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Chapter 4

Towards a reverse Newman’s theorem
in information complexity

Newman’s theorem states that we can take any public-coin communication
protocol and convert it into one that uses only private randomness with but a
little increase in communication complexity. We consider a reversed scenario
in the context of information complexity: can we take a protocol that uses
private randomness and convert it into one that only uses public randomness
while preserving the information revealed to each player?

We prove that the answer is yes, at least for protocols that use a bounded
number of rounds. As an application, we prove new direct sum theorems
through the compression of interactive communication in the bounded-round
setting. To obtain this application, we prove a new one-shot variant of the
Slepian-Wolf coding theorem, interesting in its own right.

Furthermore, we show that if a Reverse Newman’s Theorem can be proven
in full generality, then full compression of interactive communication and fully-
general direct-sum theorems will result.

The results in this chapter are based on the paper:

• Joshua Brody, Harry Buhrman, Michal Koucký, Bruno Loff, Florian Speel-
man, and Nikolay Vereshchagin. Towards a reverse Newman’s theorem
in interactive information complexity. In Proceedings of the 23rd CCC,
pages 24–33, 2013.

4.1 Introduction

Information cost was introduced by a series of papers [42, 22, 59, 23, 29] as a
complexity measure for two-player communication protocols. Internal informa-
tion cost measures the amount of information that each player learns about the
input of the other player while executing a given protocol. In the usual setting
of communication complexity we have two players, Alice and Bob, each having
an input x and y, respectively. Their goal is to determine the value f(x, y) for
some predetermined function f . They achieve the goal by communicating to
each other some amount of information about their inputs according to some
protocol.
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60 Chapter 4. Towards a reverse Newman’s theorem

The usual measure considered in this setting is the number of bits ex-
changed by Alice and Bob, whereas the internal information cost measures
the amount of information transferred between the players during the commu-
nication. Clearly, the amount of information is upper bounded by the number
of bits exchanged but not vice versa. There might be a lengthy protocol (say
even of exponential size) that reveals very little information about the players’
inputs.

In recent years, a substantial research effort was devoted to proving the
converse relationship between the information cost and the length of protocols,
i.e., to proving that a protocol which reveals only I bits of information can be
simulated by a different protocol which communicates only (roughly) I bits.
Such results are known as compression theorems. [23] prove that a protocol
that communicates C bits and has internal information cost I can be replaced
by another protocol that communicates O(

√
I · C) bits. For the case when the

inputs of Alice and Bob are sampled from independent distributions they also
obtain a protocol that communicates O(I ·logC) bits. These conversions do not
preserve the number of rounds. In a follow-up paper, [29] consider a bounded
round setting and give a technique that converts the original q-round protocol
into a protocol with O(q · log I) rounds that communicates O(I + q log q

ε ) bits
with additional error ε.

All known compression theorems are in the randomized setting. We distin-
guish two types of randomness — public and private. Public random bits are
seen by both communicating players, and both players can take actions based
on these bits. Private random bits are seen only by one of the parties, either
Alice or Bob. We use public-coin (private-coin) to denote protocols that use
only public (private) randomness. If a protocol uses both public and private
randomness, we call it a mixed-coin protocol.

Simulating a private-coin protocol using public randomness is straightfor-
ward: Alice views a part of the public random bits as her private random bits,
Bob does the same using some other portion of the public bits, and they com-
municate according to the original private-coin protocol. This new protocol
communicates the same number of bits as the original protocol and computes
the same function. In the other direction, an efficient simulation of a public-
coin protocol using private randomness is provided by Newman’s Theorem [83].
Sending over Alice’s private random bits to make them public could in gen-
eral be costly as they may need e.g., polynomially many public random bits,
but Newman showed that it suffices for Alice to transfer only O(log n+ log 1

δ )
random bits to be able to simulate the original public-coin protocol, up to an
additional error of δ.

In the setting of information cost the situation is quite the opposite. Simu-
lating public randomness by private randomness is straightforward: one of the
players sends a part of his private random bits to the other player and then
they run the original protocol using these bits as the public randomness. Since
the random bits contain no information about either input, this simulation re-
veals no additional information about the inputs; thus the information cost of
the protocol stays the same. This is despite the fact that the new protocol may
communicate many more bits than the original one.
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However, the conversion of a private-randomness protocol into a public-
randomness protocol seems significantly harder. For instance, consider a pro-
tocol in which in the first round Alice sends to Bob her input x bit-wise XOR-ed
with her private randomness. Such a message does not reveal any information
to Bob about Alice’s input — as from Bob’s perspective he observes a random
string — but were Alice to reveal her private randomness to Bob, he would
learn her complete input x. This illustrates the difficulty in converting private
randomness into public.

We will generally call “Reverse Newman’s Theorem” (R.N.T.) a result that
makes randomness public in an interactive protocol without revealing more
information. This chapter is devoted to attacking the following:

R.N.T. Question. Can we take a private-coin protocol with in-
formation cost I and convert it into a public-coin protocol with the
same behavior and information cost Õ(I)?

Interestingly, the known compression theorems [23, 29, 60] give compressed
protocols that use only public randomness, and hence as a by-product they give
a conversion of private-randomness protocols into public-randomness equiva-
lents. However, the parameters of this conversion are far from the desired ones.1

In Section 4.4 we show that the R.N.T. question represents the core difficulty in
proving full compression theorems; namely, we will prove that any public-coin
protocol that reveals I bits of information can already be compressed to a pro-
tocol that uses Õ(I) bits of communication, and hence a fully general R.N.T.
would result in fully general compression results, together with the direct-sum
results that would follow as a consequence. This was discovered independently
by Denis Pankratov, who in his MSc thesis [86] extended the analysis of the
[23] compression schemes to show that they achieve full compression in the case
when only public randomness is used. Our compression scheme is similar but
slightly different: we discovered it originally while studying the compression
problem in a Kolmogorov complexity setting (as in [35]), and our proof for the
Shannon setting arises from the proper “translation” of this proof; we include
it for completeness and because we think it makes for a more elementary proof.

4.1.1 Main results

Our main contribution is a Reverse Newman’s Theorem in the bounded-round
scenario. We will show that any q-round private-coin protocol can be converted
to an O(q)-round public-coin protocol that reveals only additional Õ(q) bits of
information (Theorem 4.3.1). Our techniques are new and interesting. Our
main technical tool is a conversion of one-round private-randomness protocols
into one-round public-randomness protocols. This conversion proceeds in two
main steps. After discretizing the protocol so that the private randomness is
sampled uniformly from some finite domain, we convert the protocol into what
we call a 1-1 protocol, which is a protocol having the property that for each
input and each message there is at most one choice of private random bits that

1We discuss the differences in more detail in Section 4.5.
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will lead the players to send that message. We show that such a conversion can
be done without revealing too much extra information. In the second step we
take any 1-1 protocol and convert it into a public-coin protocol while leaking
only a small additional amount of information about the input. This part relies
on constructing special bipartite graphs that contain a large matching between
the right partition and any large subset of left vertices.

Furthermore, we will prove two compression results for public-randomness
protocols: a round-preserving compression scheme to be used in the bounded-
round case, and a general (not round-preserving) compression scheme which
can be used with a fully general R.N.T. Either of these protocols achieves
much better parameters than those currently available for general protocols
(that make use of private randomness as well as public). The round-preserving
compression scheme is essentially a constant-round average-case one-shot ver-
sion of the Slepian-Wolf coding theorem [92], and is interesting in its own right.

As a result of our R.N.T. and our round-preserving compression scheme,
we will get a new compression result for general (mixed-coin) bounded-round
protocols. Whereas previous results for the bounded-round scenario [29] gave
compression schemes with communication complexity similar to our own result,
their protocols were not round-preserving. We prove that a q-round protocol
that reveals I bits of information can be compressed to an O(q)-round protocol
that communicates O(I + 1) + q log( qnδ ) bits, with additional error δ. As a
consequence we will also improve the bounded-round direct-sum theorem of
[29].

Organization of the chapter. In Section 4.3 we discuss our Reverse
Newman’s Theorem. In Section 4.4 we will prove our compression results.
Section 4.5 will give applications to direct-sum theorems. Finally, Section 4.6
is dedicated to showing alternatives to the constructions we have presented, as
well as bounds that prevent further improvement to our techniques.

4.2 Preliminaries

We use capital letters to denote random variables, calligraphic letters to denote
sets, and lower-case letters to denote elements in the corresponding sets. So
typically A is a random variable distributed over the set A, and a is an element
of A. We will also use capital and lower-case letters to denote integers num-
bering or indexing certain sequences. We use ∆ (A,A′) to denote the statistical
distance between random variables A and A′:

∆ (A,A′) =
1

2

∑
a∈A
|Pr[A = a]− Pr[A′ = a]| .

4.2.1 Information theory

For a given probability random variable A distributed over the support A, its
entropy is

H(A) =
∑
a∈A

pa log
1

pa
,
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where pa = Pr[A = a]. Given a second random variable B that has a joint
distribution with A, the conditional entropy H(A|B) equals

Eb∈B [H(A|B = b)].

In this chapter, and when clear from the context, we denote a conditional
distribution A|B = b more succinctly by A|b.

4.2.1. Fact. If A has n possible outcomes then

H(A) ≤ log n.

4.2.2. Fact.

H(A|B) ≤ H(A) ≤ H(A,B), H(A|B,C) ≤ H(A|C) ≤ H(A,B|C).

