 1 illus-
trates how beliefs are computed on a 3-by-3 grid.

Figure 1: Illustration of message passing on a factor graph (top
right) and region graph (bottom) for the 3-by-3 grid in the top-
left. In BP, the belief b5(x5) is a product of messages into vari-
able node 5. The belief at region 6, bR6(x4, x5), is a product of
messages into region 6 and its descendants (i.e. region 9).

The RG framework was extended in [31] to structured mes-
sage passing algorithms.
DEFINITION 3. A Structured Region Graph (SRG) is a re-
gion graph in which each region R is associated with a
set of cliques C(R). Every variable in xR must appear in
some clique or factor. The set of factors and cliques asso-
ciated with a region define a structure G(R), which is an
undirected graph with vertices for each variable in xR and
edges connecting any pair of variables appearing in the
same factor or clique.

In the rest of the paper, we restrict our attention to Loop-
SRGs, which are a particular type of SRG.
DEFINITION 4. A Loop-SRG is a 3-level SRG consisting of
loop outer regions and edge and node inner regions, where
a loop outer region has a structure G(R) that forms an (ele-
mentary) cycle. Loop outer regions are connected to the set
of edge inner regions comprising the loop and edge inner
regions are connected to the two node regions comprising
the edge.

A Loop-SRG on the grid in Figure 1 can be formed by tak-
ing the faces of the grid as the loop regions, the edges of
the grid as edge regions and all vertices as node regions.
Importantly, Loop-SRGs are not limited to planar graphs.
In fact, a Loop-SRG can be constructed on any graph struc-
ture containing cycles.

3 Properties of SRGs
The balancedness and connectedness conditions can be sat-
isfied by many different SRGs for some distribution p(x).
However, some SRGs will give better quality approxima-
tions than others. Two properties of SRGs that are useful
in identifying ”good” SRGs were identified in [34]. The
first property is that

∑
R κR = 1. This property ensures

that the region-based entropy is correct if the variables in
p(x) are perfectly correlated. This property will be re-
ferred to as counting number unity. The second property is
maxent-normality, which requires the region-based entropy
of a connected SRG to achieve its maximum when the re-
gion beliefs bR(xR) are uniform. The maxent-normality
property was strengthened in [31] to require that message
passing with uniform factors have a unique fixed point at
which bR(xR) are uniform. This stronger property is re-
ferred to as non-singularity. An SRG that does not satisfy
this condition is singular.

In [31] it was shown that an acyclic SRG is non-singular.
Proving this required a set of reduction operators that mod-
ify an SRG’s structure while preserving the fixed points of
the region-based free energy. The reduction operators will
be used in this paper, but are not presented for space rea-
sons (see [31, 30]).

The following qualities of Loop-SRGs come from [31]:

THEOREM 1. A Loop-SRG has
∑
R κR = |L|− |E|+ |V |,

where |L| is the number of loop regions, |E| the number of
edge regions and |V | the number of node regions.

THEOREM 2. A Loop-SRG is singular if
∑
R κR > 1.

THEOREM 3. A Loop-SRG is singular iff there is a subset
of loop regions and constituent edge regions such that all
of the edge regions have 2 or more parents.

These theorems are illustrated on the grid in Figure 2. In
this Loop-SRG, every edge region has exactly 2 loop re-
gions as parents and is thus singular by Theorem 3. There
are also |L| = 3 loop regions, |E| = 7 edge regions and
|V | = 6 node regions, so that

∑
R κR = 2. Thus, the

Loop-SRG is also singular by Theorem 2.

Figure 2: A Loop-SRG (right) for the 2-by-3 grid (left). There
are 3 loop outer regions and 7 edge inner regions. The node re-
gions have been dropped for clarity.

Theorems 2 and 3 describe conditions that are undesirable
in Loop-SRGs, but offer no guidance on how to identify



”good” Loop-SRGs. The following section establishes a
connection between the set of loop regions in a Loop-SRG
and cycle bases of a graph that will prove useful in con-
structing well-behaved Loop-SRGs.

