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4
Scattering and Spontaneous Emission by Electric
Dipoles

This Chapter gives an introduction to the theoretical framework that is
used to describe the scattering of light by small particles throughout this
thesis. Furthermore, it describes the classical electrodynamic approach
taken to calculate the decay-rate enhancement of dipolar emitters in
complex photonic environments. This Chapter does not contain any
new results that could not be found in the literature. It is much rather
intended as a concise introduction to dipolar scattering theory for the
unfamiliar reader in order to make the theoretical part of this thesis mostly
self contained.

4.1 Introduction
The theory of electrodynamics might seem simple when considering that it is set entirely
by the four Maxwell equations together with two constitutive equations describing the
involved materials [1]. It however turns out that when considering any but the simplest
electrodynamic problem, finding a solution to Maxwell’s equations is challenging to say
the least. Therefore, a variety of schemes and techniques have been developed in order
to simplify the search for valid solutions [2]. One well known example is the concept
of lumped circuit elements. In a lumped-element framework anyone mastering basic
arithmetics can understand and design electrical circuits with powerful functionality
and therefore put Maxwell’s equations to work [3]—under the constraint that the circuit
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4 Scattering and Spontaneous Emission by Electric Dipoles

formalism describing resistors, capacitors, and inductors connected with conductors
breaks down when the signal frequencies correspond to wavelengths that become
comparable to the physical circuit size or electrodynamic effects like radiation become
important [4].

In this Chapter we discuss another simplification, namely the dipolar approximation
leading to a coupled-dipole model [5]. In optics, point-dipole methods are an approxi-
mation toolbox as powerful as lumped circuits are in the electrostatic regime [2]. It is
its electrodynamic nature that makes a point-dipole model superior to lumped-element
descriptions of photonic circuits at optical frequencies [6–8].

The dipolar approximation is a good description of a scatterer if the currents
oscillating at frequency ω and thereby generating the fields are constrained to a volume
d 3 ¿λ3, where λ= 2πc/ω. Furthermore, the observer, or any other current distribution
(i.e. scatterer), must be sufficiently far away, such that d ¿ r , with r being the distance
between the observer and the current generating the field [2]. The dipolar approximation
lends itself to describing scattering by small particles and assemblies of small particles.
Importantly, the size of the assembly can very well be much larger than λ. For scattering
by larger particles we refer to Reference [9].

We point out that this Chapter is not intended as a new scientific result but rather
as an introduction and a reference in order to aid the unfamiliar reader in following
the theoretical formalism applied throughout the remainder of this thesis. Regarding
the origin of this Chapter’s content we point at the quoted literature. We consider
References [10, 11] and [5] together with [2] to be an ideal starting point for a practical
application of the coupled-dipole model.

4.2 The dipolar approximation
Assume we have a known spatial current distribution J (r′, t ) = J (r′)exp [−iωt ] in
vacuum with a harmonic time dependence and we would like to know the electric field
E generated by J at position r. The vector potentialA(r, t ) =A(r)exp [−iωt ] is then
given by [1]

A(r) =µ0

∫
V
J (r′)

exp
[
ik

∣∣r−r′∣∣]
4π |r−r′| d3r ′ (4.1)

from which assuming the Lorentz gauge the electric field follows as

E(r) = iω
[

1+ 1

k2 ∇∇·
]
A(r), (4.2)

where k = n ω
c is the wave-number in the medium.

When we consider the case where the current distribution is confined to a region
much smaller than the wavelength and the observation point is far away from the source
region we can immediately simplify Eq. (4.1) to read

A(r) =µ0
exp [ikr ]

4πr

∫
V
J (r′)d3r ′. (4.3)
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4.3 The coupled-dipole model

Performing an integration by parts and introducing the electric dipole moment

p=
∫

V
r′ρ(r′)d3r ′ (4.4)

the vector potential can be rewritten as

A(r) =−iωµ0
exp [ikr ]

4πr
p. (4.5)

This equation constitutes the remarkable and highly useful fact that the fields generated
by any current distribution within a volume much smaller than λ3, observed at sufficient
distance, are entirely given by the electric dipole moment of the current distribution.
This observation justifies the approximation of scatterers with complex geometries by
simple point dipoles as long as the scatterers are small compared to the wavelength.
Importantly, the dipolar approximation describes the near fields correctly, such that the
observer can go as close as desired compared to the wavelength, as long as he is still
sufficiently far away measured against the spatial extent of the current distribution.

