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Abstract
In this paper we address the following question:
“Can we approximately sample from a Bayesian
posterior distribution if we are only allowed to
touch a small mini-batch of data-items for ev-
ery sample we generate?”. An algorithm based
on the Langevin equation with stochastic gradi-
ents (SGLD) was previously proposed to solve
this, but its mixing rate was slow. By leverag-
ing the Bayesian Central Limit Theorem, we ex-
tend the SGLD algorithm so that at high mix-
ing rates it will sample from a normal approx-
imation of the posterior, while for slow mixing
rates it will mimic the behavior of SGLD with a
pre-conditioner matrix. As a bonus, the proposed
algorithm is reminiscent of Fisher scoring (with
stochastic gradients) and as such an efficient op-
timizer during burn-in.

1. Motivation
When a dataset has a billion data-cases (as is not uncom-
mon these days) MCMC algorithms will not even have gen-
erated a single (burn-in) sample when a clever learning al-
gorithm based on stochastic gradients may already be mak-
ing fairly good predictions. In fact, the intriguing results of
Bottou and Bousquet (2008) seem to indicate that in terms
of “number of bits learned per unit of computation”, an al-
gorithm as simple as stochastic gradient descent is almost
optimally efficient. We therefore argue that for Bayesian
methods to remain useful in an age when the datasets grow
at an exponential rate, they need to embrace the ideas of the
stochastic optimization literature.

Appearing in Proceedings of the 29 th International Conference
on Machine Learning, Edinburgh, Scotland, UK, 2012. Copyright
2012 by the author(s)/owner(s).

A first attempt in this direction was proposed by Welling
and Teh (2011) where the authors show that (uncorrected)
Langevin dynamics with stochastic gradients (SGLD) will
sample from the correct posterior distribution when the
stepsizes are annealed to zero at a certain rate. While
SGLD succeeds in (asymptotically) generating samples
from the posterior at O(n) computational cost with (n �
N) it’s mixing rate is unnecessarily slow. This can be
traced back to its lack of a proper pre-conditioner: SGLD
takes large steps in directions of small variance and re-
versely, small steps in directions of large variance which
hinders convergence of the Markov chain. Our work
builds on top of Welling and Teh (2011). We leverage the
“Bayesian Central Limit Theorem” which states that when
N is large (and under certain conditions) the posterior will
be well approximated by a normal distribution. Our al-
gorithm is designed so that for large stepsizes (and thus
at high mixing rates) it will sample from this approximate
normal distribution, while at smaller stepsizes (and thus at
slower mixing rates) it will generate samples from an in-
creasingly accurate (non-Gaussian) approximation of the
posterior. Our main claim is therefore that we can trade-in
a usually small bias in our estimate of the posterior distri-
bution against a potentially very large computational gain,
which could in turn be used to draw more samples and re-
duce sampling variance.

From an optimization perspective one may view this algo-
rithm as a Fisher scoring method based on stochastic gradi-
ents (see e.g. (Schraudolph et al., 2007)) but in such a way
that the randomness introduced in the subsampling process
is used to sample from the posterior distribution when we
arrive at its mode. Hence, it is an efficient optimization al-
gorithm that smoothly turns into a sampler when the correct
(statistical) scale of precision is reached.
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2. Preliminaries
We will start with some notation, definitions and prelimi-
naries. We have a large dataset XN consisting of N i.i.d.
data-points {x1...xN} and we use a family of distributions
parametrized by θ ∈ RD to model the distribution of the
xi’s. We choose a prior distribution p(θ) and are inter-
ested in obtaining samples from the posterior distribution,
p(θ|XN ) ∝ p(XN |θ)p(θ).

As is common in Bayesian asymptotic theory, we will also
make use of some frequentist concepts in the develop-
ment of our method. We assume that the true data gen-
erating distribution is in our family of models and denote
the true parameter which generated the dataset XN by θ0.
We denote the score or the gradient of the log likelihood
w.r.t. data-point xi by gi(θ) = g(θ;xi) = ∇θ log p(θ;xi).
We denote the sum of scores of a batch of n data-points
Xr = {xr1 ...xrn} by Gn(θ;Xr) =

∑n
i=1 g(θ;xri) and

the average by gn(θ;Xr) = 1
nGn(θ;Xr). Sometimes we will

drop the argument Xr and instead simply write Gn(θ) and
gn(θ) for convenience.