4.2.3. Fact.

H(A,B) = H(A) +H(B|A), H(A,B|C) = H(A|C) +H(B|A,C).

We let I(A : B) denote the Shannon mutual information between A and
B, and I(A : B|C) denote the Shannon mutual information between A and B,
conditional on C:

I(A : B) = H(A)−H(A|B) = H(B)−H(B|A),

I(A : B|C) = H(A|C)−H(A|B,C) = H(B|C)−H(B|A,C).

Notice that I(A : B|C) may be larger than I(A : B), for instance when C
is the bitwise XOR of independent A and B.

4.2.4. Fact. The following equality is called chain rule:

I(A1, . . . , Ak : B|C) = I(A1 : B|C) +

k∑
i=2

I(Ai : B|C,A1, . . . , Ai−1)

Here A1, . . . , Ak stands for a random variable in the set of k-tuples and Ai
stands for its ith projection.

4.2.5. Fact. A and B are independent conditional on C (which means that
whatever outcome c of C we fix, A and B become independent conditional on
the event C = c) if and only if I(A : B|C) = 0.

4.2.6. Fact. If A and B are independent conditional on D then

I(A : C|B,D) = I(A : BC|D) ≤ I(A : C|D).

4.2.7. Fact. If A and C are independent conditional on the pair B,D then

I(A : B,C|D) = I(A : B|D).
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4.2.8. Fact. For any two random variables A,B over the same universe U , it
holds that

H(A)−H(B) ≤ log(|U|)∆ (A,B) + 1,

Proof. For each u in U , let cu = min{Pr[A = u],Pr[B = u]}, au = |Pr[A =
u] − cu| and bu = |Pr[B = u] − cu|. Then δ := ∆ (A,B) =

∑
u au =

∑
u bu,

and 1− δ =
∑
u cu.

So let µc, µa, µb be distributions, with µc(u) = cu/(1 − δ), µa(u) = au/δ,
and µb(u) = bu/δ. Then we can think of A as being generated by tossing a
coin A′ with bias Pr[A′ = 1] = δ, and if A′ = 1, then we sample according to
µa, and if A′ = 0, we sample according to µc. Similary we think of B as being
generatedby the toss of a coin B′ with the same bias, then sampling according
to µb if B′ = 1, and according to µc otherwise.

It now follows that:

H(A) ≤ H(A,A′) = H(A′) +H(A|A′) = H2(δ) + (1− δ)H(µc) + δH(µa),

where H2 is the binary entropy function. On the other hand,

H(B) ≥ H(B|B′) ≥ (1− δ)H(µc).

This gives us the claimed bound, since H(µa) ≤ log |U| and H2(δ) ≤ 1. �

4.2.2 Two-player protocols

We will be dealing with protocols that have both public and private random-
ness; this is not very common, so we will give the full definitions, which are
essentially those of [23, 29]. We will be working exclusively in the distribu-
tional setting, meaning that our inputs will be drawn from some distribution,
and we will be interested in the average case communication complexity, round
complexity, etc. From here onwards, we will assume that the input is given
to two players, Alice and Bob, by way of two random variables X,Y sampled
from a possibly correlated distribution µ over the support X × Y.

A private-coin protocol π with output set Z is defined as a rooted tree,
called the protocol tree, in the following way:

1. Each non-leaf node is owned by either Alice or Bob.
2. If v is a non-leaf node belonging to Alice, then:

(a) The children of v are owned by Bob; each child is labeled with a
binary string, and the set C(v) of labels of v’s children is prefix-free.

(b) Associated with v is a set Rv, and a function Mv : X ×Rv → C(v).

3. The situation is analogous for Bob’s nodes.
4. With each leaf we associate an output value in Z.

On input x, y the protocol is executed as follows:

1. Set v to be the root of the protocol tree.
2. If v is a leaf, the protocol ends and outputs the value associated with v.
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3. If v is owned by Alice, she picks a string rA,v uniformly at random fromRv
and sends the label of Mv(x, rA,v) to Bob, they both set v := Mv(x, rA,v),
and return to step 2.

4. If v is owned by Bob, he picks a string rB,v uniformly at random from
Rv and sends the label of Mv(x, rB,v) to Alice, they both set v :=
Mv(x, rB,v), and return to step 2.

A general, or mixed-coin, protocol is given by a distribution over private-coin
protocols. The players run such a protocol by using shared randomness to pick
an index r (independently of X and Y ) and then executing the corresponding
private-coin protocol πr. A protocol is called public-coin if every Rv has size
1, i.e., no private randomness is used.

We let π(x, y, r, rA, rB) denote the messages exchanged during the exe-
cution of π, for given inputs x, y, and random choices r, rA and rB , and
Outπ(x, y, r, rA, rB) be the output of π for said execution. The random variable
R is the public randomness, RA is Alice’s private randomness, and RB is Bob’s
private randomness; we use Π to denote the random variable π(X,Y,R,RA, RB).

4.2.9. Definition. The worst-case communication complexity of a protocol
π, CC(π), is the maximum number of bits that can be transmitted in a run of π
on any given input and choice of random strings. The average communication
complexity of a protocol π, with respect to the input distribution µ, denoted
ACCµ(π), is the average number of bits that are transmitted in an execution
of π, for inputs drawn from µ. The worst-case number of rounds of π, RC(π),
is the maximum depth reached in the protocol tree by a run of π on any given
input. The average number of rounds of π, w.r.t. µ, denoted ARCµ(π), is
the average depth reached in the protocol tree by an execution of π on input
distribution µ.

4.2.10. Definition. The (internal) information cost of protocol π with re-
spect to µ is:

ICµ(π) = I(Y : Π, R,RA|X) + I(X : Π, R,RB |Y )

Here the term I(Y : Π, R,RA|X) stands for the amount of information Alice
learns about Bob’s input after the execution of the protocol (and the meaning
of the second term is similar). This term can be re-written in several different
ways:

I(Y : Π, R,RA|X) = I(Y : Π|X,R,RA) = I(Y : Π, R|X,RA),

I(Y : Π, R,RA|X) = I(Y : Π, R|X) = I(Y : Π|X,R).

Here the first equality holds, as Bob’s input Y is independent from randomness
R,RA conditional on X, which is obvious (see Fact 4.2.6 from the preliminar-
ies). The second equality holds, since Y is independent from randomness R
conditional on X,RA, which is also obvious.

The third equality holds, as Y is independent from RA conditional on
Π, X,R (Fact 4.2.7). This independence follows from the rectangle property of
protocols: for every fixed Π, X,R the set of all pairs ((Y,RB), RA) producing



66 Chapter 4. Towards a reverse Newman’s theorem

the transcript Π is a rectangle and thus the pair (Y,RB) (and hence Y ) is
independent from RA conditional on Π, X,R. The fourth equality is proven
similarly to the first and the second ones.

The expressions I(Y : Π, R|X) and I(Y : Π|X,R) for the information re-
vealed to Alice are the most convenient ones and we will use them throughout
this chapter. Similar transformations can be applied to the second term in
Definition 4.2.10.

4.2.11. Definition. A protocol π is said to compute function f : X ×Y → Z
with error probability ε over distribution µ if

Pr
µ,R,RA,RB

[Outπ(x, y, r, rA, rB) = f(x, y)] ≥ 1− ε .

Many of our technical results require that the protocol uses a limited amount
of randomness at each step. This motivates the following definition.

4.2.12. Definition. A protocol π is an `-discrete protocol2 if |Rv| = 2` at
every node of the protocol tree.

When a protocol is `-discrete, we say that it uses ` bits of randomness for
each message; when ` is clear from context, we omit it. While the standard
communication model allows players to use an infinite amount of randomness
at each step, this is almost never an issue, since one may always “round the
message probabilities” to a finite precision. This intuition is captured in the
following observation.

4.2.13. Observation. Suppose π is a private-coin protocol. Then, there exists
an `-discrete protocol π′ with ` = O(log(|X |) + log(|Y|) + CC(π)) such that (i)
CC(π′) ≤ CC(π), (ii) RC(π′) ≤ RC(π), and (iii) for all x, y we have

∆ (Π′(x, y,RA, RB),Π(x, y,RA, RB)) ≤ 2−Ω(`).

Furthermore, for any input distribution µ, the error of π′ is at most the error
of π plus 2−`. Equally small differences hold between ACCµ(π′), ARCµ(π′), and
their π equivalents, and ICµ(π′) is within an additive constant of ICµ(π).

Proof. Let π be given by its protocol tree; for each node v, let its corresponding
function be Mv : X ×R → C(v) (if it is Alice’s node) or Mv : Y ×Rv → C(v).

We let π′ be given by the same protocol tree but where the functions Mv

are restricted to a finite set R′v of size ≤ k = 210`, with ` = log |X ||Y|+CC(π).
Hence by construction π′ has the same worst-case communication and number
of rounds as π.

Let Rv be a random variable uniformly distributed over Rv and R′v be a
random variable uniformly distributed over R′v.

2In a discrete protocol, we restrict only the amount of private randomness in this def-
inition. It is perhaps natural to also restrict the public randomness, but we will not need
to.
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4.2.14. Claim. For any node v of Alice’s there is a choice of R′v of size ≤ 210`

such that

|Pr[Mv(x,Rv) = m]− Pr[Mv(x,R
′
v) = m]| ≤ 2−4`

for every x and m. The obvious analogue holds for Bob’s nodes.