4 Loop Regions and Cycle Bases
In [31] it was noted that counting number unity in a Loop-
SRG requires |L| = |E| − |V | + 1 loops. This number
of loops is exactly the dimension of the cycle space of the
undirected graph G describing the MN p(x). The connec-
tion between loop regions and cycle bases is formalized
in this section. We begin with some background on cycle
bases taken from [13].

Let G = (V,E) be a 2-connected graph. A simple cycle
C in G is a connected Eulerian subgraph in which every
vertex has degree 2. The cycle space C(G) of a graph G
consists of all simple and non-simple cycles ofG including
the empty cycle ∅. The dimension of a cycle space for a
graph with 1 connected component is µ ≡ µ(G) = |E| −
|V |+ 1.
DEFINITION 5. A Cycle Basis of C(G) is a set of simple
cycles B = {C1, ..., Cµ} such that for every cycle C of G,
there exists a unique subset BC ⊆ B such that the set of
edges appearing an odd number of times in BC comprise
the cycle C.
DEFINITION 6. A cycle basis B is a
Fundamental Cycle Basis (FCB) if there exists
a permutation π of the cycles in B such that
Cπ(i) \

{
Cπ(1) ∪ · · · ∪ Cπ(i−1)

}
6= ∅ for i = 2...µ.

In other words, the cycles can be ordered so that cycle
Cπ(i) has some edge that does not appear in any cycle
preceding it in the ordering.

Consider mapping each loop outer region R to a cycle C
in the basis B of the undirected graph of p(x).1 Using this
mapping, we can claim the following.
THEOREM 4. A Loop-SRG is Non-Singular and satisfies
Counting Number Unity if its loop outer regions are a Fun-
damental Cycle Basis (FCB) of G.

The proof2 uses reduction operators to show that a loop
outer region with a unique edge (i.e. an edge not shared
with any other loop region) can be reduced to the set of
edges comprising that loop. Since the set of loops form a
FCB, we are guaranteed to find a loop region with a unique
edge if we reduce loops along π - i.e. beginning with the
loop corresponding to Cπ(µ) and ending at loop Cπ(1).

This result implies that the loop regions in an SRG should
form a FCB. This greatly reduces the set of loops consid-
ered when constructing a Loop-SRG. However, a graph

1More specifically, the structure G(R) of each outer region R
is chosen to be a unique cycle C ∈ B

2Formal proofs of all theorems in this paper are provided as
supplementary material.

may have many fundamental bases, so one may ask if
Loop-SRGs formed from certain FCBs are better than oth-
ers. The next section defines a class of Loop-SRG with
loop regions corresponding to a specific type of FCB.

5 Tree Robust Cycle Bases

Non-singularity and counting number unity ensure that
GBP behaves sensibly in two opposite and extreme situ-
ations. Non-singularity requires GBP to be exact in the
presence of uniform factors, while counting number unity
ensures that GBP is exact in the presence of perfectly cor-
related variables.

Tree-Robustness is a condition which ensures that GBP be-
haves sensibly in an orthogonal way. The idea of Tree-
Robustness is as follows. Imagine removing some set of
factors from p(x) to produce a modified MN p′(x) that is
acyclic. It would be nice if GBP run on the original Loop-
SRG of p(x) but retaining only the factors of p′(x), were
equivalent to BP run directly on the Bethe RG for p′(x)
(since BP will be exact in that case). A Tree Robust SRG is
a Loop-SRG that is exact w.r.t. all acyclic MNs produced
by retaining some of the factors in p(x).

More formally, let T be some spanning tree of the undi-
rected graph G describing p(x) and let T̄ denote the off-
tree edges. A SRG is Tree Exact w.r.t. to T if by removing
only factors on edges T̄ , the SRG can be reduced so that
inference on T is exact. In other words, a sequence of re-
duction operations can be applied to the SRG so that it can
be reduced to a Bethe RG with edge regions for each edge
in T and node regions for each variable. Since T is acyclic,
running GBP on this resulting RG will be exact. Finally,
we say that a SRG is Tree Robust (TR) if it is Tree Exact
w.r.t. all spanning trees of G.