The covariance of the gradients is called the Fisher infor-
mation defined as I(θ) = Ex[g(θ;x)g(θ;x)T ], where Ex
denotes expectation w.r.t the distribution p(x; θ) and we
have used the fact that Ex[g(θ;x)] = 0. It can also be
shown that I(θ) = −Ex[H(θ;x)], where H is the Hessian
of the log likelihood.

Since we are dealing with a dataset with samples only
from p(x; θ0) we will henceforth be interested only in
I(θ0) which we will denote by I1. It is easy to see that
the Fisher information of n data-points, In = nI1. The
empirical covariance of the scores computed from a batch
of n data-points is called the empirical Fisher information,
V (θ;Xr) = 1

n−1
∑n
i=1 (gri(θ)− gn(θ)) (gri(θ)− gn(θ))

T

(Scott, 2002). Also, it can be shown that V (θ0) is a consis-
tent estimator of I1 = I(θ0).

We now introduce an important result in Bayesian asymp-
totic theory. AsN becomes large, the posterior distribution
becomes concentrated in a small neighbourhood around θ0
and becomes asymptotically Gaussian. This is formalized
by the Bernstein-von Mises theorem, a.k.a the Bayesian
Central Limit Theorem, (Le Cam, 1986), which states that
under suitable regularity conditions, p(θ| {x1...xN}) ap-
proximately equals N (θ0, I

−1
N ) as N becomes very large.

3. Stochastic Gradient Fisher Scoring
We are now ready to derive our Stochastic Gradient Fisher
Scoring (SGFS) algorithm. The starting point in the deriva-
tion of our method is the Stochastic Gradient Langevin Dy-
namics (SGLD) algorithm (Welling & Teh, 2011) which
we describe in section 3.1. SGLD can sample accurately

from the posterior but suffers from a low mixing rate. In
section 3.2, we show that it is easy to construct a Markov
chain that can sample from a normal approximation of the
posterior at any mixing rate. We will then combine these
methods to develop our Stochastic Gradient Fisher Scoring
(SGFS) algorithm in section 3.3.

3.1. Stochastic Gradient Langevin Dynamics

The SGLD algorithm has the following update equation:

θt+1 ← θt +
εC

2

{
∇ log p(θt) +Ngn(θt;X

t
n)
}

+ ν

where ν ∼ N (0, εC) (1)

Here ε is the step size, C is called the preconditioning ma-
trix (Girolami & Calderhead, 2010) and ν is a random vari-
able representing injected Gaussian noise. The gradient of
the log likelihoodGN (θ;XN ) over the whole dataset is ap-
proximated by scaling the mean gradient gn(θt;X

t
n) com-

puted from a mini-batchXt
n = {xt1 ...xtn} of size n� N .

Welling & Teh (2011) showed that Eqn. (1) generates sam-
ples from the posterior distribution if the step size is an-
nealed to zero at a certain rate. As the step size goes to zero,
the discretization error in the Langevin equation disap-
pears and we do not need to conduct expensive Metropolis-
Hasting(MH) accept/reject tests that use the whole dataset.
Thus, this algorithm requires only O(n) computations to
generate each sample, unlike traditional MCMC algorithms
which require O(N) computations per sample.

However, since the step sizes are reduced to zero, the mix-
ing rate is reduced as well, and a large number of iterations
are required to obtain a good coverage of the parameter
space. One way to make SGLD work at higher step sizes is
to introduce MH accept/reject steps to correct for the higher
discretization error, but our initial attempts using only a
mini-batch instead of the whole dataset were unsuccessful.

