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Notch receptors and ligands
The Delta-Notch pathway is an evolutionarily conserved signaling pathway that controls 
a broad range of developmental processes including cell-fate determination, terminal 
differentiation, proliferation and apoptotic events (1-3). Notch receptors and ligands 
are transmembrane proteins that belong to the Epidermal Growth Factor (EGF)-like 
family of proteins. After ligand binding, Notch receptors release their intracellular 
domain (NICD), which is cleaved by γ-secretase and then translocates to the nucleus 
to initiate signaling. The NICD interacts with the DNA-binding transcriptional repressor 
C-repeat/DRE Binding Factor 1 (CBF1) also known as Recombination Binding Protein for 
immunoglobulin kappa J region (RBP-J) and converts it into a transcriptional activator 
that induces transcription of target genes (Figure 1). 

The first Notch gene was cloned in 1983 and shown to encode a cell-surface receptor in 
D. melanogaster (4). Functional analysis revealed that Notch is important for cell fate 
decisions during development of D. melanogaster (5). Subsequently, two Notch genes 
(glp-1 and lin-12) were identified in C.elegans, whereas four Notch homologs (Notch1- 
4) were identified in vertebrates (6), probably as a result of duplication events. 
Phylogenetic analysis of vertebrate Notch genes suggested that Notch1a and Notch1b 
(in fish) resulted from a duplication near the teleost/mammalian divergence (7). It was 
further shown that Notch2 appeared in the first round of vertebrate duplication events 
and that vertebrate Notch2 group is closely related to Notch3 (6). Notch4 is found only 
in mammals and is possibly the result of a rapid divergence from Notch3 (7). 

The Delta-Notch pathway

Figure 1 Notch intracellular signaling 
Schematic representation of the Notch signaling cascade. Binding of the Notch ligand to the 
membrane bound Notch receptor leads to a sequence of proteolytic events resulting in cleavage of 
the Notch expracellular domain by ADAM17/TACE, followed by cleavage of the  intracellular domain 
by γ-secretase (107). The Notch intracellular domain (NICD) then translocates to the nucleus and 
binds to the DNA binding transcriptional repressor CBF1/RBP-J. This binding converts CBF1 into a 
transcriptional activator which leads to transcription of target genes like the HES gene family.
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Five canonical mammalian Notch ligands have been described, namely JAGGED1, 
JAGGED2, Delta-like 1 (DLL1), DLL3 and DLL4. Canonical Notch ligands are 
characterized by three related structural motifs: an N-terminal Delta-Serrate-LAG-2 
(DSL) domain (a cryptic EGF-like repeat), specialized tandem EGF-repeats called the 
DOS domain and a variable number of EGF-like repeats (Figure 2). Notch ligands 
can be further classified on the basis of the presence or absence of a cysteine-rich 
domain into the Jagged/Serrate or Delta-like group (Figure 2). Both the DSL and the 
DOS domains are involved in receptor binding (8, 9), but DLL3 and DLL4 are DSL-only 
ligands. 

In addition to the canonical ligands, noncanonical ligands can bind to Notch receptors. 
The function of noncanonical ligands is still poorly understood, but soluble noncanonical 
ligands may act as dominant-negative proteins that block Notch signaling (8, 9). Delta-
like 1 homolog (DLK1) is the best studied noncanonical Notch ligand. It resembles 
DLL ligands, but misses the DSL domain (Figure 2) and was shown to inhibit NOTCH 
signaling as a DOS co-ligand (10, 11). 

The Delta-Notch pathway

Figure 2 Notch Ligands
Schematic representation of DLK1 protein organization  in relation to canonical Notch ligands 
(Adapted from Kopan et al 2009 (9)) . Classical Notch ligands contain the DSL (Delta-Serrate-
Lag-2), DOS (Delta and OSM-11-like proteins) and EFG (Epidermal growth factor) motifs. DLL3 
and DLL4 are a considered DSL-only ligands. DLK1 is considered a DOS co-ligand belonging to a 
subfamily of diffusible ligands.  These ligands might act in combination with DSL-only ligands to 
activate Notch signaling (9).