We prove that R′v exists by the probabilistic method. Let R̃ = {r1, . . . , rk}
be a random variable which is a multiset obtained by picking k elements uni-
formly from Rv, and define R′v as the random variable which picks an element
ri ∈ R̃ uniformly at random (counting multiplicities). Let Pm denote the
random variable that is

Pm = Pr[Mv(x,R
′
v) = m] =

∑k
i=1[Mv(x, ri) = m]

k
.

By linearity of expectation we find that:

E[Pm] =

∑k
i=1 E[Mv(x, ri) = m]

k
= Pr[Mv(x,Rv) = m].

And hence by Hoeffding’s inequality we conclude that:

Pr[|Pm − Pr[Mv(x,Rv) = m]| > 2−4`] ≤ 2 exp
(
−2k2−8`

)
� 2−`.

Hence by a union bound there must exist a choice for R̃ such that

|Pm − Pr[Mv(x,Rv) = m]| ≤ 2−4`

holds for every x and m; this choice is R′v.
Now fix x, y; from the claim it follows that for any transcript t,

|Pr[π(x, y) = t]− Pr[π′(x, y) = t]| ≤ 2−3`,

which in turn implies that

∆
(

Π(x, y, rA, rB),Π′(x, y,R′(a),R′(b))
)
≤ 2−2`.

This results in a difference of ≤ 2−` in success probability, average communi-
cation complexity, and average number of rounds, for any given input distribu-
tion. The technique we used is very similar to Newman’s proof of his theorem,
and we could have bounded the ammount of private randomness to something
exponentially smaller, while achieving similar bounds.

However, to prove that there is a small difference in information cost, we
need ` to be as large as log |X ||Y|+ CC(π). Begin by noting that:

I(Π : X|Y ) = H(π(X,Y,R)|Y )−H(π(X,Y,R)|X,Y ),

and then use Fact 4.2.8 to conclude that

1. |H(π(X,Y,R)|Y = y)−H(π′(X,Y,R′)|Y = y)| = O(1) for all y, and
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2. |H(π(X,Y,R)|X = x, Y = y) − H(π′(X,Y,R′)|X = x, Y = y)| = O(1)
for any x, y, and hence

3. |I(Π : X|Y )− I(Π′ : X|Y )| = O(1),

By a symmetric reasoning for Bob, we find that |ICµ(π)− ICµ(π)| = O(1). �

Hence, while working exclusively with discretized protocols, our theorems
will also hold for non-discretized protocols, except with an additional expo-
nentially small error term. We consider this error negligible, and hence avoid
discussing it beyond this point; the reader should bear in mind, though, that
when we say that we are able to simulate a discretized protocol exactly, this
will imply that we can simulate any protocol with 2−Ω(`) error.

We are particularly interested in the case of one-way protocols. In a one-way
protocol, Alice sends a single message to Bob, who must determine the output.
A one-way protocol π is thus given by a function Mπ : X ×R 7→M; on input
x Alice randomly generates r and sends Mπ(x, r). Note that if π is private-
coin, then ICµ(π) = I(X : M(X,RA)|Y ), and similarly, if π is public-coin, then
ICµ(π) = I(X : R,M(X,R)|Y ).

Finally, we close this section with a further restriction on protocols, which
we call 1–1. Proving an R.N.T. result for 1–1 protocols will be a useful inter-
mediate step in the general R.N.T. proof.

4.2.15. Definition. A one-way protocol π is a 1–1 protocol if Mπ(x, ·) is 1–1
for all x.

4.3 Towards a Reverse Newman’s Theorem

Our main result is the following:

4.3.1. Theorem (Reverse Newman’s Theorem, bounded-round version).
Let π be an arbitrary, `-discrete, mixed-coin, q-round protocol, and let C =
CC(π), n = max{log |X |, log |Y|}. Suppose that π’s public randomness R is
chosen from the uniform distribution over the set R, and π’s private random-
ness RA and RB is chosen from uniform distributions over the sets RA and
RB, respectively.

Then there exists a public-coin, q-round protocol π̃, whose public random-
ness R′ is drawn uniformly from R×RA ×RB, and that has the exact same
transcript distribution, i.e., for any input pair x, y and any message transcript
t,

Pr[π(x, y,R,RA, RB) = t] = Pr[π̃(x, y,R′) = t],

and for any distribution µ giving the input (X,Y ),

ICµ(π̃) ≤ ICµ(π) +O (q log (2n`)) . (4.1)

We conjecture, furthermore, that a fully general R.N.T. holds:
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4.3.2. Conjecture. Theorem 4.3.1 holds with (4.1) replaced by

ICµ(π̃) ≤ Õ(ICµ(π)),

where Õ(·) suppresses terms and factors logarithmic in ICµ(π) and CC(π).

In Sections 4.4 and 4.5, we show that R.N.T.s imply fully general compres-
sion of interactive communication, and hence the resulting direct-sum theorems
in information complexity. This results in new compression and direct-sum the-
orems for the bounded-round case. We believe that attacking Conjecture 4.3.2,
perhaps with an improvement of our techniques, is a sound and new approach
to proving these theorems.

Before proving Theorem 4.3.1 let us first remark that it suffices to show it
only for protocols π without public randomness (with an absolute constant in
the O-notation). To see this, fix any outcome r of the random variable R, and
look at the protocol π conditioned on R = r. This is a protocol without public
randomness, let us denote it by πr. Using the expression

I(X : Π|Y,R) + I(Y : Π|X,R)

for information cost of π, we see that it equals the average information cost
of the protocol πr. Therefore, assuming that we are able to convert πr into a
public-coin protocol π̃r, as in Theorem 4.3.1, we can let the protocol π̃ pick a
random r and then run π̃r. As the information cost of the resulting protocol
π̃ again equals the average information cost of π̃r, the inequality (4.1) follows
from similar inequalities for πr and π̃r. For this reason, the theorems below
will be proven for private-coin — rather than mixed-coin — protocols.

The O(q log(2n`))-term of (4.1) suggests that we have some loss of infor-
mation on each round. Indeed, Theorem 4.3.1 will be derived from its one-way
version.

4.3.1 Reverse Newman’s Theorem for one-way protocols

4.3.3. Theorem (R.N.T. for one-way protocols). For any one-way private-
coin `-discrete protocol π there exists a one-way public-coin `-discrete protocol
π′ such that π and π′ generate the same message distributions, and for any
input distribution (X,Y ) ∼ µ, we have

ICµ(π′) ≤ ICµ(π) +O(log(2n`)),

where n = log |X |.

Proof. We first sketch the proof. The public randomness R′ used by the new
protocol π′ will be the very same randomness R used by π. So we seem to
have very little room for changing π, but actually there is one change that
we are allowed to make. Let Mπ : X × R 7→ M be the function Alice uses
to generate her message. It will be helpful to think of Mπ as a table, with
rows corresponding to possible inputs x, columns corresponding to possible
choices of the private random string r, and the (x, r) entry being the message
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Mπ(x, r). Noticing that r is picked uniformly, Alice might instead send message
Mπ(x, φx(r)), where φx is some permutation of R. In other words, she may
permute each row in the table using a permutation φx for the row x. The
permutation φx will “scramble” the formerly-private now-public randomness
R into some new string r̃ = φx(r) about which Bob hopefully knows nothing.
This “scrambling” keeps the message distribution exactly as it was, changing
only which R results in which message. We will see that this can be done in
such a way that, in spite of knowing r, Bob has no hope of knowing r̃ = φx(r),
unless he already knows x to begin with.

To understand what permutation φx we need, we first note the following.
Let M ′ = Mπ′(X,R) denote the message that the protocol π′ we have to design
sends for input X and public randomness R. Then the information cost of π′

is
I(M ′, R : X|Y ).

The information cost of the original protocol π is

I(M : X|Y ) = I(M ′ : X|Y ),

where the equality holds as the distributions of the triples (M,X, Y ) and
(M ′, X, Y ) are identical (regardless of the chosen permutations φx). Thus the
difference between the information costs of π′ and π equals

I(M ′, R : X|Y )− I(M ′ : X|Y ) = I(R : X|M ′, Y ),

which is at most H(R|M ′, Y ). If we permute each row of the table in such a
way that every message m appears in at most d = (n · `)O(1) columns, then
given m we can specify the column (the random-choice R) used to pick m with
O(log n`) bits, and hence

H(R|M ′, Y ) = O(log n`).

Unfortunately, it may happen that there are no such permutations. For in-
stance, this is the case when a row has the same message m in every column.

We will show that if all messages in a row are distinct, then we can “almost”
achieve the goal: one can permute each row in such a way that with probability
at least 1 − 1/n2 the message M ′ = Mπ′(X,R) appears in at most d = (n ·
`)O(1) columns. Thus we first prove Theorem 4.3.3 for the special case of 1–1
protocols, i.e. for protocols where each row has distinct messages.

The proof of Theorem 4.3.3 for 1–1 protocols. We first will construct a
special bipartite graph G, which we call a matching graph. Its left nodes will
be all possible messages m and its right nodes will be all random strings r. Our
strategy will be to find a way of permuting each row of our table so that for
every row x and most columns r (in row x) the message Mπ′(x, r) in the cell
(x, r) of the table is connected by an edge to r in the graph G.

4.3.4. Definition. An (m, `, d, δ)-matching graph is a bipartite graph G =
(M∪R, E) such that |M| = 2m, |R| = 2`, deg(u) = d for each u ∈ M, and
such that for all M′ ⊆ M with |M′| = 2`, GM′∪R has a matching of size at
least 2`(1− δ).