3.2. Sampling from the Approximate Posterior

Since it is not clear how to use Eqn. (1) at high step sizes,
we will move away from Langevin dynamics and explore
a different approach. As mentioned in section 2, the poste-
rior distribution can be shown to approach a normal distri-
bution,N (θ0, I

−1
N ), as the size of the dataset becomes very

large. It is easy to construct a Markov chain which will
sample from this approximation of the posterior at any step
size. We will now show that the following update equation
achieves this:

θt+1 ← θt +
εC

2
{−IN (θt − θ0)}+ ω

where ω ∼ N (0, εC − ε2

4
CINC) (2)
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The update is an affine transformation of θt plus injected
independent Gaussian noise, ω. Thus if θt has a Gaussian
distributionN (µt,Σt), θt+1 will also have a Gaussian dis-
tribution, which we will denote as N (µt+1,Σt+1). These
distributions are related by:

µt+1 = (I − εC

2
IN )µt +

εC

2
INθ0

Σt+1 = (I − εC

2
IN )Σt(I −

εC

2
IN )T + εC − ε2

4
CINC

(3)

If we choose C to be symmetric, it is easy to see that the
approximate posterior distribution, N (θ0, I

−1
N ), is an in-

variant distribution of this Markov chain. Since Eqn. (2) is
not a Langevin equation, it samples from the approximate
posterior at large step-size and does not require any MH
accept/reject steps. The only requirement is that C should
be symmetric and should be chosen so that the covariance
matrix of the injected noise in Eqn. (2) is positive-definite.

3.3. Stochastic Gradient Fisher Scoring

In practical problems both sampling accuracy and mixing
rate are important, and the extreme regimes dictated by
both the above methods are very limiting. If the posterior
is close to Gaussian (as is usually the case), we would like
to take advantage of the high mixing rate. However, if we
need to capture a highly non-Gaussian posterior, we should
be able to trade-off mixing rate for sampling accuracy. One
could also think about doing this in an “anytime” fashion
where if the posterior is somewhat close to Gaussian, we
can start by sampling from a Gaussian approximation at
high mixing rates, but slow down the mixing rate to capture
the non-Gaussian structure if more computation becomes
available. In other words, one should have the freedom to
manage the right trade off between sampling accuracy and
mixing rate depending on the problem at hand.

With this goal in mind, we combine the above methods to
develop our Stochastic Gradient Fisher Scoring (SGFS) al-
gorithm. We accomplish this using a Markov chain with
the following update equation:

θt+1 ← θt +
εC

2

{
∇ log p(θt) +Ngn(θt;X

t
n)
}

+ τ

where τ ∼ N (0, Q) (4)

When the step size is small, we want to choose Q = εC so
that it behaves like the Markov chain in Eqn (1). Now we
will see how to choose Q so that when the step size is large
and the posterior is approximately Gaussian, our algorithm
behaves like the Markov chain in Eqn. (2). First, note that
if n is large enough for the central limit theorem to hold,
we have:

gn(θt;X
t
n) ∼ N

(
Ex[g(θt;x)],

1

n
Cov [g(θt;x)]

)
(5)

Here Cov [g(θt;x)] is the covariance of the scores at
θt. Using NCov [g(θt;x)] ≈ IN and NEx[g(θt;x)] ≈
GN (θt;XN ), we have:

∇ log p(θt) +Ngn(θt;X
t
n)

≈ ∇ log p(θt) +GN (θt;XN ) + φ

where φ ∼ N
(

0,
NIN
n

)
(6)

Now, ∇ log p(θt) + GN (θt;XN ) = ∇ log p(θt|XN ), the
gradient of the log posterior. If we assume that the posterior
is close to its Bernstein-von Mises approximation, we have
∇ log p(θt|XN ) = −IN (θt − θ0). Using this in Eqn. (6)
and then substituting in Eqn. (4), we have:

θt+1 ← θt +
εC

2
{−IN (θt − θ0)}+ ψ + τ (7)

where,

ψ ∼ N
(

0,
ε2

4

N

n
CINC

)
and τ ∼ N (0, Q)

Comparing Eqn. (7) and Eqn. (2), we see that at high step
sizes, we need:

Q+
ε2

4

N

n
CINC = εC − ε2

4
CINC ⇒

Q = εC − ε2

4

N + n

n
CINC (8)

Thus, we should choose Q such that:

Q =

{
εC for small ε
εC − ε2

4 γCINC for large ε

where we have defined γ = N+n
n . Since ε dominates ε2

when ε is small, we can choose Q = εC − ε2

4 γCINC for
both the cases above. With this, our update equation be-
comes:

θt+1 ← θt +
εC

2

{
∇ log p(θt) +Ngn(θt;X

t
n)
}

+ τ

where τ ∼ N
(

0, εC − ε2

4
γCINC

)
(9)

Now, we have to choose C so that the covariance matrix of
the injected noise in Eqn. (9) is positive-definite. One way
to enforce this, is by setting:

εC − ε2

4
γCINC = εCBC ⇒ C = 4 [εγIN + 4B]

−1

(10)

where B is any symmetric positive-definite matrix. Plug-
ging in this choice of C in Eqn. 9, we get:

θt+1 ← θt + 2

[
γIN +

4B

ε

]−1
×

{∇ log p(θt) +Ngn(θt;Xt) + η}

where η ∼ N
(

0,
4B

ε

)
(11)
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However, the above method considers IN to be a known
constant. In practice, we use NÎ1,t as an estimate of IN ,
where Î1,t is an online average of the empirical covari-
ance of gradients (empirical Fisher information) computed
at each θt.

Î1,t = (1− κt)Î1,t−1 + κtV (θt;X
t
n) (12)

where κt = 1/t. In the supplementary material we prove
that this online average converges to I1 plus O(1/N) cor-
rections if we assume that the samples are actually drawn
from the posterior:

Theorem 1. Consider a sampling algorithm which
generates a sample θt from the posterior distribution
of the model parameters p(θ|XN ) in each itera-
tion t. In each iteration, we draw a random mini-
batch of size n, Xt

n = {xt1 ...xtn}, and compute
the empirical covariance of the scores V (θt;X

t
n) =

1
n−1

∑n
i=1 {g(θt;xti)− gn(θt)} {g(θt;xti)− gn(θt)}T .

Let VT be the average of V (θt) across T iterations.
For large N , as T → ∞, VT converges to the Fisher
information I(θ0) plus O( 1

N ) corrections, i.e.

lim
T→∞

[
VT ,

1

T

T∑
t=1

V (θt;X
t
n)

]
= I(θ0) +O(

1

N
) (13)

Note that this is not a proof of convergence of the Markov
chain to the correct distribution. Rather, assuming that the
samples are from the posterior, it shows that the online av-
erage of the covariance of the gradients converges to the
Fisher information (as desired). Thus, it strengthens our
confidence that if the samples are almost from the posterior,
the learned pre-conditioner converges to something sensi-
ble. What we do know is that if we anneal the stepsizes
according to a certain polynomial schedule, and we keep
the pre-conditioner fixed, then SGFS is a version of SGLD
which was shown to converge to the correct equilibrium
distribution (Welling & Teh, 2011). We believe the adap-
tation of the Fisher information through an online average
is slow enough for the resulting Markov chain to still be
valid, but a proof is currently lacking. The theory of adap-
tive MCMC (Andrieu & Thoms, 2009) or two time scale
stochastic approximations (Borkar, 1997) might hold the
key to such a proof which we leave for future work. Putting
it all together, we arrive at algorithm 1 below.

The general method still has a free symmetric positive-
definite matrix, B, which may be chosen according to our
convenience. Examine the limit ε → 0. In this case our
method becomes SGLD with preconditioning matrix B−1

and step size ε.

If the posterior is Gaussian, as is usually the case whenN is
large, the proposed SGFS algorithm will sample correctly
for arbitrary choice of B even when the step size ε is large.

Algorithm 1: Stochastic Gradient Fisher Scoring (SGFS)
Input: n, B, {κt}t=1:T

Output: {θt}t=1:T

1: Initialize θ1, Î1,0
2: γ ← n+N

n
3: for t = 1 : T do
4: Choose random minibatch Xt

n = {xt1 ...xtn}
5: gn(θt)← 1

n

∑n
i=1 gti(θt)

6: V (θt)←
1

n−1
∑n
i=1 {gti(θt)− gn(θt)} {gti(θt)− gn(θt)}T

7: Î1,t ← (1− κt)Î1,t−1 + κtV (θt)
8: Draw η ∼ N [0, 4Bε ]
9: θt+1 ← θt+

2
(
γNÎ1,t + 4B

ε

)−1
{∇ log p(θt) +Ngn(θt) + η}

10: end for

However, for some models the conditions of the Bernstein-
von Mises theorem are violated and the posterior may not
be well approximated by a Gaussian. This is the case for
e.g. neural networks and discriminative RBMs, where the
identifiability condition of the parameters do not hold. In
this case, we have to choose a small ε to achieve accurate
sampling (see section 5). These two extremes can be com-
bined in a single “anytime” algorithm by slowly annealing
the stepsize. For a non-adaptive version of our algorithm
(i.e. where we would stop changing Î1) after a fixed num-
ber of iterations) this would according to the results from
Welling and Teh (2011) lead to a valid Markov chain for
posterior sampling.