The previous section established that a Loop-SRG is non-
singular if its loops form a FCB. In this section, we first
define a TR cycle basis and then show that a Loop-SRG is
TR if its loops form a TR cycle basis.

DEFINITION 7. Let T be some spanning tree of G.
A cycle basis B is Tree Exact w.r.t. T if there ex-
ists an ordering π of the cycles in B such that{
Cπ(i) \ {Cπ(1) ∪ · · · ∪ Cπ(i−1)}

}
\ T 6= ∅ for i = 2...µ.

In other words, the cycles can be ordered so that cycle
Cπ(i) has some edge that: 1) does not appear in any cy-
cle preceding it in the ordering; and 2) does not appear in
the spanning tree T .

DEFINITION 8. A cycle basis B is Tree Robust (TR) if it is
Tree Exact w.r.t. all spanning trees of G.

By mapping each loop outer region to a cycle in basis B it
can be shown that3:

3See supplementary material for formal proof.



THEOREM 5. A Loop-SRG is Tree Robust if its loop outer
regions are a Tree Robust cycle basis of G.

In the remainder of this section, we introduce two theorems
that characterize TR cycle bases. These results prove useful
in showing that, for example, the faces of a planar graph
constitute a TR cycle basis. The ensuing theorems require
the following definition.

DEFINITION 9. The Unique Edge Graph of a set of cycles
C = {C1, ..., Ck} is a graph comprised of the set of edges
that are in exactly one cycle in C. We will use I(C) to denote
the unique edge graph for cycle set C. I(C) is cyclic if it
contains at least one cycle.

Using this definition we can now state the following equiv-
alent characterization of TR cycle bases.

THEOREM 6. Let B|k| denote all size k subsets of cycles
in B. A FCB B is Tree Robust iff I(Bk) is cyclic and not
empty for all Bk ∈ B|k| for 1 ≤ k ≤ µ. In other words,
the unique edge graph must be cyclic for all pairs of cycles,
and all triples of cycles,..., and all of the µ cycles.

COROLLARY 1. An FCB is TR iff Bk is TR for all Bk ∈
B|k| for 1 ≤ k ≤ µ.

We sketch the main idea of the proof here. Sufficiency fol-
lows because whatever ordering π we choose to remove
the cycles in, there is never a tree T that can block all of
the edges of the unique edge graph under consideration
(since it is always cyclic). Necessity follows because if
there were a subset of cycles for which the exposed edge
graph is acyclic then there exists no ordering π that can
avoid that subset (or a larger subset with an acyclic unique
edge graph). Hence, by choosing the tree T to block all
edges of the acyclic unique edge graph under consideration
we prove that the bases is not tree robust.

6 Planar and Complete Graphs
Using the theorems from the previous section, we now
identify TR cycle bases of planar and complete graphs. In
the case of planar graphs, a TR basis can be constructed
from the cycles forming the faces of the planar graph. This
supports the observation of previous authors that GBP run
on the faces of planar graphs gives accurate results.

THEOREM 7. Consider a planar graph G. The cycle basis
B comprised of the faces of G is TR.

Proof. We use theorem 6. Consider the graph formed by
any subset of k faces of the planar graph. Consider any
of its connected components. The path that traces the cir-
cumference of that component is a loop and also consists
of unique edges.

In the case of complete graphs, a TR basis can be con-
structed by choosing some vertex as a root, creating a span-
ning tree with edges emanating from that root and con-

structing loops of length 3 using each edge not in the span-
ning tree. This is exactly the ’star’ construction of [31],
which was shown empirically to be superior to other Loop-
SRGs on complete graphs.

THEOREM 8. Consider a complete graph G on n vertices
(i.e. Kn). Construct a cycle basis B as follows. Choose
some vertex v as the root. Create a ’star’ spanning tree
rooted at v (i.e. with all edges v-u). Now construct cycles
of the form v-i-j from each off-tree edge i-j. The basis B
constructed in this way is TR.

