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6
Balancing Exploration and Exploitation

In the previous two chapters we developed and investigated interleaved comparison meth-
ods as a promising solution for inferring information about rankers from implicit user
feedback. In this and the next chapter, we focus on the question of how to learn reliably
and efficiently from the inferred feedback.1

Methods for online learning to rank for IR need to address a number of challenges.
First, the most robust methods for inferring feedback provide only relative information,
e.g., about the relative quality of documents (§2.3) or rankers (see the interleaved com-
parison approaches discussed in previous chapters). Algorithms for learning from such
relative feedback have been proposed (§2.5), and these form our baseline algorithms.
Second, even relative feedback can be noisy and biased. Our empirical results in this
chapter provide first insights into how algorithms for learning to rank from pairwise and
listwise relative feedback perform under noise.

A challenge in online learning to rank for IR that has not been addressed previously
is that algorithms for this setting need to take into account the effect of learning on users.
In contrast to offline approaches, where the goal is to learn as effectively as possible
from the available training data, online learning affects, and is affected by, how user
feedback is collected. Ideally, the learning algorithm should not interfere with the user
experience, observing user behavior and learning in the background, so as to present
search results that meet the user’s information needs as well as possible at all times. This
would imply passively observing, e.g., clicks on result documents. However, passively
observed feedback can be biased towards the top results displayed to the user (Silverstein
et al., 1999). Learning from this biased feedback may be suboptimal, thereby reducing
the system’s performance later on. Consequently, an online learning to rank approach
should take into account both the quality of current search results, and the potential to
improve that quality in the future, if feedback suitable for learning can be observed.

In this chapter, we frame this fundamental trade-off as an exploration–exploitation

1This chapter is based on work presented in Hofmann et al. (2011a, 2013b). However, the empirical results
presented here differ from our previous work as follows. First, the navigational click model is instantiated
differently (as shown in §3.3) to match the model used in Chapter 4. Second, we previously applied our
algorithms to the documents provided by the LETOR data sets in their original order. Because this order is non-
randomized, learners started from high-quality lists, which could result in higher absolute performance. In the
experiments presented here, we address this problem by breaking ties randomly (so that a result list generated
from a zero weight vector is completely randomized). Despite these changes, the results are qualitatively
identical to those presented earlier and support the same conclusions.
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6. Balancing Exploration and Exploitation

dilemma. If the system presents only document lists that it expects will satisfy the user,
it cannot obtain feedback on other, potentially better, solutions. However, if it focuses
too much on document lists from which it can gain a lot of new information, it risks
presenting bad results to the user during learning. Therefore, to perform optimally, the
system must explore new solutions, while also maintaining satisfactory performance by
exploiting existing solutions. Making online learning to rank for IR work in realistic
settings requires effective ways to balance exploration and exploitation.

We investigate mechanisms for achieving a balance between exploration and ex-
ploitation when using pairwise and listwise methods, the two most successful approaches
for learning to rank in IR (§2.2). The pairwise approach takes as input pairs of documents
with labels identifying which is preferred and learns a classifier that predicts these labels.
In principle, pairwise approaches can be directly applied online, as preference relations
can be inferred from clicks. However, as we demonstrate in this chapter, balancing ex-
ploration and exploitation is crucial to achieving good performance.

Listwise approaches aim to directly optimize an evaluation measure, such as NDCG,
that concerns the entire document list. Since such evaluation measures cannot be com-
puted online, new approaches that work with implicit feedback have been developed (Yue
and Joachims, 2009). The existing algorithm learns directly from the relative feedback
that can be obtained from interleaved comparison methods, but we show that it over-
explores without a suitable balance of exploration and exploitation.

We present the first two algorithms that can balance exploration and exploitation
in settings where only relative feedback is available. First, we start from a pairwise
approach that is initially purely exploitative (§2.5.1). Second, we start from a recently
developed listwise algorithm that is initially purely exploratory (Yue and Joachims, 2009)
(§2.5.2). We assess the resulting algorithms using the evaluation framework described in
Chapter 3 to answer the following questions:

RQ 11 Can balancing exploration and exploitation improve online performance in on-
line learning to rank for IR?

RQ 12 How are exploration and exploitation affected by noise in user feedback?

RQ 13 How does the online performance of different types (pairwise and listwise) of
online learning to rank for IR approaches relate to balancing exploration and ex-
ploitation?

Our main result is that finding a proper balance between exploration and exploitation
can substantially and significantly improve the online retrieval performance in pairwise
and listwise online learning to rank for IR. In addition, our results are the first to shed
light on the strengths and weaknesses of pairwise and listwise learning in an online set-
ting, as these types of approaches have previously only been compared offline. We find
that learning from document-pairwise feedback can be effective when this feedback is
reliable. However, when feedback is noisy, a high amount of exploration is required to
obtain reasonable performance. When clicks are interpreted as listwise feedback, learn-
ing is similarly effective as under the pairwise interpretation, but it is much more robust
to noise. However, online performance under the original listwise learning approach
is suboptimal, as it over-explores. Dramatically reducing exploration allows learning
rankers equally well, but at much lower cost. Consequently, balancing exploration and

94



6.1. Approaches

exploitation in the listwise setting results in significantly improved online performance
under all levels of noise. We discuss in detail the effects on each approach of balancing
exploration and exploitation, the amount of noise in user feedback, and characteristics
of the data sets. Finally, we describe the implications of our results for making these
approaches work effectively in practice.

The remainder of this chapter is organized as follows. We present our methods for
balancing exploration and exploitation in the pairwise and listwise setting in §6.1. Our
experiments are described in §6.2, followed by results and analysis in §6.3. We conclude
in §6.4.

6.1 Approaches

In this section, we describe our approaches for balancing exploration and exploitation
for learning to rank in IR. These build on the pairwise and listwise baseline learning
algorithms shown in §2.5. Our approaches are based on the problem formulation of
online learning to rank for IR as a contextual bandit problem, as shown in §3.1.

6.1.1 Balancing Exploration and Exploitation in
Pairwise Learning to Rank

Our first approach builds off a pairwise formulation of learning to rank (Herbrich et al.,
1999; Joachims, 2002), in particular the stochastic gradient descent algorithm presented
in Sculley (2009). As detailed in §2.5.1, this algorithm optimizes a weight vector w for
linear combinations of ranking features x = φ(d, q) to minimize a loss function formu-
lated in terms of the pairwise ranking loss (see Algorithm 4 on page 29). As shown by
Joachims (2002), the required pairwise feedback can be inferred from implicit feedback,
such as click data.