JAGGED1

JAGGED2

DLL1

DLL4

DLL3

DLK1

Signal peptide

DSL motif

Cystine-rich domain

DOS domain

Transmembrane domain

Two EGF-like repeats



13Part I

One of the most prominent features of canonical Delta-Notch signaling is that the 
ligand-receptor association occurs only between neighboring cells. This feature 
becomes accentuated in the process of “lateral inhibition”, which occurs when two 
initially identical progenitor cells adopt different cell fates due to upregulation of the 
Delta ligand in one cell. This activates the Notch receptor on the neighboring cell, which 
in turn results in down regulation of Delta expression in that same cell, enhancing the 
divergence between the two cells (12, 13). These cells can then adopt alternative cell 
fates (Figure 3).

The Delta-Notch pathway

Figure 3 Lateral inhibition 
Schematic respresentation of the process of lateral inhibition by which pluripotent stem cells adopt 
alternative cell fates. First, an instructive signal leads to upregulation of the Delta ligand in one cell. 
This leads to activation of Notch on the neighbouring cell, which in turn results in downregulation of 
Delta in that same cell, by which the first signal is enhanced. The divergence between the two cells 
can then lead to differentiaton into alternative cell fates.
This process is depicted by the central cell which initially expresses two delta ligands and two 
notch receptors interacting with their right and lower neighbour cells, which expresse 1 and 2 delta 
ligands, respectively. After an instructive signal, Delta becomes upregulated in the central cell, 
depicted by 5 Delta ligands instead of 2, which then leads to downregulation of Delta ligands in its 
right and lower neighbour cell, which now express 0 and 1 Delta ligand.
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The Delta-Notch pathway

Importance of Delta-Notch signaling during development: loss 
of function studies
Knockout studies for each of the mammalian Notch receptors and ligands have been 
conducted in mice. Table 1 provides an overview of the resulting phenotypes of these 
Notch pathway knockouts (14-24). 
 

Disrupted gene Phenotype

Notch1 (Swiatek 1994) Embryonic lethal at ED 10, widespread cell death, disturbed 
somitogenesis

Notch2 (Hamada 1999) Embryonic lethal at ED 11.5, widespread cell death, normal 
somitogenesis

Notch3 (Domenga 2004) Viable and fertile, defects in postnatal maturation of vascular 
smooth muscle cells

Notch4 (Krebs 2000) Viable and fertile; in combination with Notch1 mutant severe 
vascular defects

Jagged1 (Xue 1999) Embryonic lethal at ED 10, defects in vascular remodelling of 
embryo and yolk sac

Jagged2 (Jiang 1998) Perinatally lethal, craniofacial defects, skeletal defects, impaired 
thymic differentiation

DLL1 (Hrabe 1997) Embryonically lethal at ED12, severe somite patterning defects, 
hyperplastic CNS

DLL3 (Dunwoodie 2002) Viable with severe axial skeletal defects

DLL4 (Gale 2004) Embryonic lethal from ED10.5, severe vascular remodelling defects 
in embryo and yolk sac

Dlk1 (Moon 2002,
(Raghunandan 
2008,Waddell 2010, 
Puertas-Avendano 2011)

Increased perinatal lethality,  growth retardation, rib deformations, 
increased adiposity
Altered B-cell differentiation in spleen and bone narrow, exaggerated 
primary T-cell response, reduced skeletal muscle mass, disturbed 
pituitary cell type development

NOTCH1
Homozygous disruption of the Notch1 gene is fatal around embryonic day (ED)10, 
indicating that Notch1 is essential for normal embryonic development. Morphological 
and histological analysis of homozygous Notch1-deficient embryos showed normal 
pattern formation through the first nine days of gestation. However, histological 
analysis revealed widespread cell death after this stage, which was attributed to 
disorganized and delayed somitogenesis (23, 25). To explore the role of NOTCH1 
later in development, inducible Notch1 knockout were made. Mice, in which Notch 
expression was deleted neonatally, were transiently growth retarded, severely deficient 
in thymocyte development and developed nodular hyperplasia in the liver (26, 27). 
Inactivation of Notch1 in mouse skin resulted in epidermal and corneal hyperplasia, 
followed by the development of skin tumors (28). Additionally, activating NOTCH1 
mutations are associated with human T-cell acute lymphoblastic leukemia (T-ALL) (29). 
These findings implicate that in the adult stage NOTCH1 is still involved in regulation of 
cell growth including both tumor suppressor and oncogenic functions.