Proof. We use again theorem 6. Consider the graph con-
structed from any subset of k triangles. The edges not on
the spanning tree (i.e. not connecting to the root) are all
unique and will either form a loop (in which case we are
done) or a tree. In case of a tree, consider a path connect-
ing two leaf nodes, which are both also connected to the
root, thus forming a loop. Because the two edges connect-
ing to the root are also unique (since they correspond to
leaf nodes) we have proven the existence of a cycle in the
unique edge graph.

This result can be extended to partially complete graphs
where there exists some vertex v that is connected to all the
other vertices in G.

7 TR SRGs in General Graphs
The previous section identified TR cycle bases for two spe-
cific classes of graphs. The prescription for how to con-
struct TR SRGs for MNs on these types of graphs is clear:
simply find a TR basis B of the underlying graph and make
the cycles in B the loop regions. This prescription can be
generalized in some cases to graphs containing many TR
components. More formally,

THEOREM 9. Consider a graph G comprised of com-
ponents (subgraphs) H1, ...,Hk. Let the components
H1, ...,Hk be mutually singly connected if for any two
components Hi and Hj there exist vertices vi ∈ Hi and
vj ∈ Hj that are singly connected (i.e. connected through
a single path). Let BH1 , ...,BHk

denote the TR cycle
bases for each component. Then a TR cycle basis of G
is BG = {BH1

∪ · · · ∪ BHk
}.

Proof. First note that by singly connecting the components
H1, ...,Hk we do not create any new cycles. Thus BG is a
cycle basis of G. Every subset of cycles of BG is the union
of some subset of cycles from the component cycle bases
{BHi

}. Moreover, for any of these subsets the unique edge
graph must be cyclic (by theorem 6). Since the component
cycle bases do not overlap it thus follows that the unique
edge graph for every subset of cycles of BG must also be
cyclic.

For MNs defined over more general graphs, the picture of
how to construct a TR SRG is less clear. Since verifying



that a basis is TR requires inspecting all subsets of cycles in
that basis, searching for a TR basis in a general graph seems
difficult. Moreover, not every graph will admit a TR basis.
In this section we describe a method for constructing Loop-
SRGs that are partially TR. In other words, we sacrifice
finding a TR basis ofG to find a basis that is Tree Exact for
many (just not all) spanning trees of G.

The method for finding a partially TR basis works as fol-
lows. We first find the largest complete or planar subgraph
H of G and construct a TR basis B(H) for H as described
in the previous section. Since the TR core H is a subgraph
of G, the µ(H) cycles in B(H) will not form a complete
basis of G. We choose the remaining µ(G)− µ(H) cycles
so that the basis of G is fundamental. We do so by finding
a sequence of ears (simple paths or cycles) in G, such that
each new ear has some edge not occurring in some previ-
ous ear. This process is described in Algorithm Construct
Basis and is illustrated on a 2× 3 grid in Figure 3.

Algorithm: Construct Basis

Input: MN p(x) described by undirected graph G
Output: Cycle Basis B

Find TR subgraph H of G with TR basis B(H)
if G contains no TR subgraph (i.e. H = ∅) then

Let H be some simple cycle in G
end if
Add cycles B(H) to B
Mark all edges in H as used
Mark all vertices in H as visited
while ∃ unused edge e = (s, t) from a visited vertex s
do

If t is visited, then set p1 = e
Else, find an ear p1 from s through edge e = (s, t) to
some visited vertex u.
Find shortest path p2 from s to u on used edges
Add cycle C consisting of p1 ∪ p2 to the bases B
Mark all edges (vertices) on C as used (visited)

end while

Figure 3: A graph G (left) and its TR core H (right). Add the
faces (1, 2, 5, 4) and (2, 3, 6, 5) of H to B. Mark all edges (ver-
tices) in H as used (visited). Edge (1, 6) is an ear (unused edge).
The path 6, 3, 2, 1 connects the start and end vertices of this ear
along used edges, so cycle (1, 6, 3, 2) is added to B. Similarly, cy-
cle (3, 4, 5, 6) might be added for ear (3, 4), giving us the partially
TR basis B = {(1, 2, 5, 4), (2, 3, 6, 5), (1, 6, 3, 2), (3, 4, 5, 6)}.

