
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Magnetoelectric resonant metamaterial scatterers

Seršić, I.

Publication date
2012
Document Version
Final published version

Link to publication

Citation for published version (APA):
Seršić, I. (2012). Magnetoelectric resonant metamaterial scatterers.

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:25 Jul 2022

https://dare.uva.nl/personal/pure/en/publications/magnetoelectric-resonant-metamaterial-scatterers(c0b8d734-b6ab-423a-981d-736def85632a).html


Ivana Seršić
2012

M
agnetoelectric resonant m

etam
aterial scatterers

Magnetoelectric resonant 
metamaterial scatterers

Invitation

to the public 
defense of 
the doctoral 
dissertation

Magnetoelectric 
resonant 

metamaterial 
scatterers

on
Tuesday, 

September 11th
at 

10:00 hrs
in the

Agnietenkapel,
Oudezijds 

Voorburgwal 231,
Amsterdam

Ivana Seršić

sersic@amolf.nl

Ivana Seršić



Magnetoelectric resonant metamaterial
scatterers



Ph.D. thesis University of Amsterdam, September 2012
Magnetoelectric resonant metamaterial scatterers
Ivana Seršić
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Chapter 1
Introduction

Metamaterials are a class of optical media that have earned much attention
from the scientific community at the end of the 20th and the beginning of the
21st century. The name is derived from the Greek word meta, meaning ‘be-
yond’, and refers to the ability of the material to exhibit properties that are
not found in nature. Metamaterials aim to mimic naturally occurring homo-
geneous media composed of atoms or molecules, yet made of artificially struc-
tured building blocks in order to go beyond parameters accessible with just
molecular interaction with light. Beating the diffraction limit and arbitrary
bending of light with the help of transformation optics are the visions that
have resulted in a plethora of man-made meta-molecules for nanophotonics.

1.1 Negative index materials

Research in the field of metamaterials is driven by the possibility to control the
properties of light on the nanoscale by using coupled resonant nanoscatterers to
create optical materials with very unusual effective medium parameters. Engineer-
ing arbitrary values for the effective permittivity ϵ and permeability µ would allow
new forms of light control based on achieving negative index materials [1–5], or
transformation optics media [6, 7] that arbitrarily reroute light through space. The
possibility of achieving negative index of refraction has coined the name ’negative
index materials’ (NIMs) [8]. Depending on the choice of parameters, a positive or
a negative sign can be taken in the definition of the refractive index of a material

n = ±√
ϵµ, (1.1)

where ϵ and µ are the relative electric permittivity and magnetic permeability, re-
spectively. The conventional choice is to choose the positive sign of the square
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Introduction

root, appropriate for positive ϵ and µ [2, 9]. All naturally occurring materials have
µ=1 at optical frequencies since they exhibit no, or very weak, response to the
magnetic field of light. Furthermore, insulators usually have ϵ > 1, while metals
have Re(ϵ) < 1 due to the free electron gas. Light incident at an oblique angle θ1
from a medium with n1 upon a material with n2 will be refracted under an angle
θ2 according to Snell’s law

n1 sin θ1 = n2 sin θ2. (1.2)

Veselago [1] first suggested that when a material possesses both negative ϵ and µ,
a negative square root must be taken as a definition of refractive index to avoid
violating causality. It follows that n < 0 results in two fundamental anomalies: (1)
negative refraction of light at oblique incidences, and (2) phase velocity opposite
to energy flow. Choosing n2 = −1 in Eq. (1.2) implies a negative θ2, i.e., light
will be refracted on the same side of the normal as the incident wave. This is un-
like conventional materials where light is refracted on the other side of the normal
and it always bends away or towards it, but never through it, as shown in Fig. 1.1
(a). Since boundary conditions require k|| vector conservation, negative refraction
means that the Poynting vector S has a negative sign, i.e., the energy flows away
from the interface while the phase fronts travel towards the interface [1, 10]. This
is easy to see from the fact that

S = E ×H =
1

µ
E ×B ∝ −k. (1.3)

A consequence of negative refractive index is strong focusing of light through a
thin negative index slab that led to the idea of perfect lensing. In order to understand
how perfect lenses work, let us first consider a positive thin lens. The distance v
of an object to the lens and the distance b of its image to the lens are related to the
focal length f of the lens via

1

v
+

1

b
=

1

f
. (1.4)

The magnification M of a thin lens is given by the ratio of the distances of the
image to the lens and the object to the lens. Turning our attention back to the
perfect lens, Fig. 1.1 (b) shows a ray tracing diagram from a source at a distance
d/2 to the image (black arrows) that is made by a slab of material with n = −1
and thickness d. Due to the negative refractive index, the rays are focused inside
the material creating a virtual image (white arrow). A real upright image with unit
magnification is created at a distance d/2 from the material slab. The distances of
the image and the object to the lens have to conserve the relation

b+ v + d = 2d. (1.5)
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1.1. Negative index materials
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Figure 1.1: (a) A schematic of light propagation upon refraction from a conventional ma-
terial and a NIM. The wavevector points in the opposite direction to the energy flow in a
NIM. (b) An object placed at a distance d/2 in front of a slab with n = −1 and thickness d
will be imaged with magnification M = 1 on the other side of the slab. Note that a virtual
image is formed within the slab. (c) If an object is placed at a distance v < d, it will also
be imaged with the same magnification.

As the object is brought closer to the lens in Fig. 1.1 (c), the magnification remains
1 and the total object to image distance remains constant. A real image is formed
when v < d, while for v > d no image is formed. Surprisingly, when compared to
a standard positive lens, the magnification for a slab of n = −1 is always 1.