Table 1 Phenotypes of mice with targeted disruption of Notch pathway genes
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The Delta-Notch pathway

NOTCH2
Homozygous Notch2-deficient embryos show developmental retardation, widespread 
cell death and embryonic lethality before ED11.5, but have, in contrast to Notch1 
knockouts, normal somitogenesis (17). Mice homozygous for a hypomorphic Notch2 
mutation show defects in development of the kidney, heart and eye vasculature (30). 
The human Allagille syndrome is associated with mutations in both NOTCH2 and 
JAGGED1, and is characterized by growth retardation, jaundice due to impairment of 
intrahepatic bile duct formation and defective development of skeleton, heart, eyes 
and kidneys (31, 32). Mice doubly heterozygous for a hypomorphic Notch2 allele and 
a Jagged1 null allele exhibit developmental abnormalities that resemble the human 
Alagille syndrome. Heterozygous Notch2 mutants show no abnormalities, while 
heterozygous Jagged1-deficient mice exhibit limited eye defects without the other 
characteristic features of Alagille’s syndrome (33). Furthermore, mice with a perinatal, 
liver-specific complete elimination of Notch2 (Notch2fl/fl/Alb-Cretg/-) have a paucity of 
bile ducts and jaundice, demonstrating that Notch2 signaling is responsible for the 
liver phenotype in Alagille’s syndrome (34). Recently, we investigated the effects of 
early embryonic elimination of Notch2 in Notch2fl/fl/Alfp-Cretg/- (Notch2-cKO) mice and 
showed that Notch2 is indispensable for biliary differentiation in mice (Chapter 6). 
Neonatal Notch2-cKO mice were severely jaundiced with livers completely devoid of 
cytokeratin19 -positive ductal structures. mRNA levels of transcription factors involved 
in biliary development, including Hnf6, Foxa1, Foxa2, Hhex, Hnf1β, Cebpα and Sox9 
were either permanently or transiently decreased in postnatal Notch2-cKO livers, 
indicating that during cholangiocyte differentiation, they lie downstream from Notch2 
(chapter 6). The above findings imply that mutations in both NOTCH2 and JAGGED1 
determine the severity of the phenotype of Alagille’s syndrome. 

NOTCH3 and NOTCH4
Notch3-null mice are viable and fertile without any apparent phenotypic abnormalities. 
However, adult Notch3 knockout mice show obvious arterial defects due to 
abnormalities in differentiation and maturation of vascular smooth-muscle cells (14, 
20). In agreement with a role for Notch3 in vascular development, mutations in the 
EGF-repeats of the NOTCH3 gene in humans cause the cerebral autosomal dominant 
arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) syndrome, 
leading to early stroke and dementia (35). Similar to Notch3, Notch4-null mice are 
viable and fertile (20). Involvement of Notch4 in vascular development is likely because 
its expression during embryonic development is restricted to vascular endothelial cells 
(20). Furthermore, Notch1/ Notch4 double knockouts show a more severe phenotype 
than Notch1 knockouts, with extensive defects in angiogenic vascular remodeling 
that affect the embryo, yolk sac and placenta at ED9.5 (20). The aggravation of the 
phenotype of Notch1 deficiency by Notch4 deficiency suggests a partial functional 
redundancy of Notch4 for Notch1.
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Notch canonical ligand knockouts
Homozygous disruption of the Notch ligands results in severe developmental defects. 
Jagged1-null mice exhibit defects in vascular remodelling of the embryo and yolk sac 
and die at ED10 from extensive hemorrhage (24). Mice homozygous for a Jagged2 
deletion die perinatally because of defects in craniofacial- and limb morphogenesis with 
cleft palate, fusion of the tongue with the palatal shelves, syndactyly (digit fusions) 
of the fore and hind limbs, and defective thymus development (19). Homozygous 
inactivation of Dll1 causes severe defects in somite patterning and a hyperplastic CNS. 
Dll1-deficient mice become hemorrhagic after ED10 and die around ED12 (18). This 
implies that Dll1 expression is a prerequisite for Notch receptors to function during 
somitogenesis and CNS development. In addition to DLL1, DLL3 is also involved in 
somitogenesis, but Dll3-null mice are viable despite severe axial skeletal defects, which 
probably result from delayed and irregular somite formation  (8, 15). In agreement, 
mutations in the human DLL3 gene are associated with spondylocostal dysplasia, that 
is, with similar vertebrocostal defects as seen in Dll3-deficient mice (36) . DLL3 differs 
structurally from the other canonical DSL ligands (Figure 2) and is considered a Notch-
signaling antagonist (8). In agreement, Dll3 expression in the presomitic mesoderm 
is unable to rescue the Dll1-deficient somite phenotype in mouse embryos (8). Dll4 
deficiency causes severe vascular remodeling defects and embryonic lethality even 
in the heterozygous condition. The phenotype of Dll4Lz/+ mice is reminiscent of that 
reported for the homozygous Notch1/Notch4 double knockout, suggesting that DLL4 
is a major physiologic ligand for these receptors and initiates their signaling during 
vascular development (16). Interestingly, mice lacking Jagged1 also exhibit a similar 
phenotype, which suggests an overlapping functional capacity for JAGGED1 and DLL4. 