4.3 The coupled-dipole model
Restricting the discussion to dipolar interactions simplifies things tremendously. From
here on, we only consider the fields generated by dipolar currents. In a homogeneous
medium of refractive index n the electric field generated at position r1 by a dipole p at
r0 is given by [1]

E0(p,n,ω,r1,r0) = ω2µ0

4πr
exp [ikr ]

{
(r̂×p)× r̂+ [3r̂(r̂ ·p)−p]

(
1

(kr )2 − i
kr

)}
,

(4.6)
where k = n ω

c is the wavenumber in the medium of refractive index n = p
ε, r =

|r1 −r0| and r̂ = (r1 −r0)/r .∗ We can generalize Eq. (4.6) to any dipolar orientation
and strength p by introducing the Green function for a homogeneous medium

G0(n,ω,r1,r0) = [
E(ex ,n,ω,r1,r0),E(ey ,n,ω,r1,r0),E(ez ,n,ω,r1,r0)

]
(4.7)

such that
E(p,n,ω,r1,r0) =G(n,ω,r1,r0) ·p. (4.8)

We have dropped the superscript in Eq. (4.8) since it can be taken as the definition of
the dipolar Green function for any environment. Note that both dipole moments and
electric fields are column vectors and the Green function is a 3×3 dyadic. It is important
to keep in mind that Eq. (4.6) is the field generated by a dipole in a homogeneous
medium and the field generated in another more complex environment is much more
complicated. One typically separates the Green function of a complex background

∗In general the refractive index n =p
εµ depends both on the relative permittivity and permeability of the

medium. Since in this thesis we are only dealing with non-magnetic materials we always assume µ= 1.
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4 Scattering and Spontaneous Emission by Electric Dipoles

systemGB =G0 +Gs into a sum of the free-space Green functionG0 and a scattered
partGs . Only for a few examples analytical solutions forGs are known. In particular,
we refer to the book by Tai [12], who calculates the Green function for a sphere, a planar
interface, and an infinite cylinder of circular cross-section. Furthermore, dyadic Green
functions for stratified multi-layers [2, 13], concentric spherical multi-layers [14], an
eccentric spherical inclusion in a sphere [15], clusters of spheres [16] and concentric
cylindrical multi-layers [17] are available but challenging to handle.

Besides the fields generated by a dipolar source, we are furthermore interested in
the response of a polarizable scatterer to an incident electric field, which is in the linear
approximation given by the polarizability tensor α, such that

p=α ·E. (4.9)

Equations (4.7) and (4.9) are the ingredients necessary to set up the equations of
motion for a system of N coupled dipoles. The scatterers 1, . . . , N acquire dipole
moments p1, . . . ,pN in proportion to their polarizabilities α1, . . . ,αN and the electric
fields E(r1), . . . ,E(rN ) at their locations rn , according to the linear self-consistent set
of equations [5, 10, 11]

pn =αn

[
Ein(rn)+ ∑

m 6=n
GB(rn ,rm) ·pm

]
, (4.10)

where we have just rewritten Eq. (4.9) for dipole n by expressing the electric field it
experiences as a superposition of the external driving field Ein and the fields generated
by all other polarizable particles due to the fact that they are polarized as well. By
moving all dipole moments to the left of the equality sign we can now cast Eq. (4.10)
in matrix form to read

P =M−1 ·E (4.11)

where we have concatenated the dipole moments pi to the 3N component ‘super-
vector’ for polarization P . Equivalently E describes the incident field components at
the particle positions, and the coupling matrixM is defined as

Mi , j = δi , jα
−1
i − (1−δi , j )GB(ri ,r j ). (4.12)

Note thatM is of dimension 3N ×3N and the sub-matricesMi , j defined in Eq. (4.12)
have dimension 3×3. For a scatterer with its main axes along the coordinate axes the
diagonal ofM holds the inverse of the polarizability tensor αi while the off-diagonal
elements are given by the Green function coupling termsGB(ri ,r j ).