8 Experiments

We conducted a series of experiments to validate the
recommendations for constructing Loop-SRGs made in
this paper. In each of the experiments that fol-
low, we generated a set of M random MNs with bi-
nary variables. Each MN instance has unary poten-
tials of the form fi(xi) = [exp(hi); exp(−hi)]
and pairwise potentials of the form fij(xi, xj) =
[exp(wij) exp(−wij); exp(−wij) exp(wij)]. The val-
ues of hi and wij were drawn from Normal distributions
N (0, σ2

hi
) and N (0, σ2

wij
), respectively. Two different er-

ror measures are reported. ErrorZ = | logZ − log Z̃| is
the absolute error in the exact (Z) and approximate (Z̃)
values of the log partition function. ErrorL1

measures
the error in the marginal probabilities and is computed as
ErrorL1 = 1

n

∑n
i=1 |b(xi) − p(xi)| where n is number

of variables in a MN instance. Averages of ErrorZ and
ErrorL1

were computed across the M MN instances. Er-
ror bars indicate standard error. To aid convergence, GBP
was run with a damping factor of 0.5 for at most 1000 iter-
ations.

8.1 TR Bases vs non-TR Bases

We first ran a set of experiments to show that tree robust-
ness is a desirable property. To test this hypothesis, we
generated 31 different Loop-SRGs for a MN defined on a
complete graph with 20 binary variables (i.e. on K20). We
first constructed a TR basis B comprised of all cycles of
length 3 passing through vertex 1 (e.g. using the star con-
struction from Section 6 with vertex 1 as root). From this
TR basis, a sequence of 30 fundamental bases were cre-
ated as follows: for i = 1...30, we choose a cycle Ci of
the form Ci = (1, u, v) from B and modify it by swapping
vertex 1 with some vertex w (w 6= u 6= v 6= 1) so that
Ci = (w, u, v). At every iteration we choose cycles that
have not been modified and reject modifications that make
the basis non-fundamental. In this way, as i increases the
basis is made less TR but always remains fundamental.

Figure 4 shows ErrorL1
and ErrorZ as the Loop-SRG is

made less TR. In this figure, we generated M = 500 ran-
dom MN instances with σhi = 1 and σwij = 1/

√
20− 1.

Note that by keeping the cycle length at 3 and ensuring that
each basis is fundamental, the increase in error can only be
explained by the change in the TR core of the basis. Since
error increases as the basis is made less TR, these results
support the hypothesis that tree robustness is a desirable
property. It was also observed that GBP took an increasing
number of iterations to converge as the basis was made less
TR.

We also ran a set of experiments to characterize the conver-
gence properties of TR SRGs on Ising grid models. Though
not reported, these experiments confirm the finding in [34]
that running GBP on an RG where the outer regions are



(a) ErrorL1 on increasingly non-TR Loop SRGs.

(b) ErrorZ on increasingly non-TR Loop SRGs.

Figure 4: Performance of GBP run on a sequence of increasingly
non-TR Loop-SRGs.

taken as the faces of the grid model is more accurate than
ordinary BP. We also found the TR SRG construction to
be more accurate than GBP run on Loop-SRGs constructed
from fundamental, but non-TR cycle bases on Ising grids.

8.2 Partially TR SRGs

The previous experiment considered a class of MNs for
which a TR basis is known. This section considers more
general MNs.

The algorithm in Section 7 seeks an initial TR subgraph
H of the graph G. The previous experiments showed that
GBP yields accurate approximations when H = G. When
a graph contains no TR core (i.e. H = ∅) the algorithm
Construct Basis method simply finds a fundamental basis
of G. We wish to study the performance of GBP between
these two extremes - i.e. on partially TR SRGs. We con-
ducted experiments on two types of MNs, where the size of
H (relative to G) can be controlled.