In previous applications of pairwise learning to implicit feedback scenarios, learning
was performed in a batch setting. First, implicit feedback was collected given an initial
ranking function. Then, the algorithm was trained on all collected implicit feedback.
Finally, this trained system was deployed and evaluated (Joachims, 2002). In this setting,
data collection is naturally exploitative. Users are shown results that are most likely to
be relevant according to a current best ranking function. In the online setting, such an
exploitative strategy is expected to result in the highest possible short-term performance.
However, it is also expected to introduce bias, as some documents may never be shown
to the user, which may result in sub-optimal learning and lower long-term performance.
This is confirmed in our experiments, as we will see below.

In supervised applications of pairwise learning to rank methods, the learning algo-
rithm is typically trained on the complete data set. Sculley (2009) developed a sampling
scheme that allows the training of a stochastic gradient descent learner on a random sub-
set of the data without a noticeable loss in performance. Document pairs are sampled
randomly such that at each learning step one relevant and one non-relevant document
were selected to form a training pair. In the online setting, we expect such a fully ex-
ploratory strategy to result in minimal training bias and best long-term learning.
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Algorithm 10 Balancing exploration and exploitation in the pairwise setting.
1: Input: D, η, λ, w0, �
2: for query qt (t = 1..∞) do
3: X = φ(D|qt) // extract features

// generate exploitative result list
4: S = w

T
t−1X

5: l1 = sort descending by score(D, s)[1 : 10]
6: l[r] ← first element of l1 /∈ l with probability �; element randomly sampled with-

out replacement from D \ l with probability 1− �

7: Display l and observe clicked elements c.
8: Construct all labeled pairs P = (x1,x2, y) for qt from l and c.
9: for (x1,x2, y) in P do

10: if ywT
t−1(x1 − x2) < 1.0 and y �= 0.0 then

11: wt = wt−1 + ηy(x1 − x2)− ηλwt−1 // update wt

In the online setting where we learn from implicit feedback, we cannot directly deter-
mine for which document pairs we obtain feedback from the user. Any document list that
is presented in response to a query may result in zero or more clicks on documents, such
that zero or more pairwise constraints can be extracted. Due to position bias (Silverstein
et al., 1999), the higher a document is ranked in the result list presented to the user, the
more likely it is to be inspected and clicked.

Here, we ignore explicit dependencies between displayed documents, and define two
document lists, one exploratory and one exploitative, that are then combined to balance
exploration and exploitation. The exploitative list is generated by applying the learned
weights to compute document scores and then sorting by score, as in the baseline algo-
rithm. The exploratory list is generated by uniform random sampling of the documents
associated with a query.2

We employ a method for balancing exploration and exploitation that is inspired by
�-greedy, a commonly used exploration strategy in RL (§2.4.2).3 The difference between
our approach and �-greedy is that we do not pick a single action at each timestep, but
rather select a number of actions that are presented simultaneously. This results in Algo-
rithm 10, which differs from our baseline algorithm in how the result list is constructed
(line 6).

We vary the relative number of documents from the exploratory and exploitative lists
as determined by � ∈ [0, 1]. For each rank, an exploitative action (a document from the
exploitative list) is selected with probability 1− �. A document from the exploratory list

2In practice, candidate documents are typically collected based on some feature-based criteria, such as a
minimum score. Here, we use the candidate documents provided with the learning to rank data sets used in our
experiment, where candidate selection may have been biased (Minka and Robertson, 2008). However, bias in
terms of feature values can be neglected here, as the specifics of the learned ranker are not the subject of this
study, and all learning methods are affected equally.

3More complex schemes of balancing exploration and exploitation are of course possible, but our focus
here is on demonstrating the benefit of such a balance over purely exploratory and purely exploitative forms of
soliciting feedback. A simple scheme is sufficient for this goal. We also experimented with a more complex
softmax-like algorithm and obtained qualitatively similar results. However, such an algorithm is more difficult
to tune than the �-greedy-like algorithm used here (Sutton and Barto, 1998; Whiteson and Stone, 2006a).
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is selected with probability �. Thus, values of � close to 0 mean that little exploration
is taking place, making the algorithm collect feedback in an exploitative way (� = 0
corresponds to the purely exploitative baseline setting). Values close to 1 mean more
exploration.

6.1.2 Balancing Exploration and Exploitation in
Listwise Learning to Rank

Our second online learning to rank approach builds off DBGD (Yue and Joachims, 2009).
This algorithm has been specifically developed for learning to rank in an online setting,
and it requires only relative evaluations of the quality of two document lists and in-
fers such comparisons from implicit feedback (Radlinski et al., 2008b). An overview of
DBGD is given in §2.5.2.

Given an appropriate function for comparing document lists, DBGD learns effec-
tively from implicit feedback. However, the algorithm always explores, i.e., it constructs
the result list in a way that minimizes bias between the exploratory and exploitative doc-
ument lists, which is assumed to produce the best feedback for learning. We now present
a comparison function f(l1, l2) that does allow balancing exploration and exploitation.

We base our comparison method f(l1, l2) on BI (Joachims, 2003; Radlinski et al.,
2008b), as detailed in §2.3.1 (in particular, Algorithm 1 on page 20). Extending this al-
gorithm to balance exploration and exploitation is easiest compared to other interleaved
comparison methods, and this is sufficient to test our hypothesis that balancing explo-
ration and exploitation in online learning to rank for IR can improve online performance.
Algorithms for balancing exploration and exploitation based on other interleaved com-
parison methods are possible and will be investigated in the future. A related approach,
which is based on PI-MA and PI-MA-IS (Chapter 4) and improves online performance by
reusing previously collected interaction data for more effective exploration, is presented
in Chapter 7.

In contrast to previous work, we alter BI to randomize not only the starting list and
then interleaving documents deterministically, but instead we randomly select the list to
contribute the document at each rank of the result list. In expectation, each list contributes
documents to each rank equally often. We call this altered version of BI stochastic BI.