We recommend choosing B ∝ IN . With this choice, our
method is highly reminiscent of “Fisher scoring” which
is why we named it “Stochastic Gradient Fisher Scoring”
(SGFS). In fact we can think of the proposed updates as a
stochastic version of Fisher scoring based on small mini-
batches of gradients. But remarkably, the proposed algo-
rithm is not only much faster than Fisher scoring (because
it only requires small minibatches to compute an update), it
also samples approximately from the posterior distribution.
So the knife cuts on both sides: SGFS is a faster optimiza-
tion algorithm but also doesn’t overfit due to the fact that
it switches to sampling when the right statistical scale of
precision is reached.

4. Computational Efficiency
Clearly, the main computational benefit relative to stan-
dard MCMC algorithms comes from the fact that we use
stochastic minibatches instead of the entire dataset at every
iteration. However, for a model with a large number of pa-
rameters another source of significant computational effort
is the computation of the D ×D matrix γNÎ1,t + 4B

ε and
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multiplying its inverse with the mean gradient resulting in a
total computational complexity of O(D3) per iteration. In
the case n < D the computational complexity per iteration
can be brought down to O(nD2) by using the Sherman-
Morrison-Woodbury equation. A more numerically stable
alternative is to update Cholesky factors (Seeger, 2004).

In case even this is infeasible one can factor the Fisher in-
formation into k independent blocks of variables of, say
size d, in which case we have brought down the complexity
toO(kd3). The extreme case of this is when we treat every
parameter as independent which boils down to replacing
the Fisher information by a diagonal matrix with the vari-
ances of the individual parameters populating the diagonal.
While for a large stepsize this algorithm will not sample
from the correct Gaussian approximation, it will still sam-
ple correctly from the posterior for very small stepsizes. In
fact, it is expected to do this more efficiently than SGLD
which does not rescale its stepsizes at all. We have used
the full covariance algorithm (SGFS-f) and the diagonal co-
variance algorithm (SGFS-d) in the experiments section.

5. Experiments
Below we report experimental results where we test SGFS-
f, SGFS-d, SGLD, SGD and HMC on three different mod-
els: logistic regression, neural networks and discriminative
RBMs. The experiments share the following practice in
common. Stepsizes for SGD and SGLD are always se-
lected through cross-validation for at least five settings.
The minibatch size n is set to either 300 or 500, but the
results are not sensitive to the precise value as long as it
is large enough for the central limit theorem to hold (typi-
cally, n > 100 is recommended). Also, we used κt = 1

t .

5.1. Logistic Regression

A logistic regression model (LR) was trained on the
MNIST dataset for binary classification of two digits 7 and
9 using a total of 10,000 data-items. We used a 50 dimen-
sional random projection of the original features and ran
SGFS with λ = 1. We used B = γIN and tested the algo-
rithm for a number of α values (where α = 2√

ε
). We ran

the algorithm for 3,000 burn-in iterations and then collected
100,000 samples. We compare the algorithm to Hamil-
tonian Monte Carlo sampling (Neal, 1993) and to SGLD
(Welling & Teh, 2011). For HMC, the “leapfrogstep” size
was adapted during burn-in so that the acceptance ratio was
around 0.8. For SGLD we also used a range of fixed step-
sizes.