The following experiments include a comparison to the It-

erative Join Graph Propagation (IJGP) method [3]. This
method forms a join graph (i.e. a 1-connected and 1-
balanced RG) using a heuristic, ”mini-bucket” clustering
strategy. In IJGP, the number of variables appearing in
an outer region is restricted to be less than or equal to an
iBound parameter. The iBound controls the computational
complexity of message computations in IJGP because in
the join graph construction each outer region forms a clique
over all variables in that region. Importantly, since Loop-
SRGs assume a loop structure in the outer regions, message
computations on Loop-SRGs are equivalent to IJGP with
iBound = 3.

8.2.1 Partial K-Trees

In these experiments we construct a set of partial K-tree
instances via the following procedure4. We first build a
random K-tree on n vertices using the process described
in [6]. The number of neighbors (degree) of the vertices in
K-trees constructed by this procedure follow a power law.
This means there will exist a few vertices that are adjacent
to most of the vertices in G. As a result, the TR core will
comprise a large portion of G. To reduce the size of the
TR core, we iteratively remove edges from the K-tree as
follows: choose a vertex v with probability proportional to
the current degree of that vertex. Modify G by removing
an edge from v to one of its neighbors, so long as removing
that edge does not disconnect G. This process is repeated
until the ratio of the maximum degree in G to n falls below
some threshold. We refer to this ratio as the connectivity
of the graph. A random MN is formed over each partial
K-tree structure by assigning random unary and pairwise
potentials to the vertices and edges.

Figure 5 shows the performance of GBP as a function of
connectivity. In these figures, we generated M = 100
random MN instances at each level of connectivity (with
K = 10, n = 100, σhi

= 1 and σwij
= 0.3). The partially

TR SRGs are found by choosing the TR core to be the sub-
graph H found using the max degree vertex as the root of
the star construction described in Section 6. Cycles are
added to this TR core as described in algorithm Construct
Basis. The partially TR SRGs are compared to Loop-SRGs
formed by finding a fundamental cycle basis (FCB) of each
partialK-tree (constructed using algorithm “Construct Ba-
sis” with H = ∅). Importantly, these FCBs do not build
upon the TR core. Figure 5 shows that the benefit of the
partially TR SRG diminishes as connectivity is decreased.
This behavior confirms our belief that the benefit of find-
ing a TR core decreases as the TR core comprises a smaller
proportion of cycles in the fundamental basis. Even so, it is
important to note that choosing a Loop-SRG with outer re-
gions forming a FCB yields more accurate approximations
than both IJGP and BP.

4K-trees are chordal graphs w/ size K maximal cliques. Par-
tial K-trees are non-chordal graphs w/ size K maximal cliques



(a) ErrorL1 as a function of connectivity.

(b) ErrorZ as a function of connectivity.

Figure 5: Performance of GBP run on the partial TR construc-
tion, the FCB construction and IJGP with iBound = 3 as a func-
tion of connectivity (see text for discussion).

Figure 6 shows the performance of GBP as a function of
iBound for a fixed connectivity level. iBound is increased
from 2 (which is equivalent to BP) to 10 (which is exact).
These plots show that GBP run on the partial TR SRG is
roughly equivalent to IJGP with iBound = 7, while GBP
run on the FCB is equivalent to IJGP with iBound = 6.
The fact that GBP run on both SRGs performs better than
IJGP with iBound = 6 is quite remarkable considering
that message passing on Loop-SRGs is computationally
equivalent to IJGP with iBound = 3.

8.2.2 Grids with long range interactions

In addition to the partial K-tree instances, we also consid-
ered grid instances with an increasing number of long range
interactions. The additional interactions were added via the
following procedure. We begin with a 10×10 grid. LetG0

denote this initial graph. Two vertices u and v are randomly
chosen from the grid. If edge (u, v) exists in graph Gi−1,
new vertices u and v are chosen randomly; if edge (u, v) is

(a) ErrorL1 as a function of iBound.

(b) ErrorZ as a function of iBound.