Constructing result lists using stochastic BI allows us to apply a method similar to �-
greedy. The resulting algorithm, which supplies the comparison method that is required
by DBGD, is shown in Algorithm 11. The algorithm takes as input two document lists l1
and l2, and an exploration rate k. For each rank of the result list to be filled, the algorithm
randomly picks one of the two result lists (biased by the exploration rate k). From the
selected list, the highest-ranked document that is not yet in the combined result list is
added at this rank. The result list is displayed to the user and clicks c are observed. Then,
for each clicked document, a click is attributed to list li (i ∈ {1, 2}) if the document is in
the top v of li, where v is the lowest-ranked click (as in Algorithm 1).

The exploration rate k ∈ [0.0, 0.5] controls the relative amount of exploration and
exploitation, similar to �. It determines the probability with which a list is selected to
contribute a document to the interleaved result list at each rank. When k = 0.5, an

97



6. Balancing Exploration and Exploitation

Algorithm 11 f(l1, l2) – k-greedy comparison of document lists using stochastic BI.
1: Input: l1, l2, k
2: l = [], n1 = 0; n2 = 0
3: while (len(l) < len(l1)) ∧ (len(l) < len(l2)) do
4: a ← 1 with probability k else 2
5: j = min {i : la[i] �∈ l}
6: append(l, la[j])
7: na = na + 1

// present l to user and observe clicks c, then infer outcome (if at least one click was observed)
8: dmax = lowest-ranked clicked document in l

9: v = min {j : (dmax = l1[j]) ∨ (dmax = l2[j])}
10: c1 = len {i : c[i] = true ∧ l[i] ∈ l1[1..v]}
11: c2 = len {i : c[i] = true ∧ l[i] ∈ l2[1..v]}

// compensate for bias (Eq. 6.1)
12: c2 = n1

n2
∗ c2

13: return −1 if c1 > c2 else 1 if c1 < c2 else 0

equal number of documents are presented to the user in expectation.4 As k decreases,
more documents are contributed by the exploitative list, which is expected to improve the
quality of the result list but produce noisier feedback.

As k decreases, more documents from the exploitative list are presented, which in-
troduces bias for inferring feedback. The bias linearly increases the expected number
of clicks on the exploitative list and reduces the expected number of clicks on the ex-
ploratory list. We can partially compensate for this bias since

E[c2] =
n1

n2
∗ E[c1], (6.1)

where E[ci] is the expected number of clicks within the top v of list li, and ni is the
number of documents that li contributed to the interleaved result list. This compensates
for the expected number of clicks, but some bias remains, because the observed clicks
are converted to binary preference decisions before they are aggregated over queries.
While perfectly compensating for bias is possible, it would require making probabilistic
updates based on the observed result. This would introduce additional noise, creating
a bias-variance trade-off. Preliminary experiments show that the learning algorithm is
less susceptible to increased bias than to increased noise. Therefore we use this rela-
tively simple, robust bias correction. More complex, unbiased sampling schemes can be
developed using PI-MA and PI-MA-IS (Chapter 4), but this is beyond the scope of this
thesis.

4Note that the setting k = 0.5 corresponds to the fully exploratory baseline algorithm. Setting k > 0.5
would typically not increase the amount of information that can be gained from a comparison, but would hurt
the expected reward, because fewer exploitative documents would be shown.
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6.2. Experiments

6.2 Experiments
In this section, we describe the experiments that evaluate the algorithms presented in §6.1.
All experiments use the experimental setup detailed in Chapter 3. Here, we provide
further details and give an overview of the experimental runs we evaluate in the pairwise
and listwise setting.

For the experiments in this chapter we use the 9 LETOR 3.0 and 4.0 data sets (§3.4).
Click data is generated using the perfect, navigational, informational, and almost random
click models as shown in Table 3.1.5 As detailed in §3.5, we use the training folds of each
data set for training during the learning cycle and for calculating online performance
(in terms of discounted cumulative NDCG, with γ = 0.995). We use the test sets for
measuring final performance (in terms of NDCG).

For each data set we repeat all runs 25 times and report results averaged over folds and
repetitions. We test for significant differences with the baseline runs (purely exploitative
for the pairwise approach (� = 0.0), purely exploratory for the listwise approach (k =
0.5)) using a two-sided student’s t-test (§3.5).

6.2.1 Pairwise Approach
In all pairwise experiments, we initialize the starting weight vector w0 to zero. In prelim-
inary experiments we evaluated offline performance for η ∈ {0.0001, 0.001, 0.01, 0.1},
and selected the setting that performed best over all data sets (η = 0.001). Our baseline
is the pairwise formulation of learning to rank with stochastic gradient descent as de-
scribed in §6.1.1, in the fully exploitative setting (� = 0; equivalent to Algorithm 4).
Against this baseline we compare increasingly exploratory versions of the algorithm
(� ∈ {0.2, 0.4, 0.6, 0.8, 1.0}). All experiments are run for 1,000 iterations.

6.2.2 Listwise Approach
In all listwise experiments, we initialize the starting weight vector w0 to zero. We use the
best performing parameter settings from (Yue and Joachims, 2009): δ = 1 and α = 0.01
(these settings resulted in good performance over all data sets in our preliminary ex-
periments). Our baseline is Algorithm 5, based on (Yue and Joachims, 2009), which
corresponds to a purely exploratory setting of k = 0.5 in our extended method.6 Against
this baseline we compare exploit runs that balance exploration and exploitation by vary-
ing the exploration rate k between 0.4 and 0.1 as shown in Algorithm 11. Again, we run
all experiments for 1,000 iterations.

6.3 Results and Discussion
In this section, we present the results of our experiments, designed to test our main hy-
pothesis — that balancing exploration and exploitation can improve the online perfor-

5Results for the almost random click model are omitted, as they did not result in any new insights beyond
those obtained from the other three click models.

6In the listwise approach, the highest level of exploration is reached when the two candidate lists are inter-
leaved in equal parts, i.e., k = 0.5.
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mance of online learning to rank for IR systems. We first address this hypothesis for the
pairwise learning algorithm (§6.3.1), and then for the listwise learning algorithm (§6.3.2).
For both approaches we further analyze online and offline performance to identify factors
that affect online performance. Finally, we compare the two approaches under the novel
perspective of balancing exploration and exploitation (§6.3.3).

6.3.1 Pairwise Learning
We present our results for the experiments on the pairwise approach, described in §6.2.1,
in Table 6.1. It shows the online performance of the baseline approach (exploitative,
� = 0) and increasingly more exploratory runs (� > 0.0) for the 9 LETOR 3.0 and 4.0
data sets and the perfect, navigational, and informational click models.