4.3. Towards a Reverse Newman’s Theorem 71

To gain some intuition about what is happening, suppose we had the follow-
ing fictional object : an (m, `, n, 0)-matching graph — i.e., we have a degree-n
graph with the property that any left-set of size |R| will have a perfect matching
with R that uses only edges in the graph. Now let Mx = Mπ(x,R) be the set
of messages that π can send on input x; then in the new protocol π′, Mπ′(x, r)
is the message that is matched with r in the perfect matching betweenMx and
R (see Figure 4.3.1). It should be clear that π′ gives each message exactly the
same probability mass.

Figure 4.1: An ideal ‘matching graph’.

To see that, in this new protocol π′, R reveals little information about
X when M ′ is known, notice that if we know the message m′ = Mπ′(x, r),
then in order to specify r we only need to say which edge in the graph must
be followed; this is specified with log n bits because our graph has degree n.
Hence I(X : R|M) ≤ H(R|M) ≤ log n.

In truth, matching graphs with such good parameters do not exist. But we
can have good-enough approximations, and we can show that this is enough for
our purposes. These graphs are obtained through the Probabilistic Method.

4.3.5. Lemma. For all integers ` ≤ m and positive δ there is an (m, `, d, δ)-
matching graph with d = O(m/δ).

In Section 4.6.1 we will show that the lemma holds also d = O((m − `)/δ2) +
ln(1/δ)/δ (Lemma 4.6.1). That bound has better dependence on m, ` (espe-
cially when m − ` � m). However, it has worse dependence on δ. In Sec-
tion 4.6.2 we show a lower bound of d = Ω((m− `)/δ), which almost matches
our upper bounds.
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Proof. Hall’s theorem [48] states that if in a bipartite graph every left subset of
cardinality i ≤ L has at least i neighbors then every left subset of cardinality
i ≤ L has a matching in the graph.

Thus it suffices to construct a bipartite graph having this property for L =
(1− δ)2`. By the union bound, a random graph3 of degree d fails to have this
property with probability at most

L∑
i=1

2mi2`i(i/2`)di.

Here 2mi is an upper bound for the number
(

2m

i

)
of i-element left subsets M′,

2`i is an upper bound for the number of i − 1-element right subsets R′, and
(i/2`)di is an upper bound for the probability that all neighbors ofM′ fall into
R′. For L ≤ (1− δ)2` this sum is upper bounded by a geometric series

L∑
i=1

(
2m2`(1− δ)d

)i
.

Thus we are done, if the base of this series 2m2`(1 − δ)d is less than 1/2, say,
which happens for sufficiently large d = O(m/δ). �

Now the proof of Theorem 4.3.3 for 1–1 protocols proceeds as follows. Let
n = log |X | and ` = log |R|. Assume without loss of generality that M =
M(X ,R); then |M| ≤ 2n+`. Now let G be an (n + `, `, d, δ)-matching graph
havingM as a subset of its left set and R as its right set, for δ = 1

n2 . For these
parameters, we are assured by Lemma 4.3.5 that such a matching graph exists
having left-degree d = O((n+ `)n2).

We construct the new protocol π′ as follows. For each x ∈ X let Mx =
M(x,R) be the set of messages that might be sent on input x. Noticing that
|Mx| = 2`, consider a partial G-matching betweenMx and R pairing all but a
δ-fraction ofMx; then define a bijection M ′x : R →Mx by setting M ′x(r) = m
if (m, r) is an edge in the matching, and pairing the unmatched m and r’s
arbitrarily (possibly using edges not in G). Finally, set M ′(x, r) = M ′x(r).

Since M ′(x, r) = M ′x(r) for some bijection M ′x between R and Mx, it is
clear that M and M ′ generate the same transcript distribution for any input
x.

Now we prove that M ′ does not reveal much more information than M .
We have seen that the difference between the information costs of π′ and π
is at most H(R|M ′, Y ). Thus it suffices to show that H(R|M ′, Y ) is at most
the logarithm of the left degree of the matching graph plus a constant. As
H(R|M ′, Y ) is the average of H(R|M ′, Y = y) over all choices of y, it suffices
to show that

H(R|M ′, Y = y) ≤ log d+ 3

for every y. While proving this inequality, we will drop the condition Y = y to
simplify notation.

3For each left vertex, we pick each of the d neighbours independently and uniformly from
the right-set.
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Let us introduce a new random variable K, which is a function of X,R,M ′

and takes the value 1 if (M ′, R) is an edge of the matching graph and is equal
to 0 otherwise. Recall that for every x the pair (M ′(x,R), R) is an edge of
the matching graph with probability at least 1 − 1/n2. Therefore, K = 0
with probability at most 1/n2. Call a message m bad if the probability that
K = 0 conditional to M ′ = m (that is, the fraction of rows x, among all rows
containing m, such that m was not matched within the graph in the row x)
is more than 1/n. Then M ′ is bad with probability less than 1/n, otherwise
K = 0 would happen with probability greater than 1/n2.

The conditional entropy H(R|M ′) is the average of

H(R|M ′ = m)

for m chosen according to the distribution of M ′. Notice that H(R|M ′ = m)
is at most the log-cardinality of X , because in 1–1 protocols R is a function
of the pair (M ′, X). Thus H(R|M ′ = m) ≤ n for all m, and hence the total
contribution of all bad m’s in H(R|M ′) is at most 1. Thus it suffices to show
that for all good m,

H(R|M ′ = m) ≤ log d+ 2.

To this end notice that

H(R|M ′ = m) ≤ H(K|M ′ = m) +H(R|K,M ′ = m) ≤ 1 +H(R|K,M ′ = m).

Thus it is enough to prove that H(R|K,M ′ = m) ≤ log d + 1 for all good m.
Again, H(R|K,M ′ = m) can be represented as the weighted sum of two terms,

H(R|K = 1,M ′ = m) and H(R|K = 0,M ′ = m).

The former term is at most log d, because when K = 1 and M ′ = m we can
specify R by the number of the edge (m,R) in the matching graph. The latter
term is at most n, but its weight is at most 1/n, since m is good. This completes
the proof of Theorem 4.3.3 for 1-1 protocols.

The proof of Theorem 4.3.3 in general case. The general case follows natu-
rally from the 1–1-case and the following lemma, which makes a protocol 1–1
by adding a small amount of communication.

4.3.6. Lemma (A 1–1 conversion which reveals little information).
Given a one-round `-discrete private-coin protocol π, there is a one-round 1–1
`-discrete private-coin protocol π′ whose message is of the form4

Mπ′(x, r) = (Mπ(x, r), J(x, r)),

for some function J , and such that

ICµ(π′) ≤ ICµ(π) + log `+ 1.

4On any input x and any choice of randomness r, Mπ′ (x, r) is obtained by taking Mπ(x, r)
and adding some additional communication J(x, r).
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Proof. We think of M(·, ·) as a table, where the inputs x ∈ X are the rows and
the random choices r ∈ R are the columns, and fix some ordering r1 < r2 < . . .
of R. The second part J(x, r) of Mπ′ will be the ordinal number of the message
M(x, r) inside the row x i.e.,

J(x, r) = |{r′ ≤ r|M(x, r′) = M(x, r)}|.

This ensures that Mπ′ is 1–1.
The difference between the information costs of π′ and π is

I(M,J : X|Y )− I(M : X|Y ) = I(J : X|Y,M).

Thus, it suffices to show that for every particular y,m we have5

I(J : X|Y = y,M = m) ≤ log `+ 1. (4.2)

Fix any y and m, and drop the conditions Y = y,M = m to simplify the
notation. By definition, I(J : X) = H(J) − H(J |X). For any fixed x the
random variable J has the uniform distribution over the set {1, 2, . . . ,Wx},
where Wx stands for the number of occurrences of the message m in row x of
the table.

Let us partition the x’s into ` classes so that if x is in the ith class then
2i−1 ≤ Wx < 2i. Let Z = Zy,m be the class to which X belongs. The entropy
of Z is at most log ` and hence we have

I(J : X) ≤ I(J : X|Z) +H(Z) ≤ I(J : X|Z) + log `.

Thus it suffices to show that for every i we have

I(J : X|Z = i) ≤ 1.

Notice that
H(J |Z = i) ≤ i,

as for all x in the ith class we have Wx ≤ 2i. On the other hand,

H(J |X,Z = i) ≥ i− 1,

as for every x in the ith class we have Wx ≥ 2i−1 and the distribution of J
conditional to X = x, Y = y,M = m,Z = i is uniform. Thus

I(J : X|Z = i) = H(J |Z = i)−H(J |X,Z = i) ≤ i− (i− 1) = 1.

�

Now we are able to finish the proof of Theorem 4.3.3 in the general case.
Suppose π is a given one-way private-coin `-discrete protocol. Let π2 be the 1–1
protocol guaranteed by Lemma 4.3.6, and let π3 be the protocol constructed
from π2 in the proof of Theorem 4.3.3 for the 1–1 case. Note that π3’s message

5In Section 4.6.3 we will prove a corresponding lower bound, implying that this upper-
bound is tight up to a constant term.
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is of the form Mπ3(X,R) = (Mπ(X,R), J(X,R)), since it is equidistributed
with Mπ2 . Furthermore, we have

ICµ(π3) ≤ ICµ(π) +O(log 2n`).