Just like Eq. (4.9) relates the dipole moment of a single scatterer to the incident
electric field, Eq. (4.11) relates the polarization state of an ensemble of scatterers
to the driving field, where the inverse of the coupling matrix plays the role of a
polarizability tensor for the ensemble. It is instructive to take the analogy between α
andM even a step further by considering the procedure of diagonalization. When we
consider an anisotropic particle of a conventional material we can always diagonalize
its polarizability tensor. The associated coordinate transformation leads us to the
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4.4 The electrodynamic polarizability

principal axes of the polarization ellipsoid, which just means that a driving field along
a principal axis will never lead to a polarization of the particle in a direction orthogonal
to the chosen principal axis. Equivalently, for an ensemble of particles diagonalization
of the inverse coupling matrix M−1 leads to the ‘eigen-polarizations’ and ‘eigen-
polarizabilities’ [18]. The eigen-vectors ofM−1 can be regarded as the polarization
eigen-modes of the system. We will encounter an example of a system with very
peculiar polarization eigen-states in Chapter 5.

4.4 The electrodynamic polarizability
The previous section discussed the mathematical formulation and the physical meaning
of the coupling matrix of a system of coupled dipoles. While we have identified the
off-diagonal elements of the coupling matrix as the fields generated by the scatterers
we will now search an expression for the polarizability tensor α which enters the
diagonal of the coupling matrix. For a truly didactic treatment of the radiation reaction
discussed in the following we strongly recommend the review by Lagendijk and van
Tiggelen [19].

A good starting point to find the dipole moment acquired by a spherical particle
of a material described by a dielectric constant εpart embedded in a homogeneous
medium with dielectric constant εmed when exposed to an electric field is to solve the
electrostatic problem. We restrict ourself to spherical particles of an isotropic material.
This approach leads to the electrostatic polarizability [9]

α0 = 4πε0V
εpart −εmed

εpart +2εmed
. (4.13)

It is now tempting to insert tabulated experimental values for ε(ω) into Eq. (4.13)
in order to obtain a polarizability at frequencies ω > 0. Nevertheless, the obtained
polarizability will remain ‘electrostatic’, as we will show in a moment. For certain
classes of materials analytical expressions for ε(ω) are known, for example a Drude
metal is well described by [20]

ε(ω) = 1−
ω2

p

ω(ω− iγω)
, (4.14)

where ωp is the plasma frequency and γ the Ohmic damping rate characterizing the
material. Upon inserting Eq. (4.14) into Eq. (4.13) and for simplicity assuming the
particle to be in air, we arrive at

α0(ω) = 4πε0V
ω2

0

ω2
0 −ω2 − iγω

(4.15)

which resembles the familiar Lorentzian line shape as the generic frequency response of
any linear system with resonance frequency ω0 =ωp/

p
3. The Ohmic damping rate γ of

the Drude model sets the damping of the obtained polarizability. Even though Eq. (4.15)
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4 Scattering and Spontaneous Emission by Electric Dipoles

clearly has a frequency dependence, we still refer to it as the electrostatic polarizability,
as indicated by the subscript. The reason is that having inserted a frequency dependent
dielectric constant into the electrostatic polarizability Eq. (4.13) by no means ensures
that the resulting expression Eq. (4.15) is physically valid. In fact, it turns out that
Eq. (4.15) violates energy conservation. Accelerated charges radiate electromagnetic
energy according to Larmor’s formula [1] and so does any polarizable scatterer [21].
This scattering must show up as a loss rate in the polarizability of Eq. (4.15), which so
far only contains the Ohmic damping.