In figure 1 we show 2-d marginal distributions of SGFS
compared to the ground truth from a long HMC run where
we used α = 0 for SGFS. From this we conclude that even
for the largest possible stepsize the fit for SGFS-f is al-
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Figure 1. 2-d marginal posterior distributions for logistic regres-
sion. Grey colors correspond to samples from SGFS. Red solid
and blue dotted ellipses represent iso-probability contours at two
standard deviations away from the mean computed from HMC
and SGFS, respectively. Top plots are the results for SGFS-f and
bottom plots represent SGFS-d. Plots on the left represent the 2-d
marginals with the smallest difference between HMC and SGFS
while the plots on the right represent the 2-d marginals with the
largest difference. Value for α is 0 meaning that no additional
noise was added.

most perfect while SGFS-d underestimates the variance in
this case (note however that for smaller stepsizes (larger α)
SGFS-d becomes very similar to SGLD and is thus guaran-
teed to sample correctly albeit with a low mixing rate).

Next, we studied the inverse autocorrelation time per unit
computation (ATUC)1 averaged over the 51 parameters and
compared this with the relative error after a fixed amount of
computation time. The relative error is computed as fol-
lows: first we compute the mean and covariance of the
parameter samples up to time t : θt = 1

t

∑t
t′=1 θt′ and

Ct = 1
t

∑t
t′=1(θt′ − θt)(θt′ − θt)T . We do the same for

the long HMC run which we indicate with θ∞ and C∞.
Finally we compute

E1t =

∑
i |θti − θ∞i |∑
i |θ∞i |

, E2t =

∑
ij |Ctij − C∞ij |∑

ij |C∞ij |
(14)

In Figure 2 we plot the “Error at time T” for two val-
ues of T (T=100, T=3000) as a function of the inverse
ATUC, which is a measure of the mixing rate. Top plots
show the results for the mean and bottom plots for the
covariance. Each point denoted by a cross is obtained

1ATUC = Autocorrelation Time × Time per Sample. Auto-
correlation time is defined as 1 + 2

∑∞
s=1 ρ(s) with ρ(s) the au-

tocorrelation at lag s Neal (1993).
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Figure 2. Final error of logistic regression at time T versus mixing
rate for the mean (top) and covariance (bottom) estimates after
100 (left) and 3000 (right) seconds of computation. See main text
for detailed explanation.

from a different setting of parameters that control the mix-
ing rate: α = [0, 1, 2, 3, 4, 5, 6] for SGFS, stepsizes ε =
[1e−3, 5e−4, 1e−4, 5e−5, 1e−5, 5e−6, 1e−6] for SGLD,
and number of leapfrog steps s = [50, 40, 30, 20, 10, 1] for
HMC. The circle is the result for the fastest mixing chain.

For SGFS and SGLD, if the slope of the curve is nega-
tive (downward trend) then the corresponding algorithm
was still in the phase of reducing error by reducing sam-
pling variance at time T. However, when the curve bends
upwards and develops a positive slope the algorithm has
reached its error floor corresponding to the approximation
bias. The situation is different for HMC, (which has no
bias) but where the bending occurs because the number of
leapfrog steps has become so large that it is turning back
on itself. HMC is not faring well because it is computa-
tionally expensive to run (which hurts both its mixing rate
and error at time T). We also observe that in the allowed
running time SGFS-f has not reached its error floor (both
for the mean and the covariance). SGFS-d is reaching its
error floor only for the covariance (which is consistent with
Figure 1 bottom) but still fares well in terms of the mean.
Finally, for SGLD we clearly see that in order to obtain a
high mixing rate (low ATUC) it has to pay the price of a
large bias. These plots clearly illustrate the advantage of
SGFS over both HMC as well as SGLD.

5.2. SGFS on Neural Networks

We also applied our methods to a 3 layer neural network
(NN) with logistic activation functions. Below we describe
classification results for two datasets.
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Figure 3. Test-set classification error of NNs trained with SGFS-
f, SGFS-d, SGLD and SGD on the HHP dataset (left) and the
MNIST dataset (right)

5.2.1. HERITAGE HEALTH PRIZE (HHP)

The goal of this competition is to predict how many days
between [0 − 15] a person will stay in a hospital given
his/her past three years of hospitalization records2. We
used the same features as the team market makers that won
the first milestone prize. Integrating the first and second
year data, we obtained 147,473 data-items with 139 fea-
ture dimensions and then used a randomly selected 70%
for training and the remainder for testing. NNs with 30
hidden units were used because more hidden units did not
noticeably improve the results. Although we used α = 6
for SGFS-d, there was no significant difference for values
in the range 3 ≤ α ≤ 6. However, α < 3 did not work for
this dataset due to the fact that many features had values 0.