We expect good online performance for the exploitative baseline if the algorithm can
learn well despite any bias introduced due to the high level of exploitation. Generally,
an online learning to rank approach should exploit as much as possible, as it ensures that
users see the best possible result lists given what has been learned. However, if increased
exploration results in sufficiently high gains in offline performance, its short-term cost
may be outweighed by its long-term benefits, as it increases the quality of result lists
later on.

For the perfect click model, the best online performance is achieved in the baseline
setting for four out of nine data sets, ranging from 87.38 (NP2004, row 4) to 108.06
(HP2003, row 1). For these data sets, the exploitative baseline algorithm appears to
learn well enough, so that additional exploration does not lead to high gains in offline
performance that would outweigh its cost. For the three data sets TD2003 (row 5), TD-
2004 (row 6), and MQ2008 (row 9), online performance is higher at � = 0.2 than in the
baseline setting, but the difference is not statistically significant. For the remaining data
sets, we see statistically significant improvements over the baseline at � = 0.4. Online
performance improves by 58% for the data set OHSUMED, and by 6% for the data set
MQ2007 (rows 7–8).

In the navigational click model, optimal online performance is achieved at higher
exploration rates than for the perfect click model. For five data sets, the best setting is
� = 0.2, and for four data sets it is � = 0.4. For all but one data set (MQ2008, row 18)
the improvements in online performance over the baseline are statistically significant.
Under noisier feedback, learning becomes more difficult, meaning that the quality of the
learned weight vectors that can be exploited is lower than under perfect feedback. This
reduces the benefit of exploitation, and lowers the cost of exploration, increasing the rel-
ative benefit of exploration. The biggest performance gains under increased exploration
are observed for NP2004 (row 13) and TD2003 (row 14), where the online performance
obtained in the best exploratory setting is 2.5 and 1.2 times that of the baseline set-
ting. High performance gains are also observed for HP2003 (81% improvement over the
baseline, row 10), HP2004 (98% improvement, row 11), NP2003 (72.8%, row 12), and
TD2004 (81.97%, row 15). The improvement for OHSUMED is 51% (row 16). Small
improvements are observed for MQ2007 (6%, row 17) and MQ2008 (1%, not statistically
significant, row 18).

Compared to the perfect click model, online performance with the navigational model
is much lower, as expected. The performance loss due to noise is between 2.7% (NP-
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� 0.0 0.2 0.4 0.6 0.8 1.0
perfect click model

1 HP2003 108.06 99.96� 87.58� 76.04� 50.75� 1.00�

2 HP2004 101.75 84.38� 73.88� 60.47� 42.22� 0.89�

3 NP2003 104.51 98.67 89.72� 72.00� 46.31� 1.57�

4 NP2004 87.38 84.33 75.76� 65.25� 44.62� 0.98�

5 TD2003 50.18 50.54 39.69� 28.55� 16.15� 1.94�

6 TD2004 47.49 48.82 34.00� 23.77� 13.57� 3.29�

7 OHSUMED 49.31 78.07� 69.94� 60.51� 49.94 37.76�

8 MQ2007 64.59 67.56� 68.35� 63.99 57.88� 51.14�

9 MQ2008 89.20 89.67 85.74� 80.58� 73.78� 66.70�

navigational click model

10 HP2003 50.01 90.34� 88.31� 80.38� 51.38 0.99�

11 HP2004 41.80 82.76� 76.73� 65.72� 46.23 0.92�

12 NP2003 49.21 78.67� 85.03� 74.73� 49.90 1.68�

13 NP2004 24.75 73.31� 86.53� 75.96� 53.16� 0.89�

14 TD2003 16.65 36.53� 34.26� 25.99� 15.37 2.01�

15 TD2004 22.07 40.16� 32.05� 22.85 13.31� 3.30�

16 OHSUMED 46.16 69.63� 66.28� 58.58� 48.77� 37.83�

17 MQ2007 58.66 60.74� 62.08� 60.39� 56.68� 51.21�

18 MQ2008 79.53 79.60 80.38 77.70� 72.85� 66.23�

informational click model

19 HP2003 4.26 12.47� 38.36� 46.37� 39.11� 0.97�

20 HP2004 2.54 16.01� 30.98� 39.85� 28.09� 0.93�

21 NP2003 3.87 9.44� 25.48� 41.97� 38.29� 1.60�

22 NP2004 2.28 10.97� 31.76� 49.12� 37.71� 0.95�

23 TD2003 1.66 7.28� 14.17� 16.03� 10.62� 1.96�

24 TD2004 4.71 14.09� 20.03� 17.45� 10.85� 3.25�

25 OHSUMED 36.77 49.75� 59.85� 55.79� 48.00� 37.81
26 MQ2007 55.02 56.33� 56.42� 56.87� 55.06 51.14�

27 MQ2008 72.68 72.22 72.36 72.15 70.85� 66.33�

Table 6.1: Results for the pairwise approach. Online performance (in terms of cumu-
lative NDCG) over 1,000 iterations for the exploitative baseline � = 0 and increasingly
exploratory runs (� > 0).

2004) and 27.7% (TD2003), when comparing the best settings for each click model and
data set.

In the noisier informational click model, the trends observed for the navigational
click model continue. Performance in the purely exploitative setting is substantially
lower than for the other click models, as the increase in noise makes learning more dif-
ficult. Compared to the navigational click model, online performance drops by another
8% (MQ2007) to 51% (HP2004).
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Under this click model, the cost of exploration further decreases relative to its ben-
efit, so optimal performance is again seen at higher exploration rates. For six data sets,
the best online performance is achieved at � = 0.6; for two data sets the best setting is
� = 0.4. All improvements are statistically significant when compared to the purely ex-
ploitative baseline. For the HP, NP, and TD data sets, online performance improves by as
much as an order of magnitude (rows 19–24). For the remaining data sets, improvements
are lower, at 63% (OHSUMED, row 25) and 3% (MQ2007, row 26). An exception is
MQ2008, for which there are no significant differences in online performance for runs
with � ∈ [0.0, 0.6] (row 27).