Now, create a protocol π4, which is identical to π3, except that Alice omits
J(X,R). Since for each x the message Mπ4

(x, r) sent by π4 equals M(x, φx(r))
for some permutation φx of R, it is clear that M and M ′ generate the same
transcript distribution for any input x. And

ICµ(π4) ≤ ICµ(π3) ≤ ICµ(π) +O(log 2n`) .

This completes the proof of Theorem 4.3.3. �

4.3.2 R.N.T. for many-round protocols

Let us derive Theorem 4.3.1 from Theorem 4.3.3.

Proof of Theorem 4.3.1. Let c be the constant hidden in the O-notation in
Theorem 4.3.3 so that every one-round private-coin `-discrete protocol π with
|X |, |Y| ≤ 2n can be converted into a one-round public-coin protocol π′ gener-
ating the same distribution on transcripts with

IC(π′) ≤ IC(π) + c log 2n`.

We are given a q-round private-coin protocol ρ and will simulate it by a public-
coin protocol ρ′ with

IC(ρ′) ≤ IC(ρ) + 2qc log 2n`.

The transformation of ρ into ρ′ is as one can expect: in each node v of the
protocol tree ρ we use a permutation of messages that depends on the input
of the player communicating in that node. More specifically, let m<j denote
the concatenation of messages sent by ρ′ up to round j. In the jth round
of ρ′ we apply the protocol ρ′m<j , which is obtained by the transformation of
Theorem 4.3.3 from the 1-round sub-protocol ρm<j of ρ rooted from the node
m<j of the protocol tree of ρ. This change does not affect the probability
distribution over messages sent in each node and hence the resulting protocol
ρ′ generates exactly the same distribution on transcripts. The protocol ρ′ uses
the same randomness as ρ; however, unlike ρ it uses public and not private
randomness.

We have to relate now the information cost of ρ′ to that of ρ. To this end we
split the information cost of ρ′ into the sum of information costs of each round
of ρ′. Specifically, by the Chain rule (Fact 4.2.4) the amount of information
revealed by ρ′ to Bob (say) equals

I(X : M1, R1, . . . ,Mq, Rq|Y ) =
∑
j

I(X : Mj , Rj |Y,M<j , R<j).
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where Rj denotes the randomness used in the jth round of ρ′ and Mj =
ρ′M<j

(X,Rj) denotes the message sent in the jth round of ρ′.

From I(R<j : Mj , Rj |Y,M<j) = 0,6 we conclude from Theorem 4.3.3 —
using Facts 4.2.5 and 4.2.6 from the preliminaries — that

I(X : Mj , Rj |Y,M<j , R<j) ≤ I(X : Mj , Rj |Y,M<j) ≤ I(X : Mj |Y,M<j)+c log 2n`,

where I(X : Mj |Y,M<j) in the right-hand side is the information cost of the
jth round of the original protocol ρ. Summing up this inequality over all
j = 1, . . . , q and applying the Chain rule to ρ we see that

I(X : M1, R1, . . . ,Mq, Rq|Y ) ≤ I(X : M1, . . . ,Mq|Y ) + qc log 2n`.

The similar inequality for the amount of information revealed by ρ and ρ′ to
Alice is proved analogously. �

4.4 Compression for public-coin protocols

We present in this section two results of the following general form: we will
take a public-coin protocol π that reveals little information, and “compress” it
into a protocol ρ that uses little communication to perform the same task with
about the same error probability. It turns out that the results in this setting
are simpler and give stronger compression than in the case where Alice and
Bob have private randomness (such as in [23, 29]). We present two bounds,
one that is dependent on the number of rounds of π, but which is also round-
efficient, in the sense that ρ will not use many more rounds than π; and one
that is independent of the number of rounds of π, but where the compression
is not as good when the number of rounds of π is small. We begin with the
latter.

4.4.1. Theorem. Suppose there exists a public-coin protocol π to compute f :
{0, 1}n × {0, 1}n → Z over the distribution µ with error probability δ′, and let
C = CC(π), I = ICµ(π). Then for any positive δ there is a public-coin protocol
ρ computing f over µ with error δ′+δ, and with ACCµ(ρ) = O(I · log(2Cn/δ)).

Proof. Our compression scheme is similar, but not identical, to that of [23]—the
absence of private randomness allows for a more elementary proof.

It suffices to prove the theorem only for deterministic protocols—the case
for public-coin protocols can be proved as follows. By fixing any outcome r
of randomness R of a public-coin protocol π, we obtain a protocol πr with-
out public randomness and can apply Theorem 4.4.1 to πr. The average
communication length of the resulting deterministic protocol ρr is at most
O(I(πr) · log(2Cn/δ)). Thus the average communication of the public-coin pro-
tocol ρ that chooses a random r and runs ρr will be at most O(I · log(2Cn/δ)).

6The reader is reminded that we defined protocols so that the message in each round
depends only on public randomness, the previous messages, and on a source of private ran-
domness that is independent from the private randomness used in previous rounds. It is easy
to see that such an assumption can be made.
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Thus we have to show that any deterministic protocol π can be simulated
with communication roughly:

I(Y : Π|X) + I(X : Π|Y ) = H(Π|X) +H(Π|Y )

(the equality follows because H(Π|X,Y ) = 0, since the transcript Π is a func-
tion of X and Y ). As we do not relate in this theorem the round complexity
of ρ to that of π, we may assume that in the protocol π every message is just
a bit (and the turn to communicate does not necessarily alternate). In other
words, the protocol tree has binary branching.

Given her input x, Alice knows the distribution of Π|x, and she can hence
compute the conditional probability Pr[π(X,Y ) = t|X = x] for each leaf t of the
protocol tree. We will use the notation wa(t|x) for this conditional probability.
Likewise Bob computes wb(t|y) = Pr[π(X,Y ) = t|Y = y]. Now it must hold
that π(x, y) is the unique leaf such that both wa(t|x), wb(t|y) are positive. Alice
and Bob then proceed in stages to find that leaf: at a given stage they have
agreed that a certain partial transcript, which is a node in the protocol tree
of π, is a prefix of π(x, y). Then each of them chooses a candidate transcript,
which is a leaf extending their partial transcript (the candidate transcripts of
Alice and Bob may be different). Then they find the largest common prefix
(lcp) of their two candidate transcripts, i.e., find the first bit at which their
candidate transcripts disagree. Now, because one of the players actually knows
what that bit should be (that bit depends either on x or on y), the player who
got it wrong can change her/his bit to its correct value, and this will give the
new partial transcripts they agree upon. They proceed this way until they both
know π(x, y).

It will be seen that the candidate leaf can be chosen in such a way that
the total probability mass under the nodes they have agreed upon halves at
every correction, and this will be enough to show that Alice will only need to
correct her candidate transcript H(Π|X) times (and Bob H(Π|Y ) times) on
average. Efficient protocols for finding the lcp of two strings will then give us
the required bounds.

We first construct an interactive protocol that makes use of a special device,
which we call lcp box. This is a conceptual interactive device with the following
behavior: Alice takes a string u and puts it in the lcp box, Bob takes a string
v and puts it in the lcp box, then a button is pressed, and Alice and Bob both
learn the largest common prefix of u and v. Using an lcp box will allow us
to ignore error events until the very end of the proof, avoiding an annoying
technicality that offers no additional insight.

4.4.2. Lemma. For any given probability distribution µ over input pairs and
for every deterministic protocol π with information cost I (w.r.t. µ) and worst
case communication C there is a deterministic protocol ρ̃ with zero communica-
tion computing the same function with the same error probability (w.r.t. µ) as
π, and using an lcp box for C-bitstrings at most I times on average (w.r.t. µ).

Proof. On inputs x and y, in the new protocol ρ̃ Alice and Bob compute
weights wa(t|x), wb(t|y) of every leaf of the protocol tree of π, as explained
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above. Furthermore, for every binary string s let wa(s|x) denote the sum of
weights wa(t|x) over all leaves t under s. Define wb(s|y) in a similar way.

The protocol ρ̃ runs in stages: before each stage i Alice and Bob have
agreed on a binary string s = si−1, which is a prefix of π(x, y). Initially s = s0

is empty.
On stage i Alice defines the candidate transcript ta as follows: she appends

0 to s = si−1 if wa(s0|x) > wa(s1|x) and she appends 1 to s otherwise. Let s′

denote the resulting string. Again, she appends 0 to s′ if wa(s′0|x) > wa(s′1|x)
and she appends 1 to s′ otherwise. She proceeds in this way until she gets a leaf
of the tree (by construction its weight is positive). Bob defines his candidate
transcript tb in a similar way. Then they put ta and tb in the lcp box and they
learn the largest common prefix s′ of ta and tb. By construction both wa(s′|x)
and wb(s

′|y) are positive and hence s′ is a prefix of π(x, y). Recall that no leaf
of the protocol tree is a prefix of another leaf. Therefore either s′ = ta = tb, in
which case they stop the protocol, as they both know π(x, y). Or s′ is a proper
prefix of both ta and tb. If the node s′ of the protocol tree belongs to Alice,
then Bob’s next bit is incorrect, and otherwise Alice’s next bit is incorrect.
They both add the correct bit to s′ and let si be the resulting string.