We find the missing damping term by exploiting the insight that the energy loss of
a scatterer equals the work done on its own current by its own electric field [2]. The
apparent damping ‘force’ acting on the current is called Abraham-Lorentz force and
has been a matter of strong debate [1, 2]. With the realization that an oscillating dipole
is actually subjected to its own electric field we can rewrite Eq. (4.9) as

p=α0Etotal =α0
[
Eext +GB(r0,r0)p

]
, (4.16)

where we have included the field generated by the dipole moment p at its own position
via the Green function. After rearranging the terms to the form p=αEext we find the
electrodynamic polarizability

α= [
α−1

0 −GB(r0,r0)
]−1

, (4.17)

which has an additional correction termGB(r0,r0) describing the back-action of the
scatterer on itself. Equation (4.17) is the scattering matrix, often referred to as t-matrix,
of a single dipolar point scatterer and its expansion yields the Born series of multiple
scattering [22]. Importantly, even a single scatterer gives rise to a multiple scattering
series. Remarkably, with the corrected polarizability in Eq. (4.17) we have found a
description of the multiple scattering problem with only a first-order scattering term.
The real part ReG gives rise to a shift of the resonance frequency of α while the
imaginary part ImG is an additional damping term. Equation (4.17) immediately
confronts us with a dramatic problem when evaluating the free-space Green-function
G0(r,r) at the origin, since Eq. (4.6) diverges for r = 0. From Eqs. (4.2) and (4.5) we
can read off the scalar free-space Green function [2]

G0 = ω2µ0

4πr
exp [ikr ] , (4.18)

which can readily be split into its real and imaginary part using Euler’s formula.
The real part of Eq. (4.18) indeed diverges and seems to render Eq. (4.17) useless.
The problem of this divergence comes about from describing our scatterer as a true
mathematical point, which we now have to approach infinitely closely. Clearly, there
must be a cut-off which is sensibly chosen such that the resulting resonance frequency
appears where it is experimentally found [19].

Carrying out a Taylor expansion in orders of kr before performing the spatial
derivatives in order to return to the vector Green function yields for the imaginary part
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4.5 Observables and the optical theorem

of the free-space Green function

ImG0(r0,r0) = ω3n

6πε0c3 1. (4.19)

The imaginary part of the Green function evaluated at the origin is therefore the damping
term that has to be included in any polarizability tensor in order to appropriately take
radiation loss into account and ensure energy conservation. A complex photonic system
with a scattered part of the Green function Gs changes the damping experienced by
the scatterer via its imaginary part ImGs , which enhances or reduces the free space
damping ImG0. This is the Purcell effect changing the radiative line-width of a
scatterer. The real part ReGs shifts the resonance frequency of the scatterer. Thanks
to the tensorial nature ofG the polarizability of an isotropic scatterer can acquire an
anisotropy due to its environment entering in the correction according to Eq. (4.17).

A straightforward recipe to include radiation damping and obtain a bona-fide
electrodynamic polarizability α in a homogeneous medium of refractive index n for
any chosen electrostatic α0 is therefore [11, 23]

α−1 =α−1
0 − i

1

6πε0

ω3

c3 n 1. (4.20)

For spheres, the correction in Eq. (4.20) is sometimes amended by a further depolariza-
tion factor [24], which leads to a line-shift to the red with increasing particle size but is
not strictly necessary to conserve energy.

4.5 Observables and the optical theorem
With the coupled-dipole model we have outlined a consistent electrodynamic framework
to describe scattering. In the present section we derive observables that are experimen-
tally accessible. By purely energetic considerations we will arrive at expressions for the
extinction and scattering cross-sections of a single dipolar scatterer in a homogeneous
medium as well as an expression for the optical theorem for a single dipolar scatterer
in any environment.

We consider a single dipolar current source j = ṗ= j0 exp [−iωt ]δ(r−r0) located
at r0. For the moment we do not worry about how this current is generated. We
apply the time-averaged form of Poynting’s theorem to consider the flux of energy
through an arbitrary surface ∂V enclosing only our dipolar current and no lossy material.
Poynting’s theorem relates the time-averaged flux of electromagnetic energy described
by the Poynting vector 〈S〉 = 1

2 Re
{
E×H∗}

through the chosen surface to the fields
and currents within the enclosed volume via [2]∫

∂V
〈S〉dA=−1

2

∫
V

Re
{
j†E

}
dV , (4.21)

where ( · )† denotes the Hermitian conjugate and we imply usual matrix multiplication.
Expressing the fields generated by our dipole p via the Green function of the embed-
ding system we arrive at the power emitted by our source into the (possibly lossy)
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4 Scattering and Spontaneous Emission by Electric Dipoles

environment
Pem = 1

2
ωp†Im [G(r0,r0)]p. (4.22)

In the special case of a homogeneous lossless medium of refractive index n, Eq. (4.22)
turns into the familiar form of Larmor’s formula P = ω4n

12πε0c3 |p|2 for the radiated power
of a dipole in a homogeneous medium upon inserting ImG0 from Eq. (4.19). Note that
in the case of an environment including lossy constituents Eq. (4.22) describes the sum
of the power radiated into the continuum and the power absorbed by the environment,
provided you can draw a closed surface around the source without enclosing any lossy
material.