Overall, we conclude that balancing exploration and exploitation for the pairwise
approach can lead to significant and substantial improvements in online performance.
This balance appears to be strongly affected by noise, with highest relative improvements
observed under the noisiest informational click model. Also, as click noise increases,
the amount of exploration required for good online performance increases. Best values
are � ∈ [0.0, 0.2] for the perfect click model, � ∈ [0.2, 0.4] for the navigational click
model, and � = [0.4, 0.6] for the informational click model. These findings confirm our
hypothesis that balancing exploration and exploitation in the pairwise approach improves
online performance.

Besides overall trends in online performance under different exploration rates, we
find performance differences between data sets. One such difference is that for the HP
and NP data sets online performance tends to be higher than the remaining data sets,
especially under the perfect and navigational click models. This suggests that these data
sets are easier, i.e., that click feedback can be used effectively to learn linear weight
vectors that generalize well. We can confirm this analysis by comparing the offline per-
formance that the pairwise approach achieves on these data sets. For the perfect click
model, an overview is included in Table 6.3 (on page 109). Indeed, offline NDCG@10
ranges from 0.704 (HP2004) to 0.760 (HP2003) for the “easy” data sets, and is substan-
tially lower for the more difficult data sets (from 0.272 for TD2003 to 486 for MQ2008).
While our NDCG scores are not directly comparable with those reported by Liu (2009)
(only NDCG@1 scores are equivalent, cf., §2.1), they show the same trend in terms of
relative difficulty.

Under the perfect click model we found differences between most data sets and OH-
SUMED and MQ2007. For these two data sets, online performance increased signifi-
cantly at � = 0.2, while for the remaining data sets, no significant improvements over
the purely exploitative baseline were observed. The significant improvements at an in-
creased exploration rate suggest that either big learning gains were realized for these data
sets with increased exploration (outweighing the cost of exploraiton), or that exploration
for these data sets is relatively low. As we detail below, both effects play a role here.

To analyze performance differences between the data sets, we study the learning
curves of these data sets at different levels of exploration. Figure 6.1 shows the offline
performance in terms of NDCG (on the whole result list) plotted over time (up to 1,000
iterations) for the data sets MQ2007, OHSUMED, NP2003, and HP2004. For the data
sets MQ2007 (Figure 6.1(a)) and OHSUMED (Figure 6.1(b)) we see that the best offline
performance is achieved at high exploration rates (the dark, dashed and dotted lines; the
difference between settings � = 0.8 and � = 1.0 is negligible). For MQ2007, offline
performance at � = 1.0 is 0.533, 3% higher than in the baseline setting. The biggest
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Figure 6.1: Final performance for the pairwise approach over time for the data sets
MQ2007, OHSUMED, NP2003, and HP2004, under the perfect click model and � ∈
{0.0, 0.8, 1.0}.

difference between the final performance of the exploitative baseline and higher levels
of exploration under the perfect click model is observed for the data set OHSUMED
(Figure 6.1(b), offline performance is 0.657 for � = 1.0, 9% higher than in the baseline
setting). For this data set, the pairwise algorithm learns very poorly without at least some
exploration. Not shown is the learning curve for MQ2008. It follows the same trend,
with a final difference in offline performance of 4% (offline performance is 0.497 when
� = 1.0).

Different behavior is observed for the remaining data sets. For the data sets NP2003
(Figure 6.1(c)), HP2003, TD2003, and TD2004 (not shown) there is no significant dif-
ference in offline performance between less and more exploratory settings under perfect
feedback. This is contrary to the expected behavior that the highest level of exploration
should result in best learning, as pure exploration corresponds to randomly sampling
document pairs for preference detection. Most likely, this unexpected behavior under
the perfect click model results from an effect similar to that observed in active learn-
ing. Because the current top results are shown, feedback is focused on the part of the
document space that is most informative for learning. The data set for which this effect
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is observed has only few relevant documents, so that focusing feedback on a promising
region can have a substantial benefit. The strongest effect is seen for data set HP2004
(Figure 6.1(d)), where offline performance improves when implicit feedback is collected
on exploitative result lists (� = 0, light and solid line) as opposed to more exploratory
settings.

Besides the gains in offline performance realized under the perfect click model for
OHSUMED and MQ2007 under increased exploration rates, we can also confirm the rel-
atively low risk of exploration for these data sets. In Table 6.1 we see that under pure
exploration, the drop in online performance for these two data sets and MQ2008 is much
smaller than for the remaining data sets. For example, online performance for MQ2008
at � = 1.0 is 66.7 (row 9), which corresponds to an NDCG of 0.3–0.4 for the average
result list presented to the user during learning. In contrast, online performance at this
level of exploration is 0.89 for data set HP2004 (row 2), which corresponds to an average
NDCG of less than 0.005. These differences are a result of the number of candidate doc-
uments per query, and the relative ratio of relevant to non-relevant documents provided
per query. As described in §3.4, OHSUMED and the MQ data sets have much fewer
candidate documents per query (approximately a factor of 10, compared to the other data
sets), and a much higher ratio of relevant to non-relevant documents. Under these con-
ditions, randomizing candidate documents has a much smaller negative effect on online
performance than for data sets with many (non-relevant) candidate documents. This re-
sults in the low cost of exploration observed for these data sets. For the HP, NP, and TD
data sets, the low ratio of relevant to non-relevant documents results in a much higher
cost of exploration.

While the low number of candidate documents for OHSUMED and the MQ data sets
results in a low cost of exploration, they also reduce its benefit. Comparing the learn-
ing curves in Figure 6.1(a)–6.1(b) to those in Figure 6.1(c)–6.1(d), we see that a much
smaller gain in offline performance is realized (the increase in offline performance over,
e.g., the first 100 iterations is much smaller). Thus, for data sets with a high ratio of
relevant documents, exploration is cheap, but its benefit is limited. An extreme case is
MQ2008, where the benefit of improving offline performance through increased explo-
ration is so small that it does not lead to significant improvements in online performance
(rows 9, 18, and 27 in Table 6.1). More generally, we find that the balance of explo-
ration and exploitation is affected by the magnitude of the learning gains (in terms of
offline performance) that can be realized under increased exploration, and the cost of the
exploration.

For all data sets, the absolute difference in final performance at varying exploration
rates is relatively small under the perfect click model. Much higher variance is observed
when we simulate noisy feedback. Figure 6.2 shows learning curves for the data set NP-
2003 at different settings of � for the navigational and informational click models. For
the navigational click model (Figure 6.2(a)) final performance improves over time for all
� > 0.0.