For SGD, we used stepsizes from a polynomial anneal-
ing schedule a(b + t)−δ . Because the training error de-
creased slowly in a valid range δ = [0.5, 1], we used δ = 3,
a = 1014, b = 2.2× 105 instead which was found optimal
through cross-validation. (This setting reduced the stepsize
from 10−2 to 10−6 during 1e+7 iterations). For SGLD,
a = 1, b = 104, and δ = 1 reducing the step size from
10−4 to 10−6 was used. Figure 3 (left) shows the classi-
fication errors averaged over the posterior samples for two
regularizer values, λ = 0 and the best regularizer value λ
found through cross-validation. First, we clearly see that
SGD severely overfits without a regularizer while SGLD
and SGFS prevent it because they average predictions over
samples from a posterior mode. Furthermore, we see that
when the best regularizer is used, SGFS (marginally) out-
performs both SGD and SGLD. The result from SGFS-d
submitted to the actual competition leaderboard gave us an
error of 0.4635 which is comparable to 0.4632 obtained by
the milestone winner with a fine-tuned Gradient Boosting
Machine.

2http://www.heritagehealthprize.com
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Figure 4. 2-d marginal posterior distributions of DRBM. Grey
colors correspond to samples from SGFS/SGLD. Thick red solid
lines correspond to iso-probability contours at two standard de-
viations away from the mean computed from HMC samples.
Thin red solid lines correspond to HMC results based on sub-
sets of the samples. The thick blue dashed lines correspond to
SGFS-f (top) and SGLD (bottom) runs. Plots on the left repre-
sent the 2-d marginals with the smallest difference between HMC
and SGFS/SGLD while the plots on the right represent the 2-d
marginals with the largest difference.

5.2.2. CHARACTER RECOGNITION

We also tested our methods on the MNIST dataset for 10
digit classification which has 60,000 training instances and
10,000 test instances. In order to test with SGFS-f, we used
inputs from 20 dimensional random projections and 30 hid-
den units so that the number of parameters equals 940.
Moreover, we increased the mini-batch size to 2,000 to re-
duce the time required to reach a good approximation of the
940× 940 covariance matrix. The classification error aver-
aged over the samples is shown in Figure 3 (right). Here,
we used a small regularization parameter of λ = 0.001
for all methods as overfitting was not an issue. For SGFS,
α = 2 is used while for both SGD and SGLD the stepsizes
were annealed from 10−3 to 10−7 using a = 1, b = 1000,
and γ = 1.

5.3. Discriminative Restricted Boltzmann Machine
(DRBM)

We trained a DRBM (Larochelle & Bengio, 2008) on the
KDD99 dataset which consists of 4,898,430 datapoints
with 40 features, belonging to a total of 23 classes. We
first tested the classification performance by training the
DRBM using SGLD, SGFS-f, SGFS-d and SGD. For this
experiment the dataset was divided into a 90% training set,
5% validation and 5% test set. We used 41 hidden units
giving us a total of 2647 parameters in the model. We used
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Figure 5. Final error for DRBM at time T versus mixing rate for
the mean (left) and covariance (right) estimates after 6790 sec-
onds of computation on a subset of KDD99.

SGD SGLD SGFS-d SGFS-f
8.010−4 6.610−4 4.210−4 4.410−4

Table 1. Final test error rate on the KDD99 dataset.

λ = 10 and B = γIN . We tried 6 different (α, ε) com-
binations for SGFS-f and SGFS-d and tried 18 annealing
schedules for SGD and SGLD, and used the validation set
to pick the best one. The best results were obtained with an
α value of 8.95 for SGFS-f and SGFS-d, and [a = 0.1, b =
100000, δ = 0.9] for SGD and SGLD. We ran all algorithms
for 100,000 iterations. Although we experimented with dif-
ferent burn-in iterations, the algorithms were insensitive to
this choice. The final error rates are given in table 1 from
which we conclude that the samplers based on stochastic
gradients can act as effective optimizers whereas HMC on
the full dataset becomes completely impractical because it
has to compute 11.7 billion gradients per iteration which
takes around 7.5 minutes per sample (4408587 datapoints
× 2647 parameters).