The comparison of the phenotype of Notch receptor- and Notch-ligand knockouts 
does not reveal extensively overlapping phenotypes, apart from the described DLL4 
and NOTCH1/4 vascular phenotypes. In the case of fixed ligand-receptor-pairs, one 
would expect that the deficiency of either the ligand or the receptor to cause a similar 
rather than a different phenotype. The existence of non-overlapping phenotypes is, 
on the other hand, also compatible with particular ligand-receptor pairs, which, upon 
modification, affect a specific phenotype, but not another. Possibly, therefore, both 
conditions are met if only a limited number of permutations of ligands per receptor or 
vice versa are functional. Alternatively, the interactions between receptors and ligands 
could become unique by having additive effects (the Notch1/Notch4 double knockout 
has the same phenotype as the Dll4 knockout). The relatively mild phenotype of 
Notch3 and Notch4 knockout mice suggests functional redundancy with NOTCH1 and/or 
NOTCH2, but not vice versa. 

The Delta-Notch pathway
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Protein structure 
Both the human DLK1 and the murine Dlk1 genes are maternally imprinted, paternally 
expressed genes on chromosome 14 and 12 in man and mouse, respectively (37). 
Delta-like 1 homolog (DLK1), also known as Preadipocyte factor 1 (Pref-1) and Fetal 
antigen (FA1) (38, 39), is an EGF-like membrane-bound protein. It contains six tandem 
EGF-like repeats, a juxtamembrane region with a TACE (ADAM17)-mediated cleavage 
site, a transmembrane domain, and a short intracellular tail (40). TACE-mediated 
cleavage yields  a soluble form of DLK1 with a molecular weight of 50 kDa (40). 
Alternative DLK1 splicing products have been described in several mammalian species 
(41-43), which mostly result from in-frame deletions of the juxtamembrane region 
and the sixth EGF repeat, resulting in membrane bound forms that sometimes lack the 
TACE-sensitive cleavage site. The biological activity of these splicing variants is yet not 
fully understood. 