Each time Alice’s bit is incorrect wa(s|x) decreases by a factor of 1/2,
and similarly each time Bob’s bit is incorrect wb(s|y) decreases by a factor of
1/2. At the start we have wa(s|x) = wb(s|y) = 1 and at the end we have
wa(s|x) = wa(π(x, y)|x) and wb(s|y) = wb(π(x, y)|y). Hence they use the lcp
box at most

log2 1/wa(π(x, y)|x) + log2 1/wb(π(x, y)|y)

times. By definition of the conditional entropy the average of log2 1/wa(π(X,Y )|X)
is equal to H(Π|X) and the average of log2 1/wb(π(X,Y )|Y ) equals H(Π|Y ).
Thus Alice and Bob use the lcp box at most I times on average. �

Now we have to transform the protocol of Lemma 4.4.2 to a randomized
public-coin protocol computing f that does not use an lcp box, with addi-
tional error δ. The use of an lcp box can be simulated with an error-prone
implementation:

4.4.3. Lemma ([46]). For every positive ε and every natural C there is a ran-
domized public-coin protocol such that on input two C-bit strings x, y, it outputs
the largest common prefix of x, y with probability at least 1 − ε; its worst-case
communication complexity is O(log(C/ε)).

The lemma is proven by hashing (as in the randomized protocol for equality)
and binary search. From this lemma we obtain the following corollary.

4.4.4. Lemma. Let ρ̃ be a protocol that computes f : {0, 1}n × {0, 1}n → Z,
while using an lcp box ` ≤ 2n times on average for strings of length at most C.
Then ρ̃ can be simulated with error δ by a protocol ρ that does not use an lcp
box, and communicates O(` log( 2Cn

δ )) bits more on average.

Proof. The protocol ρ simulates ρ̃ by replacing each use of the lcp box with the
protocol given by Lemma 4.4.3 with some error parameter ε (to be specified
later). The simulation continues while the total communication is less than n.
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Once it becomes n, we stop the simulation and Alice just sends her input to
Bob.

Notice that the additional error probability introduced by the failure of the
protocol of Lemma 4.4.3 is at most ε`: for each input pair (x, y) the error
probability is at most εi(x, y), where i(x, y) stands for the number of times we
invoke lcp box for that particular pair, and the average of εi(x, y) over (x, y)
equals ε`. Thus if we take ε ≤ δ/`, the error probability introduced by failures
of the lcp box is it most δ.

Each call to the lcp box costs O(log(C/ε). Thus the communication of ρ is
at most

O(` log(C/ε)) + (`ε)(2n)

more on average than that of ρ̃. Here the first term is an upper bound for
the average communication over all triples (x, y, randomness for the lcp box)
such that no lcp failure occurs and the second term accounts for the average
communication over all remaining triples.

Let ε = δ/2n (which is less than δ/`, as we assume that ` ≤ 2n) so that the
average communication is at most O(` log( 2Cn

δ ) + `δ) = O(` log( 2Cn
δ )). �

We are now able to finish the proof of the theorem. Notice that the informa-
tion cost of the initial protocol is at most 2n. Hence we can apply Lemma 4.4.4
for ` = I to the protocol of Lemma 4.4.2. The average communication of the
resulting protocol ρ is at most O(I · log(2Cn/δ)). �

The proof of Theorem 4.4.1 offers no guarantee on the number of rounds of
the compressed protocol ρ. It is possible to compress a public-coin protocol on
a round-by-round basis while preserving, up to a multiplicative constant, the
total number of rounds used.

4.4.5. Theorem. Suppose there exists a public-coin protocol π to compute f :
{0, 1}n × {0, 1}n → Z over input distribution µ with error probability δ′, and
let I = ICµ(π) and q = RC(π). Then there exists a public-coin protocol ρ that
computes f over µ with error δ′+δ, and with ACCµ(ρ) = O(I+1)+q log(nq/δ)
and ARCµ(ρ) = O(q).

Proof. Again it suffices to prove the theorem for deterministic protocols π. The
idea of the proof is to show the result one round at a time. In round i, Alice, say,
must send a certain message mi to Bob. From Bob’s point of view, this message
is drawn according to the random variable Mi = Mi(X̃, y,m1, . . . ,mi−1) where
X̃ is Alice’s input conditioned on Bob’s input being y and on the messages
m1, . . . ,mi−1 that were previously exchanged. We will show that there is a
sub-protocol σi that can simulate round i with small error by using constantly-
many rounds and with

O(H(Mi|y,m1, . . . ,mi−1)) = O(I(X : Mi|y,m1, . . . ,mi−1))

bits of communication on average. Then putting these sub-protocols together,
and truncating the resulting protocol whenever the communication is excessive,
we obtain the protocol ρ which simulates π.
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The procedure to compress each round is achieved through an interactive
variant of the Slepian-Wolf theorem ([92, 89, 35]). We could not apply the
known theorems directly, however, since they were made to work in different
settings.

In a similar fashion to the proof of Theorem 4.4.1, we will make use of a
special interactive device, which we call a transmission µ-box, where µ is a
probability distribution over input pairs (X,Y ). Its behavior is as follows: one
player takes a string x and puts it in the transmission box, the other player
takes a string y and puts it in the box, a button is pressed, and then the second
player knows x. The usage of a transmission µ-box is charged in such a way
that the average cost when the input pair (X,Y ) is drawn at random with
respect to µ is O(H(X|Y ) + 1) bits of communication and O(1) rounds.

4.4.6. Lemma. Let π be any deterministic q-round protocol, and let µ be the
distribution of the inputs (X,Y ). Then there exists a deterministic protocol ρ̃
that makes use of the transmission box (each time for a different distribution)
to achieve the following properties.

1. The average communication of ρ̃ is ACCµ(ρ̃) = O(ICµ(π) + q);

2. The average number of rounds of ρ̃ is ARCµ(ρ̃) = O(q);

3. ρ̃ uses a transmission box q times; and

4. After ρ̃ is run on the inputs x, y, both players know π(x, y).

Proof. Let π<j(x, y) denote the sequence of messages sent by π in the first j−1
rounds for inputs x, y. The protocol ρ̃ simulates π on a round-per-round basis.

Assume that in the new protocol j−1 rounds were played. Let m<j denote
the sequence of j−1 messages sent earlier and let x, y stand for inputs. Assume
further that in jth round of π Alice has to communicate. Her message is a
function M of the sequence m<j and her input x. Let ν denote the probability
distribution on pairs (m, y) where

ν(m, y) = Pr[M(X,m<j) = m, Y = y|π<j(X,Y ) = m<j ].

In round j of protocol ρ̃, Alice puts the string M(x,m<j) into the transmission
ν-box and Bob puts there his input y and they press the button. If it is Bob’s
turn to communicate, then they reverse their positions.

Items 2, 3 and 4 from the statement of the Lemma follow from construction
of ρ̃ and from the description of the transmission box. It remains to bound the
average communication length of ρ̃. Again by assumption on the transmission
box, the average communication in round j is at most O(Ij + 1) where

Ij = H(M(X,π<j(X,Y ))|Y, π<j(X,Y )),

if it is Alice’s turn to communicate and

Ij = H(M(Y, π<j(X,Y ))|X,π<j(X,Y )),
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otherwise. From the chain rule (Fact 4.2.4) it follows that the sum of Ij over
all j of the first type is equal to I(Π : X|Y ), while the sum of Ij over all j of
the second type is equal to I(Π : Y |X). �

To proceed we need a protocol simulating the transmission box.

4.4.7. Lemma (Constant-round average-case one-shot Slepian–Wolf).
Let µ be the distribution of the inputs (X,Y ). For every positive ε there is a
public-coin communication protocol with the following properties:

1. For all x, y, after execution of the protocol Bob learns x with probability
at least 1− ε.

2. When (X,Y ) are drawn according to µ, the protocol communicates an

O(H(X|Y ) + 1) + log(1/ε)

average number of bits in O(1) average number of rounds.

Contrast this to the classical Slepian–Wolf theorem, where Alice and Bob
are given a stream of i.i.d. pairs (X1, Y1), . . . , (Xn, Yn), and Alice gets to trans-
mit X1, . . . , Xn by using only one-way communication, and with an amortized
communication of H(X|Y ).

Proof. Let y be Bob’s given input. For a given x in the support of X, let
p(x) = Pr[X = x|Y = y], and for a given subset X of the same support, let
p(X ) = Pr[X ∈ X |Y = y]. Then Bob begins by arranging the x’s in the
support of X by decreasing order of the probability p(x). He then defines the
two sets

X1 = {x1, . . . , xi(1)}, Z1 = X1,

where i(1) is the minimal index which makes p(X1) ≥ 1/2. Inductively, while
Zk 6= X, he then defines:

Xk+1 = {xi(k)+1, · · · , xi(k+1)}, Zk+1 = Zk ∪ Xk+1,

where i(k + 1) > i(k) is the minimal index which makes p(Xk+1) ≥ 1−p(Zk)
2 .

In other words, Xk+1 is the smallest set which takes the remaining highest-
probability x’s so that they total at least half of the remaining probability
mass.

Because at least one new xi is added at every step, this inductive procedure
gives Bob a finite number of sets Z1, . . . ,ZK = X. Then the protocol consists
of applying the protocol of the following lemma, which will be proved later.