For the informational click model, final performance degrades dramatically in the
purely exploitative baseline settings (� = 0, 0.102). In this setting, performance de-
creases over time. The purely exploratory setting (� = 1.0) leads to reasonable final
performance, while the best performance is achieved with high exploration and some
exploitation (� = 0.8, 0.724). This finding also confirms our earlier observation that
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Figure 6.2: Final performance for the pairwise approach over time for the data set NP-
2003 for navigational, and informational click models and � ∈ {0.0, 0.8, 1.0}.

best offline performance is not always achieved in the most exploratory setting (possibly
because feedback under increased exploitation focuses on promising documents).

Our analysis of offline performance results in a number of observations. We hypoth-
esized that the best learning would occur with perfect feedback and pure exploration
because this setting minimizes variance and bias in user feedback. As expected, learning
outcomes were best for perfect feedback and degraded with noisier feedback. However,
the effect of the exploration rate changed with the amount of noise in user feedback and
characteristics of the data set. For perfect feedback, little to no exploration sometimes
produced the best learning outcomes because exploitative result lists focused feedback
on more informative parts of the solution space. For data sets with a low ratio of relevant
to non-relevant documents, the low cost of exploration resulted in significant gains in
online performance under reliable feedback. Under noisy feedback, higher exploration
rates generally improved learning, though the best performance occurred with moderate
amounts of exploitation. Overall, our results confirmed that balancing exploration and
exploitation can significantly and substantially improve online performance in pairwise
online learning to rank for IR.

6.3.2 Listwise Learning

Our main results for the listwise approach are shown in Table 6.2. The experiments
described in §6.2.2 measure online performance of the exploratory baseline approach
(k = 0.5) and increasingly exploitative (k < 0.5) experimental runs on the 9 LETOR 3.0
and 4.0 data sets on the perfect, navigational, and informational click models.

In the listwise setting, we expect best learning (in terms of offline performance) for
the exploratory baseline approach. However, the online performance of the baseline
approach is expected to be low, as it does not sufficiently exploit what has been learned.
We hypothesize that increasing exploitation can improve online performance as long as
its benefits outweigh the resulting loss in offline performance.

For the perfect click model, all data sets except MQ2008 (row 9) improve over the
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k 0.5 0.4 0.3 0.2. 0.1
perfect click model

1 HP2003 102.89 113.60� 116.82� 122.38� 122.36�
2 HP2004 95.81 103.38� 108.87� 112.76� 109.71�
3 NP2003 95.41 101.24� 107.35� 110.24� 108.66�
4 NP2004 99.67 108.41� 114.83� 118.01� 117.87�
5 TD2003 38.97 41.19� 43.86� 44.59� 42.72�

6 TD2004 35.32 37.99� 39.75� 42.01� 40.49�

7 OHSUMED 69.03 71.78� 74.47� 75.08� 75.02�

8 MQ2007 59.66 61.50� 61.81� 61.86� 61.86�

9 MQ2008 77.90 78.05 79.17 78.98 77.86

navigational click model

10 HP2003 84.07 98.98� 103.77� 108.43� 106.28�
11 HP2004 73.83 85.14� 88.74� 91.22� 95.74�

12 NP2003 76.23 87.38� 92.50� 96.94� 93.71�

13 NP2004 83.75 95.93� 97.89� 106.28� 107.36�
14 TD2003 31.41 34.04� 35.39� 37.26� 37.61�

15 TD2004 30.72 33.17� 34.62� 33.29� 33.18�

16 OHSUMED 67.06 69.13� 70.45� 71.72� 70.47�

17 MQ2007 56.46 57.20 58.30� 58.63� 57.73
18 MQ2008 74.84 74.70 76.79� 76.04 76.01

informational click model

19 HP2003 49.82 60.39� 65.60� 71.91� 75.68�

20 HP2004 44.76 48.39 55.69� 61.14� 60.41�

21 NP2003 47.72 58.31� 64.14� 66.42� 77.17�

22 NP2004 48.64 63.44� 66.43� 79.94� 78.74�

23 TD2003 21.81 22.67 24.73� 26.53� 25.83�

24 TD2004 22.02 22.68 24.50� 21.36 21.99
25 OHSUMED 62.83 63.47 65.17 63.81 61.02
26 MQ2007 54.89 54.79 55.45 54.66 55.12
27 MQ2008 71.38 72.43 72.77 71.93 73.17

Table 6.2: Results for the listwise approach. Online performance over 1,000 iterations
for baseline (k = 0.5) and exploit (k ∈ [0.1, 0.4]) runs.

purely exploratory baseline for all settings of k < 0.5. For all these data sets, the best
online performance is obtained at a relatively low setting of k = 0.2. Increases in online
performance over the baseline range from 4% (MQ2007, row 8) to 19% (HP2003, row 1,
and TD2004, row 6). The data set MQ2008 is an exception. Although online performance
is highest for k = 0.3, none of the exploitative settings perform significantly differently
from the exploratory baseline. As discussed in the previous chapter, this data set has
fewer candidate documents than other data sets, leading to a relatively low benefit of
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increased exploitation.
Results for the navigational click model are similar. For all data sets, online perfor-

mance is significantly higher under higher exploitation than in the baseline setting. Best
performance is achieved for k ∈ [0.1, 0.3]. For two data sets, k = 0.3 performs best.
For four of the remaining data sets, best performance is achieved at k = 0.2, and for
three data sets, best online performance is achieved at k = 0.1. Improvements of the best
setting of k over the baseline range from 3% (MQ2008, row 18) to 30% (HP2004, row
11). As expected, performance under the navigational click model is lower than under
perfect feedback.

The trend continues for the informational click model. Again, more exploitative
settings of k outperform the purely exploratory baseline in all cases. For six out of nine
cases, the improvements are statistically significant. These improvements range from
11% (TD2004, row 24) to 64% for the data set NP2004 (row 22). For the remaining three
data sets, no statistically significant differences between baseline and exploitative runs
are observed, but small increases over the exploratory baseline are observed at smaller k.