The structure and amino-acid sequence of the EGF repeats in DLK1 are closely related 
to those present in the canonical DLL ligands. However, DLK1 misses the conserved 
cryptic EGF repeat that is called the DSL domain, which is present at the N-terminus 
of all canonical Notch ligands (Figure 1). For this reason, DLK1 is considered a DOS 
(co)ligand (8, 9, 44). Despite of the absence of a DSL domain, interaction between 
DLK1 and the NOTCH1 receptor was shown in the yeast GAL4 two-hybrid system. In 
this model system, pairs 10/11 and 12/13 of the NOTCH1 EGF-like repeats interacted 
with DLK1 EGF repeats 1, 2, 5 and 6. (10). NOTCH1 EGF-like repeats 11 and 12 are 
those reported to interact with the DOS domain of canonical ligands (45-48). DLK1 
behaved as a negative regulator of NOTCH1 signaling in mesenchymal cell lines (10, 
11). Furthermore, overexpression of murine Dlk1 in Drosophila altered the cellular 
distribution of Notch and inhibited the expression of Notch target genes (49). Recently, 
a new protein, highly homologous to DLK1, named DLK2, has been discovered that 
also interacts with the NOTCH1 receptor and inhibits Notch signaling (50, 51). The 
inhibitory effect of DLK1 and DLK2 on Notch signaling may be mediated by competition 
of with canonical ligands of the DSL type for the binding site on the Notch receptor 
(11, 52). DLK1 was also shown to be involved in other signaling pathways, such as the 
ERK/MAPK pathway via binding to fibronectin (53) and the FGF-signaling pathway by 
interacting with the FGF-binding molecule Cfr (54). In this review we will focus on its 
possible roles in the Notch pathway.

DLK1, a noncanonical Notch ligand
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DLK1 expression during development 
Dlk1 expression is widely distributed during mouse embryonic development, with high 
expression in placenta, liver, adipose tissue, skeletal muscle, lung, vertebrae, and the 
pituitary- and adrenal gland(s) (38, 39, 55, 56). In the adult, in contrast, expression 
becomes restricted to (neuro)endocrine tissues like the pituitary gland, adrenal glands, 
pancreas, monoaminergic neurons in the central nervous system, testes, prostate and 
ovaries (38, 55, 57-62). The reported expression pattern, together with its involvement 
in the Notch pathway, suggests an important role for DLK1 during the maturation 
of several tissues. However, Dlk- null mice display a relatively mild phenotype, with 
increased perinatal lethality and growth retardation accompanied by accelerated 
adiposity and developmental defects in the eyelids, ribs and lungs, (21) as well as 
alterations in B-cel differentiation (22),  and pituitary cell type development (63). 
Furthermore, muscle-specific Dlk1-deletion resulted in disturbed muscle development 
and regeneration(64).

DLK1, a noncanonical Notch ligand
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Role of DLK1 and Notch in different cellular 
systems

Despite of the reported inhibitory action of DLK1 on Notch signaling in vitro (10, 
11, 49), DLK1 involvement in Notch signaling during development remains poorly 
understood. DLK1 is expressed in many embryonic tissues, in which active Notch 
signaling was also reported (65-72). Postnatally, DLK1 expression has disappeared 
from most of these tissue, but is associated with pediatric malignancies, such as 
hepatoblastoma, neuroblastoma and nephroblastoma (73-76), and some adult 
malignancies, such as myelodysplastic syndrome, pituitary tumors, breast, colon and 
prostate carcinoma (42, 57, 77-79). DLK1 expression in comparison with the Notch 
pathway will be discussed below in adipogenesis, placental and muscle development, 
as well as its presence in pediatric carcinogenesis. Its involvement in liver, lung, 
pancreas, pituitary -  and adrenal gland will be discussed in the next chapters. 

Adipogenesis
The best established function for DLK1/Pref-1 is that of an inhibitor of adipogenesis, 
as it prevents the differentiation of preadipocytes into mature adipocytes (39, 40, 80, 
81). DLK1 is highly expressed in murine preadipocytes, whereas its expression has 
become completely abolished in mature adipocytes. The 3T3L1 cell line is a frequently 
used murine preadipocyte cell line to study the mechanism of adipocyte differentiation 
after hormonal induction (39, 82). When 3T3L1 cells are induced to differentiate into 
mature adipocytes, constitutive overexpression of soluble DLK1 prevents adipogenic 
differentiation by inhibition of the expression of the key transcriptional regulators of 
adipogenesis, Cebpα and Pparγ (39, 80). Similarly, a decrease in body mass due to 
decreased weight of all adipose tissue pads, including brown fat, is seen in transgenic 
mice with adipocyte-specific overexpression of Dlk1. Conversely, mice lacking Dlk1 
display accelerated adiposity in adulthood and enlarged, fatty livers with increased 
expression of lipogenic ezymes Fas and Scd1(21). 