So far, we have not specified what creates the dipole moment p. While Eq. (4.22)
holds for any environment, in order to derive the scattering and absorption cross-
section of a single particle we now consider the case of a single isotropic scatterer
with polarizability α in a homogeneous lossless medium driven by a plane wave Ein.
We insert p=αE into Eq. (4.22) to calculate the power scattered by the particle and
remember that the time-averaged Poynting vector along the propagation direction
〈S〉 = 1

2

√
ε0
µ0

n |E|2 gives the incoming power. By dividing the scattered power by the
incoming power flux density we obtain the scattering cross-section

σscat = ω4

6πε2
0c4

|α|2 . (4.23)

For a weak scatterer, i.e. far away from any resonance in α, the wavelength dependence
shows the famous λ−4 behavior of Rayleigh scattering, which is one main reason why
the sky appears blue. This dependence can be obtained from a simple dimensional
analysis [25]. Importantly, we have arrived at the scattered power by considering the
work that is done on the dipole moment by its own field. In contrast, the energy removed
by the scatterer from the incoming beam must equal the work that is done on the dipole
moment by the incoming field. The cycle averaged extinction is therefore [10]

Pext = 〈ReEin ·Rej〉 = 1

2
ωIm (E†

inp), (4.24)

which leads to the extinction cross-section of a dipolar scatterer in a homogeneous
medium

σext = ω

ε0cn
Imα. (4.25)

We note after comparing Eqs. (4.23) and (4.25) that since α∝V the ratio of scattered
to extinct power, commonly referred to as the albedo [19], vanishes for small volumes,
such that small particles practically only absorb.

Importantly, in any environment described byG, energy conservation requires that
the scattered power Eq. (4.22) can never exceed the extinct power Eq. (4.24), such that

α†ImGα≤ 1

2i

(
α−α†

)
. (4.26)
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4.5 Observables and the optical theorem

The relation Eq. (4.26) is a general form of the optical theorem that restricts the
polarizability α to conserve energy [26]. In the special case of a lossless and homoge-
neous medium with refractive index n and an isotropic scatterer with polarizability α
Eq. (4.26) reduces to [27]

nω3

6πε0c3
|α|2 ≤ Imα. (4.27)

The correction of the polarizability given in Eq. (4.20) makes sure that the optical
theorem Eq. (4.27) is obeyed and energy is conserved. The equality sign in Eqs. (4.26)
and (4.27) holds for the case of any hypothetical scatterer without material loss, i.e.
γ= 0, on resonance. More importantly for practical cases, the radiation damping term
entering the denominator of the expression for the polarizability according to Eq. (4.17)
scales with the particle volume, such that for large scatterers the radiation damping will
exceed the material damping. The line-width of the polarizability of plasmonic particles
larger than about 40 nm in diameter is typically dominated by radiation losses [28].

Importantly, the electromagnetic environment entering Eq. (4.26) via the Green
function G bounds the scattering strength of any dipole to the unitary limit. Let us
consider an isotropic scatterer in vacuum, where we can combine Eqs. (4.25) and (4.27)
to obtain the maximally possible extinction cross-section of any dipolar scatterer
σUL

ext = 3
2πλ

2. We will reencounter the unitary limit in the context of assemblies of
scatterers in Chapter 5 and its repercussions in a complex environment will be of
paramount importance in Chapter 6.