Together, these results demonstrate that, for all click models and all data sets, bal-
ancing exploration and exploitation in listwise learning to rank for IR can significantly
improve online performance over the purely exploratory baseline, which confirms our hy-
pothesis. The best overall setting for the exploration rate is k = 0.2. This means that by
injecting, on average, only two documents from an exploratory list, the algorithm learns
effectively and achieves good online performance for all levels of noise. We conclude
that the original listwise algorithm explores too much and surprisingly little exploration
is sufficient for good performance.

Online performance is affected by noise in click feedback, as observed in the results
obtained for the different click models. Performance is highest with perfect feedback,
and decreases as feedback becomes noisier. Performance on some data sets is more
strongly affected by noisy feedback. For the HP, NP, and TD data sets, performance
for the informational model drops substantially. This may again be related to the large
number of non-relevant documents in these data sets. Because finding a good ranking
is harder, noise has a stronger effect. Despite this drop in performance, balancing ex-
ploration and exploitation consistently leads to better cumulative performance than the
purely exploratory baseline for all levels of noise.

As for the pairwise approach, we analyze the relationship between online and of-
fline performance by examining the learning curves for different levels of exploration.
Figure 6.3 shows the learning curves for the data sets MQ2007 and NP2003 at different
settings of k and the perfect click model. In contrast to the pairwise approach, there is
no significant difference in performance after 1,000 iterations. We find the same behav-
ior for all data sets. For NP2003, learning in the fully exploratory setting (k = 0.5) is
slightly faster than in other settings. This is expected, as the best feedback is available at
maximal exploration. However, learning at lower exploration rates quickly catches up.
Thus, for the listwise approach, the exploration rate does not appear to have a significant
effect on offline performance when feedback is perfect.

Learning curves for the navigational and informational click models for the data set
NP2003 are shown in Figure 6.4. As expected, learning is faster when feedback is more
reliable. For the idealized perfect click model, offline performance after 1,000 iterations
ranges between 0.719 (k = 0.1) and 0.727 (k = 0.5) for different settings of k. For

107



6. Balancing Exploration and Exploitation

0

0.2

0.4

0.6

0.8

0 200 400 600 800 1000

k = 0.5 k = 0.2 k = 0.1

(a) MQ2007

0

0.2

0.4

0.6

0.8

0 200 400 600 800 1000

(b) NP2003

Figure 6.3: Offline performance (computed on the test set after each learning step)
over time for the data sets MQ2007 and NP2003 for the perfect click model and
k ∈ {0.1, 0.2, 0.5}.
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Figure 6.4: Final performance (with 5% confidence intervals) over time for the data set
NP2003 for navigational, and informational click models and k ∈ {0.1, 0.2, 0.5}.

the noisy informational click model, final performance is between 0.477 (k = 0.5) and
0.649 (k = 0.5). Although final performance drops substantially as implicit feedback
becomes extremely noisy, performance improves over time for all data sets as there is
still a signal to learn from, i.e., relevant documents are more likely to be clicked than
non-relevant ones.

Once again there is an interaction effect between click model and exploration rate,
although it is different from that observed under the pairwise approach. Here, there is no
significant difference between the final performance at different settings of k under the
perfect click model. Under the navigational click model, the effect of noise is small, and
offline performance is similar to the perfect click model. However, in the informational
click model, variance increases and there is a large difference between offline perfor-
mance at different settings of k. This is a direct and expected consequence of the noise
in inferred feedback. More surprising is that final performance improves for smaller k,
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since we expected feedback to be most reliable for the fully exploratory setting k = 0.5.
Instead, it appears that, since bias is only partially compensated for (cf., §6.1), the bias
that remains at lower values of k smoothes over some of the noise in the click model.
At lower exploration rates, fewer results from the exploratory list are presented and it
becomes harder for the exploratory list to win the comparison. Thus, instead of nois-
ier updates, the algorithm makes fewer, more reliable updates that, on average, result in
greater performance gains.

6.3.3 Comparing the Pairwise and Listwise Approach

For both the pairwise and the listwise approaches, our results show that a balance be-
tween exploration and exploitation is needed to optimize online performance. The mech-
anisms of how such a balance affects online performance, however, differ between the
two learning approaches. Below, we first compare the online and offline performance
of both approaches. Then, we discuss how exploration impacts the performance of both
approaches, and conclude with implications for putting them in practice.

Table 6.3 gives an overview of the offline performance of the pairwise and listwise
approaches in their best-performing setting under perfect click feedback. Like the online
performance, these are computed after 1,000 iterations (consisting of one query, result
list, and learning step each), which means that learning may not have converged and
higher results are possible. These results should therefore be interpreted as a rough in-
dication of what performance can typically be achieved by this approach in an online
learning setting with relative feedback.

pairwise listwise
N@1 N@3 N@10 N@1 N@3 N@10

HP2003 0.687 0.727 0.760 0.684 0.730 0.761
HP2004 0.559 0.650 0.704 0.582� 0.673� 0.725�

NP2003 0.531 0.649 0.705 0.531 0.650 0.704
NP2004 0.529 0.658 0.714 0.521 0.656 0.710
TD2003 0.247 0.271 0.272 0.318� 0.300� 0.295�

TD2004 0.315 0.307 0.275 0.385� 0.343� 0.300�

OHSUMED 0.515 0.474 0.444 0.510 0.470 0.441
MQ2007 0.352 0.359 0.400 0.329� 0.338� 0.381�

MQ2008 0.347 0.390 0.486 0.333� 0.376� 0.475�

Table 6.3: Offline performance (in terms of NDCG@N) for the pairwise (� = 1.0) and
listwise (k = 0.5) online learning to rank algorithms under the perfect click model.

In terms of offline performance, the pairwise and listwise approaches perform simi-
larly. The pairwise approach outperforms the listwise approach on five out of nine data
sets (in terms of NDCG@10), but the performance differences are significant for only
two data sets (MQ2007 and MQ2008). The listwise approach outperforms the pairwise
approach on four data sets, in three cases significantly (HP2004, TD2003, and TD2004).
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We note that the performance of the listwise approach is competitive, despite the limited
information available to the algorithm (relative feedback per ranker instead of per doc-
ument), and the weak information about the gradient that is inferred from this feedback
(based on random exploration of the gradient instead of computing a gradient, as for the
pairwise approach).