It is well possible that soluble and membrane-bound DLK1 differ in function, as 
membrane-bound DLK1 is required for adipogenesis in the 3T3L1 cell line (83). 
Furthermore, overexpression of both soluble and membrane-bound DLK1 significantly 
enhances adipogenic differentiation in the mesenchymal stem cell line C3H10T1/2 (11). 
Additionally, we recently showed that liver-specific overexpression of Dlk1 resulted in 
a sex- and diet-dependent increase of Notch signaling, accompanied by an increase 
adipogenic (Cebpα and Pparγ) and lipogenic genes (Fas and Scd) in liver and adipose 
tissue. Dlk1-overexpressing female mice on a high-fat diet were most sensitive 
(Chapter 4).
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The precise role of the Notch pathway in adipogenesis remains controversial with 
reportedly both stimulatory and inhibitory roles for Notch1 and Hes1 during adipocyte 
differentiation (10, 11, 66, 84, 85). The effect of DLK1 on the Notch pathway during 
adipogenesis has been studied in vitro in cell lines with (3T3L1 mouse preadipocyte 
cell line) or without (Balb/c14  mouse fibroblast cell line) endogenous DLK1 expression 
(10). Increased Dlk1 expression correlated with a decrease in Notch1 expression and 
a concomitant decrease in levels of downstream target Hes1 in both cell lines, and 
resulted in inhibition of adipogenesis in 3T3L1 cells (10). Furthermore, in the the 
mesenchymal stem cell line C3H10T1/2, DLK1 overexpression also resulted in Notch 
signaling inhibition (11). These findings support the hypothesis that DLK1acts as a 
negative regulator of Notch signaling. Interestingly, constitutive Notch1 expression 
leading to increased Hes1 mRNA levels resulted in a decrease of Dlk1 mRNA levels 
and also prevented adipocyte differentiation in the 3T3L1 cell line (84). Additionally, 
inhibition of Notch1 expression prevented the potentiating effects of DLK1 on 
adipogenesis in C3H10T1/2 cells (11). It was, therefore, proposed that “a proper 
balance of Notch signaling is critical for adipogenesis to proceed” and that “DLK1 
might be a critical factor to control the proper level of Notch signaling for cells to 
undergo adipogenesis” (10). Collectively, these findings indicate that DLK1 is not only 
an inhibitor of adipogenesis, but that its role in adipogenesis is dependent on the 
biological context.

DLK1 and Notch during placental development  
The mammalian placenta consists of the maternally derived decidua and fetally derived 
trophoblast, both with their separate vasculature. (86). In placenta of mice and human, 
DLK1 is only expressed in the endothelial cells of the fetal vasculature in the umbilical 
cord and in the mesenchymal fibroblasts of the chorionic villi, respectively, while all 
other placental derivatives are DLK1-negative (38, 55). Furthermore, soluble human 
DLK1 (FA1) can be detected in serum during pregnancy, with highest levels from 
gestational week 20 till 37 and twin pregnancies show significantly higher FA1 levels 
compared to singleton pregnancies (38). In agreement, maternal serum FA1 levels 
positively correlated to the number of fetuses in mice (87), suggesting that soluble 
DLK1 in maternal serum is produced by the fetus.

The canonical Notch pathway members are involved in all stages of preimplantation 
development (67). In mouse placenta, mutations in Notch1/Notch4, Dll4 and Rbpj/
Cbf1 result in an early block in chorio-allantoic fusion or branching (67).  Despite of 
the lack of disturbed placentation in Dlk1 knockout mice (21), the uniparental disomy 
12 (UDP12) mutant mouse model implies Dlk1 involvement in placental development. 
In these embryos both copies of chromosome 12 are derived from either the father 
(pUDP12) or the mother (mUPD12), which results in loss or overexpression of 
imprinted genes (88). 