4.4.8. Lemma. For every natural number m and every positive ε there exists a
randomized public-coin protocol with the following behavior. Suppose that Bob
is given a family of finite sets Z1 ⊆ · · · ⊆ ZK ⊂ {0, 1}m and Alice is given
a string z ∈ ZK . Then the protocol transmits z to Bob, except with a failure
probability of at most ε. For k the smallest index for which z ∈ Zk, the run
of this protocol uses at most 2k + 1 rounds and 2 log |Zk| + log 1

ε + 4k bits of
communication.
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Now let us bound the average number of rounds and communication com-
plexity. First notice that p(Xk) ≤ 21−k, and hence, taking the average over
Alice’s inputs, we find that

K∑
k=1

p(Xk)4k = O(1)

must upper-bound the average number of rounds, as well as the contribution of
the 4k term to the average communication. To upper-bound the contribution
of the 2 log |Zk| term, we first settle that:

(i) p(Xk) ≤ 2p(Xk+1) + 2p(xi(k)), which can be seen by summing two in-
equalities that follow from the minimality of i(k) in the definition of Xk:

p(Xk)− p(xi(k)) ≤
1− p(Zk−1)

2
,

1− p(Zk)

2
≤ p(Xk+1),

after which we get

p(Xk)

2
− p(xi(k)) ≤ p(Xk+1).

(ii) |Zk| ≤ 1
p(x) for any x ∈ Xk+1 ∪ {xi(k)}, which follows since every x′ ∈ Zk

has a higher-or-equal probability than the x’s in Xk+1 ∪ {xi(k)}, but the
sum of all the p(x′) still adds up to less than 1.

Now we are ready to bound the remaining term in the average communication:

K∑
k=1

p(Xk) log |Zk| ≤ 2

K−1∑
k=1

p(Xk+1) log |Zk|+p(XK) log |ZK |+2

K∑
k=1

p(xi(k)) log |Zk|

≤ 5
∑
x

p(x) log
1

p(x)
= O(H(X|Y = y));

above, the first inequality follows from (i), and the second from (ii). �

Proof of Lemma 4.4.8. The protocol is divided into stages and works as follows.
On the first stage, Bob begins by sending the number `1 = log |Z1| in unary to
Alice, and Alice responds by picking L1 = `1+log 1

ε +1 random linear functions

f
(1)
1 , . . . , f

(1)
L1

: Zn2 → Z2 using public randomness, and sending Bob the hash

values f
(1)
1 (z), . . . , f

(1)
L1

(z). Bob then looks for a string z′ ∈ Z1 that has the
same hash values he just received; if there is such a string, then Bob says so,
and the protocol is finished with Bob assuming that z′ = z.

Otherwise, the protocol continues. At stage k, Bob computes the number
`k = log |Zk|, and sends the number `k−`k−1 in unary to Alice; Alice responds

by picking Lk = `k − `k−1 + 1 random linear functions f
(k)
1 , . . . , f

(k)
Lk

, whose
evaluation on z she sends over to Bob. Bob then looks for a string z′ ∈ Zk
that has the same hash values for all the hash functions which were picked in
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this and previous stages; if there is such a string, then Bob says so, and the
protocol is finished with Bob assuming that z′ = z. If the protocol has not
halted in K rounds, Alice just sends her input to Bob.

An error will occur whenever a z′ 6= z is found that has the same fingerprint
as z. The probability that this happens at stage k for a specific z′ ∈ Zk is 2−L,
where L = `k + k + log 1

ε is the total number of hash functions picked up to
this stage. By a union bound, the probability that such a z′ exists is at most
|Zk|2−`k ε

2k
≤ ε

2k
. Again by a union bound, summing over all stages k we get

a total error probability of ε.
To bound the communication for z ∈ Zk, notice that sending all `1. . . . , `k

costs Bob at most log |Zk| + k bits of total communication7, that the total
number of hash values sent by Alice is at most log |Zk|+ 2k + log 1

ε , and that
Bob’s reply (saying whether the protocol should continue) costs him k bits. �

From Lemma 4.4.7 we get an analogue of Lemma 4.4.4.

4.4.9. Lemma. Let ρ̃ be a protocol to compute f : {0, 1}n × {0, 1}n → Z that
uses transmission boxes q times. Then, for any positive δ, ρ̃ can be simulated
with error δ by a protocol ρ that does not use transmission boxes, and commu-
nicates q log( qnδ ) + 1 bits more than ρ̃.

Proof. The protocol ρ simulates ρ̃ by replacing each use of a transmission box
with the protocol given by Lemma 4.4.7 with some error parameter ε (to be
specified later). The simulation continues while the total communication is less
than n. Once it becomes n, we stop the simulation and Alice just sends her
input to Bob.

The additional error probability introduced by the failure of the protocol
of Lemma 4.4.7 is at most qε. Assuming that ε ≤ δ/q, the error probability
introduced by a transmission box failure is it most δ.

Each call of a transmission box costs log(1/ε) bits of communication more
than we have charged the protocol ρ̃. Thus the communication of ρ is at most

q log(1/ε) + (qε)(2n)

longer than that of ρ̃. Let ε = δ/qn so that the communication of ρ be at most

q log(qn/δ) + δ/2 ≤ q log(qn/δ) + 1

more than that of ρ̃. �

We are able now to finish the proof of the theorem. Applying Lemma 4.4.9
to the protocol of Lemma 4.4.6 we get the desired protocol. �

4.5 Applications

From the combination of Theorems 4.3.1 and 4.4.5, and Observation 4.2.13, we
can obtain a new compression result for general protocols.

7We have added 1 bit per message because, sending `i ones to Alice, Bob should append
a zero to them — recall that the messages must form a prefix-free set.
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4.5.1. Corollary. Suppose there exists a mixed-coin, q-round protocol π to
compute f over the input distribution µ with error probability ε, and let C =
CC(π), I = ICµ(π), n = log |X | + log |Y|. Then there exists a public-coin,
O(q)-average-round protocol ρ that computes f over µ with error ε + δ, and
with

CC(ρ) ≤ O
(
I + q log

(
qnC

δ

))
. (4.3)

As we will see in the following sub-section, this will result in a new direct
sum theorem for bounded-round protocols. In general, given that we have
already proven Theorem 4.4.1, and given that this approach shows promise in
the bounded-round case, it becomes worthwhile to investigate whether we can
prove Conjecture 4.3.2 with similar techniques.

4.5.1 Direct-sum theorems for the bounded-round case

The following theorem was proven in [23]:

4.5.2. Theorem. ([23], Theorem 12.) Suppose that there is a q-round pro-
tocol πk that computes k copies of f with communication complexity C and
error ε, over the k-fold distribution µk. Then there exists a q-round mixed-coin
protocol π that computes a single copy of f with communication complexity C
and the same error probability ε, but with information cost ICµ(π) ≤ 2C

k for
any input distribution µ.

As a consequence of this theorem, and of Corollary 4.5.1, we will be able to
prove a direct sum theorem. The proof is a simple application of Theorem 4.5.2,
and Corollary 4.5.1.

4.5.3. Theorem (Direct sum theorem for the bounded-round case).
There is some constant d such that, for any input distribution µ and any
0 < ε < δ < 1, if f requires, on average, at least

C + q log

(
qnC

δ − ε

)
bits of communication, to be computed over µ with error δ in dq (average)
rounds, then f⊗k requires at least kC bits of communication, in the worst case,
to be computed over µ⊗k with error ε in q rounds.

4.5.2 Comparison with previous results

We may compare Corollary 4.5.1 with the results of [29]. In that paper, the
nC factor is missing inside the log of equation (4.3), but the number of rounds
of the compressed protocol is O(q log I) instead of O(q). A similar difference
appears in the resulting direct-sum theorems.

We remark that the compression of Jain et al. [60] is also achieved with
a round-by-round proof. Our direct-sum theorem is incomparable with their
more ambitious direct-product result. It is no surprise, then, that the communi-
cation complexity of their compression scheme is O( qIδ ), i.e., it incurs a factor
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of q, whereas we pay only an additive term of Õ(q). However, their direct-
product result also preserves the number of rounds in the protocol, whereas in
our result the number of rounds is only preserved within a constant factor.

4.6 Alternative constructions and matching lower
bounds

4.6.1 A different upper bound on the degree of matching
graphs

4.6.1. Lemma. For every integer ` ≤ m and real δ > 0 there is an (m, `, d, δ)-
matching graph with d = (2 + (m− `) ln 2)/δ2 + ln(1/δ)/δ.

Proof. We show the existence of such a graph using a probabilistic argument.
Let A and B be any sets of M = 2m left and L = 2` right nodes, respectively.
Construct a random graph G by choosing d random neighbors independently
for each u ∈ A. Different neighbors of the same node u are also chosen indepen-
dently, thus they might coincide. For any A′ ⊆ A of size L, let EA′ be the event
that GA′∪B does not have a matching of size L(1−δ), and let Bad :=

∨
A′ EA′ .

Note that the lemma holds if Pr[Bad] < 1.
Next, we bound Pr[EA′ ]. Let A′ = {u1, . . . , uL} be any set of L left nodes.

Let N (u) denote the neighborhood of a vertex u. Consider the following pro-
cedure for generating a matching for GA′∪B :

Find-Matching

1 Matching← ∅
2 V ← ∅
3 for i← 1 to L
4 if N (ui) 6⊆ V
5 pick arbitrary vi ∈ N (ui) \ V
6 Matching← Matching ∪ {(ui, vi)}
7 V ← V ∪ {vi}
8 return Matching

Define the indicator variables X1, . . . , XL as follows: Xi = 1 if the condition
in the 4th line of Find-Matching is true and 0 otherwise. From the definition
of these variables it follows that for all i and all b = (b1, . . . , bi) ∈ {0, 1}i the
conditional probability of Xi+1 = 0 given X1 = b1, . . . , Xi = bi is equal to

(|b|/L)d,

where |b| stands for Hamming weight of vector b, i.e. the number of 1s in
b = (b1, . . . , bi). Consider also similar random variables Y1, . . . , YL where the
distribution of Y1, . . . , YL is defined by the formula

Pr[Yi+1 = 0|Y1 = b1, . . . , Yi = bi] =

{
(|b|/L)d, if |b| < (1− δ)L,
1, if |b| ≥ (1− δ)L.
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In terms of X1, . . . , XL the event EA′ happens if and only if X1 + · · · +
XL < (1 − δ)L. For every string b of Hamming weight less than (1 − δ)L
the probabilities Pr[X = b] and Pr[Y = b] coincide. Thus it suffices to upper
bound the probability Pr[Y1 + · · · + YL < (1 − δ)L]. To this end consider
independent random variables Z1, . . . , ZL ∈ {0, 1}, where the probability of
Zi = 1 is (1− δ)d.