To compare the quality of the samples drawn after burn-in,
we created a 10% subset of the original dataset. This time
we picked only the 6 most populous classes. We tested all
algorithms with 41, 10 and 5 hidden units, but since the
posterior is highly multi-modal, the different algorithms
ended up sampling from different modes. In an attempt
to get a meaningful comparison, we therefore reduced the
number of hidden units to 2. This improved the situation to
some degree, but did not entirely get rid of the multi-modal
and non-Gaussian structure of the posterior. We compare
results of SGFS-f/SGLD with 30 independent HMC runs,
each providing 4000 samples for a total of 120,000 sam-
ples. Since HMC was very slow (even on the reduced set)
we initialized at a mode and used the Fisher information
at the mode as a pre-conditioner. We used 1 leapfrog step
and tuned the step-size to get an acceptance rate of 0.8.
We ran SGFS-f with α = [2, 3, 4, 5, 10] and SGLD with
fixed step sizes of [5e-4, 1e-4, 5e-5, 1e-5, 5e-6]. Both
algorithms were initialized at the same mode and ran for
1 million iterations. We looked at the marginal distribu-



Bayesian Posterior Sampling via Stochastic Gradient Fisher Scoring

tions of the top 25 pairs of variables which had the highest
correlation coefficient. In Figure 4 (top-left and bottom-
left) we show a set of parameters where both SGFS-f and
SGLD obtained an accurate estimate of the marginal poste-
rior. In 4 (top-right and bottom-right) we show an example
where SGLD failed. The thin solid red lines correspond
to HMC runs computed from various subsets of the sam-
ples, whereas the thick solid red line is computed using the
all samples from all HMC runs. We have shown marginal
posterior estimates of the SGFS-f/SGLD algorithms with a
thick dashed blue ellipse. After inspection, it seemed that
the posterior structure was highly non-Gaussian with re-
gions where the probability very sharply decreased. SGLD
regularly stepped into these regions and then got catapulted
away due to the large gradients there. SGFS-f presumably
avoided those regions by adapting to the local covariance
structure. We found that in this region even the HMC runs
are not consistent with one another. Note that the SGFS-f
contours seem to agree with the HMC contours as much as
the HMC contours agree with the results of its own subsets,
in both the easy and the hard case.

Finally, we plot the error after 6790 seconds of computa-
tion versus the mixing rate. Figure 5-left shows the results
for the mean and the right for the covariance (for an ex-
planation of the various quantities see discussion in section
5.1). We note again that SGLD incurs a significantly larger
approximation bias at the same mixing rate as SGFS-f.

6. Conclusions
We have introduced a novel method, “Stochastic Gradient
Fisher Scoring” (SGFS) for approximate Bayesian learn-
ing. The main idea is to use stochastic gradients in the
Langevin equation and leverage the central limit theorem
to estimate the noise induced by the subsampling process.
This subsampling noise is combined with artificially in-
jected noise and multiplied by the estimated inverse Fisher
information matrix to approximately sample from the pos-
terior. This leads to the following desirable properties.

• Unlike regular MCMC methods, SGFS is fast because it
uses only stochastic gradients based on small mini-batches
to draw samples.
• Unlike stochastic gradient descent, SGFS samples (ap-
proximately) from the posterior distribution.
• Unlike SGLD, SGFS samples from a Gaussian approx-
imation of the posterior distribution (that is correct for
N →∞) for large stepsizes.
• By annealing the stepsize, SGFS becomes an any-
time method capturing more non-Gaussian structure with
smaller stepsizes but at the cost of slower mixing.
• During its burn-in phase, SGFS is an efficient optimizer
because like Fisher scoring and Gauss-Newton methods, it
is based on the natural gradient.

For an appropriate annealing schedule, SGFS thus goes
through three distinct phases: 1) during burn-in we use
a large stepsize and the method is similar to a stochastic
gradient version of Fisher scoring, 2) when the stepsize
is still large, but when we have reached the mode of the
distribution, SGFS samples from the asymptotic Gaussian
approximation of the posterior, and 3) when the stepsize
is further annealed, SGFS will behave like SGLD with a
pre-conditioning matrix and generate increasingly accurate
samples from the true posterior.
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