Figure 6: Performance of the SRG constructions as a function of
iBound with fixed connectivity of 0.7.

not inGi−1, then graphGi is created by adding edge (u, v)
to Gi−1. This process is repeated until a specified number
of edges have been added to G0.

Figure 7 compares the ErrorL1
and ErrorZ of GBP run

on different loop SRG constructions. M = 25 instances
were generated with 5,10,.., and 50 additional edges. In all
250 of these MN instances the unary and pairwise terms
were drawn with σhi

= 1 and σwij
= 0.5. For the par-

tially TR SRG construction, we take the TR core H to be
G0 and fill out the cycle basis using algorithm Construct
Basis (as illustrated in Figure 3). As in the partial K-tree
experiments, for the FCB construction we choose a funda-
mental basis that does not build upon the TR core by using
algorithm “Construct Basis” with H = ∅. In Figure 7, we
see that both the partially TR and FCB construction outper-
form IJGP with an equivalent iBound. Interestingly, when
adding 50 additional edges we do not see the ErrorL1 of
the partially TR and the FCB constructions coalesce. This
may be explained by the fact that even with 50 additional
edges more than 60% of the loops in the SRG are TR (131



cycles in the basis, 81 of which come from the TR core).

(a) ErrorL1 on grids with long range interactions

(b) ErrorZ on grids with long range interactions

Figure 7: Performance of the different SRG constructions as an
increasing number of long range interactions are added to a 10×
10 grid.

9 Conclusion

This paper provides some new guidance in the construc-
tion of region graphs. In particular, we connected the prob-
lem of choosing the loop outer regions of a Loop-SRG to
that of finding a fundamental cycle basis of the undirected
graph describing a MN. We proposed tree robustness as a
refinement to the criterion that the loop regions form a fun-
damental basis and offered a characterization of the class
of TR cycle bases. We identified TR cycle bases for planar
and complete graphs. This characterization helps explain
the success of GBP on the “star” construction of [31] for
complete graphs and the “all faces” construction on planar
graphs. We also proposed a practical Loop-SRG construc-
tion that first identifies a TR core and then expands to a full
cycle basis using an ear construction which makes sure the
final basis is still fundamental (and partially TR).

The experiments in this paper confirm that GBP can yield

very accurate approximations when the loop regions of a
Loop-SRG form a fundamental basis and that these approx-
imations can be further improved by choosing a fundamen-
tal basis that is at least partially tree robust. The criteria
proposed in this paper also lead to approximations that are
comparable to IJGP run with a much higher iBound (and
therefore much higher space and computational complex-
ity).

These findings open the door for much future work. Rather
than simply finding a TR subgraph, as the method in Sec-
tion 7 does, it would be preferable to have an algorithm
that searches for TR bases in a graph or at the very least
identifies when a graph does not admit a TR basis. The
recommendations in this paper are also purely structural in
nature. A natural extension would be to incorporate inter-
action strengths in the search for suitable loop regions.

The current paper considered pairwise interactions only. A
natural extension is to consider factor graphs or more gen-
erally region graphs. We argue that we should be looking
for a maximal collection of subsets {Ci} of outer regions
(or factors) that have the property that there exists an or-
dering π for which Cπ(i) \

{
Cπ(1) ∪ · · · ∪ Cπ(i−1)

}
6= ∅.

In other words, the subsets can be ordered so that subset
Cπ(i) has some element that does not appear in any sub-
set preceding it in the ordering. This definition is identical
to the one for a fundamental cycle basis (see definition 6)
and will guarantee through the reduction rules of [31] that
the region graph (factor graph) can be decomposed into in-
dependent variable nodes, establishing non-singularity. A
next step would then be to define tree-robustness as a col-
lection of region-subsets that can still be decomposed along
some ordering if we do not allow certain elements that cor-
respond to the regions of any embedded junction tree to
become unique. Again this is very similar to definitions 7
and 8 for TR cycle bases. Whether these generalizations
can be captured with mathematical structures as elegant as
the theory of cycle spaces (or more generally matroids) re-
mains to be seen and will be left for future research.
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