4.6.2. Claim. Pr[|Y | < (1− δ)L] ≤ Pr[|Z| < (1− δ)L].

Proof. We prove this using the coupling method. We claim that there is
a joint distribution of Y and Z such that the marginal distributions are as
defined above, and with probability 1 it holds that Zi ≤ Yi for all i. This joint
distribution is defined by the following process: we pick L independent reals
r1, . . . , rL ∈ [0; 1] and let

Zi =

{
0, if ri < (1− δ)d;
1, otherwise.

Yi =

0, if ri <
(
Y1+···+Yi−1

L

)d
and Y1+···+Yi−1

L < 1− δ;
1, otherwise.

We claim that the inequality Zi ≤ Yi (holding with probability 1) implies that
for every downward closed set E ⊂ {0, 1} it holds Pr[Y ∈ E] ≤ Pr[Z ∈ E]
(we call a set E downward closed if b ∈ E and b′ ≤ b, component-wise, implies
b′ ∈ E). Indeed,

Pr[Y ∈ E] ≤ Pr[Y ∈ E,Z ∈ E] ≤ Pr[Z ∈ E],

where the first inequality holds, since E is downward closed and thus Y ∈ E
implies Z ∈ E. The set of Boolean vectors b ∈ {0, 1}L of Hamming weight less
than (1− δ)L is downward closed hence the statement. �

By this lemma it suffices to upper bound the probability

Pr[Z1 + · · ·+ ZL < (1− δ)L],

which can be obtained by Chernoff bound.

Let S :=
∑

(1 − Zi), and let µ := E[S], p = (1 − δ)d. Note that µ = pL.
Also, let ψ := δ/p− 1. Using the multiplicative version of the Chernoff bound,
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so long as ψ > 0, we have

Pr[S > δL] = Pr[S > pL · (δ/p)]
= Pr[S > µ(1 + ψ)]

<

(
eψ

(1 + ψ)(1+ψ)

)µ
= exp

(
µ

(
δ

p
− 1− δ

p
ln(

δ

p
)

))
< exp

(
µ

(
δ

p
− δ

p
ln(

δ

p
)

))
= exp

(
pL

δ

p
(1− ln δ + ln p)

)
= exp (δL+ δL ln(1/δ) + δL ln p)

= exp (δL (1 + ln(1/δ) + ln p)) .

Thus for every set A′ of L left nodes we have Pr[EA′ ] < eδL(1+ln(1/δ)+ln p).
There are

(
M
L

)
subsets of A of size L. By Stirling’s Formula, we have(
M

L

)
≤ (M)L

L!
≤
(
Me

L

)L
= exp(L(1 + lnM/L)) .

By union bound we have

Pr[BAD] ≤ exp (M(1 + lnM/L)) · exp (δM(1 + ln(1/δ) + ln p))

= exp (M +M lnM/L+ δM + δM ln(1/δ) + δM ln p)

< exp
(
M +M lnM/L+ δM + δM ln(1/δ)− dδ2M

)
< 1 ,

where the final inequality uses d = (2 + lnM/L)/δ2 + ln(1/δ)/δ, which also
ensures that ψ > 0 whenever δ is sufficiently small. �

4.6.2 A lower bound on the degree of matching graphs

4.6.3. Lemma. An (m, `, d, δ)-matching graph must have

d = Ω

(
min

(
m− `
δ

, δ2`
))

.

Proof. We will prove that in such a bipartite graph there must exist a left-set
A of size 2m(1 − 4δ)d whose neighbours are contained in a right-set B of size
(1−2δ)2`. If the graph is a matching graph with said parameters, it must then
follow that |A| ≤ 2`, hence d ≥ (m− `)/ log(1− 4δ) = Ω((m− `)/δ).

We show this through the probabilistic method. Let us pick a random right-
set B of size (1 − 2δ)2`. For a given left-node a, the probability that all its
neighbours fall into B is at least(

2` − d
(1− 2δ)2` − d

)/( 2`

(1− 2δ)2`

)
≥ (1− 2δ)d

(
1− 2d

2`

)d
.
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Under the assumption that d ≤ δ2`, the left-hand side is at least (1− 4δ)d.
It must then hold that for such random B, the expected number of left-

nodes that map into B is 2m(1 − 4δ). Hence, for some choice of B, there will
exist a left-set A of the same size whose neighbours are all in B. �

4.6.3 A lower bound for equation (4.2) of the proof of
Lemma 4.3.6

4.6.4. Lemma. There is an `-discrete private-coin one-way protocol π, and a
message m sent by π, such that for J defined as in Lemma 4.3.6, it holds that

I(J : X|Mπ = m) = Ω(log `).

Proof. Suppose Alice is given an inputX uniformly distributed over {x1, . . . , xN},
and private randomness uniformly distributed over {r1, . . . , rN}, so that ` =
logN . Let π be a one-way protocol given by

Mπ(xj , rk) =

{
0 if k ≤

⌊
N
j+1

⌋
,

1 otherwise.

Then conditioned on Mπ = 0, we will have J(xj , rk) = k. Let M =
∑N
i=1b

N
i+1c

be the size of M−1
π (0). Finally, let m denote the event Mπ = 0. Then

I(X : J |m) = H(X|m)−H(X|m,J)

=

N∑
j=1

1

M
·
⌊

N

j + 1

⌋
log

M⌊
N
j+1

⌋ − N∑
k=1

1

M
·
⌊

N

k + 1

⌋
log

⌊
N

k + 1

⌋

= logM − 2

M

N∑
i=1

⌊
N

i+ 1

⌋
log

⌊
N

i+ 1

⌋
,

which is ≥ U iff:

2

N∑
i=1

⌊
N

i+ 1

⌋
log

⌊
N

i+ 1

⌋
≤M(logM − U) (4.4)

Let us denote the left-hand side with A and the right-hand side with B. Because
N
x is monotonically decreasing for x ≥ 1, then:

A ≤ 2

ln 2

∫ N+1

1

N

x
ln
N

x
dx.

The relevant primitive is
∫
N
x ln N

x dx = − 1
2N(ln N

x )2 and hence

A ≤ 2

ln 2

(
−1

2
N

(
ln

N

N + 1

)2

+
1

2
N(lnN)2

)

=
2

ln 2

(
N lnN ln(N + 1)− 1

2
N(ln(N + 1))2

)
.
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We denote this last quantity by A′. Good bounds for M are:8

N lnN − 3N ≤M =

N∑
i=1

⌊
N

i+ 1

⌋
≤ N lnN +N

Let B′ := N lnN − 3N , so that B ≥ B′(logB′ − U). Then we will show that
for an appropriate choice of U ,

A′ ≤ B′(logB′ − U)

and hence A ≤ B and also I(X : J |m) ≥ U . Equivalently,

A′ −B′ logB′ +B′U ≤ 0 (4.5)

For convenience, let α = ln(N+1)
lnN (which goes to 1 as N goes to ∞). Then

A′ = 1
ln 2N(lnN)2(2α−α2) and B′ logB′ = 1

ln 2N(lnN)2 + 1
ln 2N lnN ln lnN+

O(N lnN). Now the proof follows from the following:

4.6.5. Claim. N(lnN)2(2α− α2 − 1)→ − 1
N as N →∞.

Because under this claim, the dominant negative term in (4.5) is 1
ln 2N lnN ln lnN ,

and thus all we need to do is set U to be c ln lnN for some c < 1
ln 2 , that this

ensures (4.5) is negative. For such a choice of U , it will hold that

I(X : J |m) ≥ U = c ln lnN = Ω(log `).

Unfortunately, l’Hopital’s rule does not seem to help us, as the terms become
too complicated. Instead we estimate how fast (2α−α2−1) approaches 0 as N

goes to infinity. For this, let β =
ln( 1

x+1)

ln 1
x

and let us estimate β as x approaches

0. For x close to, but different from, 0, we have:

β = 1− 1

lnx
ln(x+ 1) = 1− x

lnx
+

x2

2 lnx
±O

(
x3

lnx

)
(the last equality is by the Taylor expansion of ln(x + 1) around 0). We also
have

β2 =

(
1− x

lnx
+

x2

2 lnx
−O

(
x3

lnx

))2

= β− x

lnx
+

x2

(lnx)2
+

x2

2 lnx
±O

(
x3

(lnx)2

)
.

Hence,

2β − β2 = 1− x2

(lnx)2
±O

(
x3

(lnx)2

)
.

From this we can conclude that for x = 1/N , we have

2α− α2 − 1 = − 1

N2(lnN)2
±O

(
1

N3(lnN)2

)
,

and our claim follows. �

8This is because the harmonic numbers Hn =
∑n
i=1 1/i converge to lnN + γ for the

Euler–Mascheroni constant γ ≈ 0.577.