We compare the online performance of the pairwise and listwise approaches by com-
paring Tables 6.1 (page 101) and 6.2 (page 106). Under the perfect click model, and in
the purely exploratory baseline setting, the listwise approach performs worse than the
purely exploitative pairwise approach, as expected. However, at their optimal settings,
the two approaches perform similarly, with the listwise approach beating the pairwise
approach on four out of the nine data sets. We conclude that, under reliable feedback, the
pairwise and listwise approaches perform similarly well when used with an appropriate
balance of exploration and exploitation.

When click feedback is noisy, the listwise approach performs better than the pair-
wise approach. Under the navigational click model, the listwise approach outperforms
the pairwise approach in terms of online performance on six data sets. Under the in-
formational click model, this number increases to seven out of the nine data sets (at the
optimal levels of exploration). The reason is that the approaches react to noise differently.
For the pairwise approach in its exploitative baseline setting, increases in noise lead to
dramatically reduced offline performance. However, balancing exploration and exploita-
tion allows the algorithm to recover its performance. As a result, the optimal balance
between exploration and exploitation shifts towards increased exploration as feedback
becomes noisier. A relatively high amount of exploration, with about half the result list
constructed from exploratory documents, is needed to achieve good learning outcomes.
This relatively high amount of exploration, in turn, has a negative effect on online per-
formance.

The drop in performance due to noise is much less pronounced for the listwise
method. Online performance of the algorithm in its original, fully exploratory, version
is often an order of magnitude higher than for the original version of the pairwise ap-
proach when feedback is noisy. A possible reason is that, by aggregating feedback over
document lists, the algorithm becomes inherently robust to noise. Increasing exploitation
can further improve online performance. While increases in exploitation introduce some
amount of bias, this bias does not result in lower offline performance. Instead, it acts as
a safeguard against too frequent updates based on noisy data. This leads to less frequent
but more reliable updates of the weight vector, thereby improving offline performance.
Thus, as noise in click feedback increases, a moderate level of exploitation can improve
learning under the listwise approach.

Another advantage of the listwise approach is that the cost of exploration can be small
if the exploratory document list is similar to the exploitative one, which is more likely as
learning progresses. For the pairwise approach, the cost of exploration is generally high,
so the approach has a disadvantage when a similar level of exploration is required for
reasonable learning gains. Thus, at similar final performance and exploration rates, the
listwise approach tends to achieve higher online performance than the pairwise approach.

Our analysis suggests that the pairwise and listwise approaches are appropriate for
learning from relative feedback in different settings. When user feedback is reliable, the
pairwise approach should be preferred as it results in good offline performance. Also, in
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this setting, the pairwise approach requires little to no exploration for good offline perfor-
mance. It can exploit aggressively, leading to high online performance. However, when
feedback is noisy, the listwise approach should be preferred. In contrast to the pairwise
approach, it safeguards against dramatic loss in offline performance, as long as there is
some signal in the feedback that prefers truly relevant documents. In addition, under
noisy feedback, the listwise approach requires much less exploration than the pairwise
approach, and the cost of exploration is lower.

6.4 Conclusion

In this chapter, we studied the effect of balancing exploration and exploitation on online
learning to rank for IR. We introduced two methods for balancing exploration and ex-
ploitation in this setting, based on one pairwise and one listwise learning approach. To
the best of our knowledge, these are the first algorithms that can achieve such a balance
in a setting where only relative feedback is available.

Regarding the main research question addressed in this chapter, we found that bal-
ancing exploration and exploitation can substantially and significantly improve online
performance in pairwise and listwise online learning to rank for IR. The effect of bal-
ancing exploration and exploitation is complex and there is an interaction between the
amount of exploitation and the amount of noise in user feedback. When feedback is reli-
able, both pairwise and listwise approaches learn well and a high amount of exploitation
can be tolerated, which leads to high online performance. As feedback becomes noisier,
learning under high exploitation becomes unreliable for the pairwise approach. A higher
amount of exploration is required to maintain reasonable performance. For the listwise
approach, however, a smoothing effect occurs under high exploitation, so that learn well
despite a high level of exploitation. This allows the listwise approach to maintain good
performance under noisy feedback with a surprisingly small amount of exploration.

Our results also shed new light on the relative performance of online learning to rank
methods. The pairwise approach makes effective use of implicit feedback when there
is little noise, leading to high offline performance. However, it is strongly affected by
noise in user feedback. Our results demonstrated that a balance of exploration and ex-
ploitation is crucial in such a setting, with more exploration needed as feedback becomes
noisier. The offline performance of the listwise approach is similar to that of the pairwise
approach under perfect feedback, but it is much more robust to noise, due to the aggrega-
tion of feedback over result lists. The listwise approach shows lower online performance
than the pairwise approach in its purely exploratory baseline setting, but it performs well
when exploration and exploitation are properly balanced. This first comparison of pair-
wise and listwise learning to rank in an online setting suggests that listwise approaches
are a promising avenue of future development, because performance is competitive, ro-
bustness to noise is high, and only few approaches have been developed for the online
setting (for learning with relative feedback).

The results of this chapter show that it is important to consider the effects of online
learning to rank approaches on online performance. It is not sufficient to learn effectively,
but by explicitly addressing online performance users can be provided with significantly
better results throughout learning. We showed that balancing exploration and exploitation
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is one way in which online performance can be improved.
Our approach to balancing exploration and exploitation for listwise online learning

to rank were based on a simple stochastic extension of BI. Bias introduced by increased
exploitation could only be compensated for approximately, and had a complex effect of
online and offline performance. A similar solution can be devised for TD. Using the
probabilistic interleaving methods developed in Chapter 4, comparison outcomes can
be inferred from a much larger family of distributions over result lists. This opens up
a range of possibilities for constructing exploratory and exploitative result lists without
introducing bias. The basic mechanisms of balancing exploration and exploitation, e.g.,
that increased exploitation at the same offline performance increases online performance,
are expected to hold under all alternative approaches. However, more complex solutions,
e.g., enabled by PI-MA-IS, are expected to lead to further gains in online performance in
online learning to rank for IR.

In Chapter 4, we focused on methods for inferring accurate feedback through in-
terleaved comparisons, but did not consider the effects of the developed evaluation ap-
proaches on online performance. In the next chapter (Chapter 7), we investigate how
online performance is affected by existing interleaved comparison methods and the prob-
abilistic approach developed in the earlier chapter. In particular, we investigate how to
learn quickly and reliably from noisy user feedback in an online learning to rank setting.

112