We have just reminded ourself how to calculate the extinction and scattering cross-
sections of single particles. The value and success of the coupled-dipole model relies on
the fact that it allows to calculate extinction, scattering, and absorption cross-sections
of clusters of particles, as well as eigen-modes and radiation patterns, also for clusters
of particles [5, 10, 11, 18, 29]. As we will illustrate in the next section, also the LDOS
is easily available in a coupled-dipole approach. The coupled-dipole formalism has
recently been extended to magneto-electric scatterers [27]. The typical procedure to
obtain any observable is to first specify the particle positions and their electrodynamic
polarizabilities. At this point the coupling matrix M , given in Eq. (4.12), is fully
defined and has to be inverted. To find the dipole moments for any driving field remains
a simple matrix multiplication according to Eq. (4.11). With the knowledge of the
dipole moments resulting from a specific driving field all desired observables can be
derived. For example, the extinction cross-section of a particle cluster is obtained
from choosing a plane wave as a driving field and summing the power dissipated by
that driving field by acting on the resulting individual dipole moments according to
Eq. (4.24). To obtain the scattering cross-section of a particle cluster we calculate the
Poynting vector of the fields generated by the individual dipole moments through a
hypothetical sphere. This procedure can be carried out with limited computational
effort by choosing the sphere sufficiently large and applying a far-field approximation
for the dipole radiation. With the same recipe we can naturally also calculate differential
scattering cross-sections and thereby radiation patterns of particle clusters.

Regarding the driving field, we are of course not limited to plane waves. Most
interesting for the purpose of this thesis is certainly to choose a dipolar point source to
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4 Scattering and Spontaneous Emission by Electric Dipoles

drive an ensemble of scatterers to model the field emitted by a dipolar source in the
vicinity of a cluster of scatterers. The dipole field generated by that point source, given
in Eq. (4.6), then enters Eq. (4.11) as the driving field and the total radiated field is
the superposition of the driving field and the fields generated by the induced dipole
moments of the scatterers calculated according to Eq. (4.11).

4.6 Spontaneous-emission rate enhancement
Most interesting for the purpose of this thesis is to calculate the LDOS at a particular
position with respect to an ensemble of point scatterers. Xu, Lee, and Yariv [30] have
shown that the spontaneous-emission rate of a quantum-mechanical two-level system
with transition frequency ω is proportional to the power dissipated by a constant-current
source of the same frequency [2]. We can therefore calculate the spontaneous-emission
rate enhancement via the enhancement in power dissipated by a classical constant-
current source in the complex photonic environment as compared to a reference system.
To this end, we revert to the expression for the power dissipated by an oscillating dipole
in Eq. (4.24), under the assumption that ImG does not significantly change across the
natural line-width of the quantum emitter [30, 31]. Upon splitting the Green function
into its free and scattered parts the decay-rate enhancement with respect to vacuum is
given by

A = 1+ p†ImGs(r0,r0)p

p†ImGvac(r0,r0)p
. (4.28)

From Eq. (4.28) we can immediately appreciate that the rate enhancement (or suppres-
sion) of a spontaneous emitter in a complex photonic system is a result of the radiation
reaction of the emitter’s own field scattered by the environment and returning with
a phase shift to perform work on the source, thereby increasing (or decreasing) the
resistance of the vacuum. This picture merits the interpretation of the LDOS as an
impedance experienced by a quantum emitter [32, 33]. Importantly, Eq. (4.28) allows
to calculate the decay-rate enhancement, and therefore the LDOS, in any photonic
environment whose Green function is known, despite that system possibly exhibiting
material losses, which renders literal counting of the states impossible [34, 35]. The
strength of Eq. (4.28) is that it allows to determine the LDOS by evaluating ImG only
at a single point, namely the origin. It however hides the different contributions to
the LDOS since the dissipated power calculated according to Eq. (4.28) contains all
contributions to the LDOS, both radiative and non-radiative, due to the environment. If
we desire to separate the rate enhancement due to radiative decay enhancement we will
have to integrate the radiated power in the far field.

Finally, we would like to point out that the community of spontaneous-emission
control, including ourself, handles the term LDOS rather sloppily. LDOS is used to
refer to the energy and volume density of states, but also to the imaginary part of the
Green function ImG(r,r), its component projected on a certain dipole orientation
p̂†ImGvac(r0,r0)p̂, its trace tr{ImG} or any of these quantities normalized to the
corresponding value in vacuum. Typically, no confusion arises from the context.
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