Role of DLK1 and Notch in different cellular 
systems
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The mutant embryos show over-and undergrowth of the placenta, respectively, and 
die during gestation. In pUDP12 where the maternal imprinting is lost, embryos show 
defects in the fetal vasculature of the placenta and increased Dlk1 levels (89). 
These findings suggest that the observed placental defects are at least partly due to 
overexpression of Dlk1, however, whether its role during placental development is 
exerted via signaling through the Notch pathway, remains to be elucidated.

DLK1 and Notch during muscle development 
The callipyge (CLPG) phenotype is an inherited skeletal muscle hypertrophy of sheep. 
The CLPG mutation occurs in a highly conserved motif between the imprinted Dlk1 
and noncoding Gtl2 genes (90). This mutation causes abnormally high postnatal Dlk1 
expression in affected muscles, without altering its imprinted status (91). Normally, 
Dlk1 expression in muscle is rapidly downregulated after birth in both sheep and 
mice (90, 91) (chapter 2), and becomes re-expressed during muscle injury and 
chronic myopathies (64, 92). Transgenic mice expressing ovine Dlk1 under control 
of the murine myosin light chain 3F promoter have high Dlk1 expression in type 
myosin heavy-chain type IIB (MYH4) muscle fibers throughout pre- and postnatal 
development. Compared to controls, these mice also show increased relative muscle 
mass and average fiber diameter in both the foreleg and hind-leg muscles (90). 
Deletion of Dlk1 in the myogenic lineage resulted, on the other hand, in reduced 
skeletal muscle mass due to a reduction in the number of myofibers and Myh4 gene 
expression and also impaired muscle regeneration. Dlk1 knockout inhibited the 
expression of the muscle-determining transcription factor MyoD, and facilitated the 
self-renewal of activated satellite cells. Conversely, Dlk1 over-expression inhibited 
the proliferation and enhanced differentiation of cultured myoblasts (64).These 
findings show that DLK1 participates in the regulation of muscle fiber growth during 
development and that postnatally persisting Dlk1 expression in skeletal muscle 
contributes directly to the muscular hypertrophy observed in CLPG sheep. 
Notch signaling inhibits myogenic differentiation by suppression of MyoD expression, 
which is critical for the proper expansion of muscle progenitors during development  
(70, 72, 93, 94). Mice carrying either a hypomorphic allele of the Notch ligand Dll1 or 
a myocyte-specific deletion of the Notch downstream transcription factor Cbf1 both 
display severe muscle hypotrophy due to uncontrolled premature differentiation of the 
muscle progenitor cell pool, with increased expression of myogenic regulatory factors  
MyoD and Myogenin and  a reduced number of  muscle progenitor cells (70, 94). 
Comparison of the DLK1 and Notch muscle phenotypes shows that DLK1 and Notch 
have opposite effects on myogenesis, which is compatible with the putatively inhibitory 
effect of DLK1 on Notch signaling.

Role of DLK1 and Notch in different cellular 
systems
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DLK1 and Notch in pediatric malignancies

Pediatric tumors like neuroblastoma, hepatoblastoma and nephroblastoma (Wilms 
tumor) are believed to arise from cellular populations that have not completed 
the process of differentiation. Signal-transduction pathways involved in embryonic 
development, like the Wnt/beta-catenin pathway, are frequently upregulated in 
these tumors (95, 96). Recently, both DLK1 and the Notch pathway have also been 
associated with pediatric malignancies (73, 75, 76, 97-99).  

Neuroblastoma 
Neuroblastoma, an embryonic tumor originating from immature sympathetic 
neuroblast, displays a remarkable spectrum of clinical and biological behavior, ranging 
from spontaneous regression of metastases to rapid and fatal progression despite 
intensive therapy (74). High expression of DLK1 and the NOTCH3 receptor was 
reported in subsets of neuroblastoma tumors and cell lines (98). DLK1 expression 
correlated perfectly with dopamine β-hydroxylase (DBH) expression, an enzyme 
which is normally highly expressed in the chromaffin cells of the adrenal medulla and 
converts dopamine to noradrenaline (98). During early embryonic development, DLK1 
expression is detected throughout the adrenal gland, while later during development 
expression becomes restricted to the chromaffin cells, one of the few cell types that 
maintains postnatal DLK1 expression (55, 58). Interestingly, the reported DLK1 
expression in neuroblastoma cell lines was inversely correlated to NOTCH3 expression 
(98). Therefore, it was suggested that overexpression of NOTCH3 in neuroblastoma cell 
lines corresponds with early precursor stages, whereas overexpression of DLK1 reflects 
differentiation arrest in a relatively late stage of the chromaffin lineage (98). 

Hepatoblastoma 
Hepatoblastoma, a malignant pediatric liver tumor, is believed to derive from 
hepatoblasts, because of the stem-cell like appearance of the hepatoblastoma 
cells (100-102). Hepatoblastomas are characterized by a diversity of epithelial 
and often mesenchymal patterns of differentiation, with some epithelial variants 
that morphologically resemble embryonic or fetal hepatocytes (103, 104). 
Recently, increased expression of DLK1was found to be a consistent feature among 
hepatoblastomas (75, 76, 95, 97). DLK1 was significantly elevated in all histological 
subtypes when compared to normal liver, sometimes even higher than in fetal liver 
(75). We recently showed that serum DLK1 levels were significantly elevated in 
hepatoblastoma patients compared to age-matched controls, even in the youngest 
patients, in whom serum α-fetoprotein levels are often in the same range as the still 
elevated control levels (chapter 3).These findings make DLK1 a candidate serum 
marker to diagnose hepatoblastoma in the young infant age group.
NOTCH2 receptor expression was increased in 92% of hepatoblastomas compared 
to normal liver tissue. HES1, the best studied Notch downstream target, was also 
elevated in hepatoblastomas, especially in the pure fetal subtype (75, 105). These 
findings indicate that active Notch signaling occurs in hepatoblastoma tumors and 
might regulate tumor growth. The abrupt disappearance of DLK1 expression in late 
liver development, together with its re-appearance in hepatoblastoma, imply a role for 
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DLK1 in hepatoblastoma pathogenesis. However, we showed recently that transgenic 
mice with hepatocyte-specific overepression of DLK1 do not develop liver tumors up 
to 1.5 years of age (chapter 4). These findings imply that increased Notch signaling, 
probably via the NOTCH2 receptor, is more likely to be involved in the pathogenesis of 
hepatoblastoma.

Wilms tumor 
Nephroblastoma is a pediatric tumor of the kidney, also known as Wilms tumor. Loss of 
imprinting (LOI) of the reciprocally imprinted H19/IGF2 domain is a common feature 
of Wilms tumor, where H19 is a non-coding gene and IFG2 an important regulator 
of fetal growth (73, 106). The DLK1 gene is similarly arranged by formation of an 
imprinted domain with a noncoding gene called GTL2 (73). DLK1 expression is absent 
in developing kidney, but interestingly, high DLK1 expression was detected in 11 out of 
30 Wilms tumors with prominent myogenic differentiation and blastemal components. 
The imprinting status of the DLK1/GTL2 domain was shown to be retained (73). Since 
DLK1 is associated with muscular growth and development (90), DLK1 expression in 
Wilms tumor may only reflect the presence of myogenic differentiation in a significant 
proportion of the tumor cells (see section 3.2).

DLK1 and Notch in pediatric malignancies
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The aim of the research described in this thesis was to characterize the Notch pathway 
in  mouse liver, specifically the roles of DLK1 and Notch2.  Furthermore, we wanted to 
investigate the value of DLK1 as a serum marker for hepatoblastoma. 
Chapter 2 describes the DLK1 expression pattern during embryonic development and 
its relation to the Notch pathway. The usefulness of DLK1 as a novel serum marker 
for the pediatric liver tumor hepatoblastoma is discussed in chapter 3. The effects of 
liver-specific overexpression of DLK1 are described in chapter 4. Chapter 5 provides 
an introduction into biliary development and involved genes/transcription factors 
including the Notch pathway. The  indispensable role of Notch2 in biliary differentiation 
is described in Chapter 6. The inhibitory effects of  Dlk1 overexpression on bile duct 
proliferation are described in chapter 7. Chapter 8 provides a summary of the results.

Aim and outline of the thesis
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