The unique property that initially steered attention to the field of metamaterials
is not solely that a slab of n = −1 acts as a lens, but that it would in fact outperform
any conventional lens. A usual lens is limited to a resolution no better than λ/2 due
to the following argument. Suppose one has an object rich in spatial information
that radiates towards the lens. Its field can be represented as

E(r, z, t) =

∫
E(k||, zobj)e

ik||r+ik⊥(z−zobj)−iωtdk||, (1.6)

where z is the distance away from the object at a distance zobj, and towards the
lens. This representation Fourier transforms the field to parallel wave vector space
k||. The sharpest features carry the highest k||. However, due to the dispersion
relation for vacuum k||

2 + k⊥
2 = ω2/c2, any feature with k|| > ω/c is exponen-

tially damped as it propagates towards the lens, since k⊥ is imaginary. These are
evanescent waves characterized by Re(k⊥) = 0 and Im(k⊥) ̸= 0. Since fine de-
tails do not reach any far field lens, far field optics is limited to the diffraction limit
of Abbe [2]. Resolving finer detail is hence the hallmark of near-field optics, where
detection is attempted directly inside the evanescent field of the object. The unique
insight of Pendry [2] that triggered interest in metamaterials, is that when an ob-
ject is placed at a small, typically subwavelength distance of a thin negative index
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slab, the negative index slab has a transmission coefficient far exceeding one for
the evanescent wave. In fact, the perfect lens effectively amplifies the evanescent
field components to such a degree that on the other side of the slab, the transmitted
field exactly reconstitutes the object in the image plane [2, 11, 12]. To understand
how such amplification can occur, let us analyze refraction of a propagating wave
again. For n = −1, causality implies that the phase fronts must travel opposite to
energy. In other words, the proper understanding of the ray diagram in Fig. 1.1, is
that energy refracts negatively, and by causality, points from left to right through-
out the diagram. Because k opposes energy flow, this means that the wave acquires
negative phase as it propagates through the lens. All the waves recombine at the
real image with net zero phase, because the negative phase acquired in the lens
exactly cancels that acquired in the air. This particular argument carries over to
evanescent incident waves, where the full complex phase is negated by the negative
index medium, i.e., both the phase and the evanescent decay. It is important to re-
alize that the only way for this reasoning not to imply violation of causality, is that
the lens will only operate in a narrow frequency band and is intrinsically limited
by unavoidable dispersion and absorption in the lens material [13–18]. The ability
of a material to act as a perfect lens has important implications for applications
where high resolution is needed, such as medical imaging, data storage, material
fabrication where high resolution is needed, and as optical components [12, 19–23].

We have just seen how one might manipulate light if we choose ϵ = µ =
−1. In case of arbitrary ϵ and µ, however, light can be manipulated in even more
complex manner described by transformation optics. Leonhardt [6] and Pendry et
al. [7] suggested that light can be bent in space continuously by an inhomogeneous
distribution of ϵ and µ. Therefore, metamaterials offer the possibility to smoothly
guide light around any object by realizing appropriate spatial variations in material
parameters, i.e., both ϵ and µ. This has led to the idea of cloaking devices. An
object placed within a sphere with carefully engineered values of ϵ and µ will seem
invisible to any outside observer however the object is illuminated, since the cloak
guides any near and far field around the object [24]. Bending of light is also of
immediate importance for waveguiding, optoelectronics and photovoltaics.

1.2 Origin of material parameters

Realizing arbitrary ϵ and µ is far from trivial and requires building blocks with a
response to both E and H . Metamaterial building blocks are excellent candidates
for realizing negative ϵ and µ provided they each have a large electric and a mag-
netic response to light. In order to quantify the response of such scatterers, we first
need to examine how material response arises in known materials. Conventional
materials consist of very dense assemblies of atoms and molecules, as shown in
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1.2. Origin of material parameters

(a) (b)

λ/1000 λ/10λ/10

Figure 1.2: (a) A schematic of a simple cubic crystal consisting of atoms (grey circles). (b)
A schematic of the same cubic crystal with split rings as atoms.

Fig. 1.2 (a). Typical spacings between, e.g., Si atoms in a diamond crystal structure
are 3 to 5 Å [25]. Therefore, the wavelength usually exceeds the atomic spacing
by a factor 1000 or more. Although generally most materials are charge neutral,
they are made of polarizable particles that contribute to material polarization P
and magnetization M . Rather than having to treat the scattering of each atom sep-
arately, the response of the medium can be captured in constitutive parameters ϵ
and µ that enter Maxwell’s relations via

∇×E = −µ∂B
∂t , ∇×H = ϵ∂D∂t , (1.7)

where E is the electric and H is the magnetic field of light. An incident electric
field E induces an electric displacement in the material

D = ϵ0ϵE = ϵ0E + P , (1.8)

where ϵ0 is the electric permittivity in vacuum. Likewise the magnetic response µ
is due to material magnetization via

B = µ0µH = µ0H +M , (1.9)

where µ0 is the magnetic permeability in vacuum.
Since most materials respond strongly only to the electric field of light E, in

order to understand how material parameters arise, let us consider the motion of
an electron bound to an atom in such a material driven by an incident electric field
E. According to the classical Lorentz model [26], the excitation of an electron
bound to an atom is analogous to driving a harmonic oscillator with mass m on
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a spring with a damping constant γ. The response of such an oscillator to the
monochromatic driving E0e

−iωt is described by the differential equation

d2x

dt2
+ γ

dx

dt
+ ω0

2x =
q

m
E0e

−iωt. (1.10)

The resulting electron displacement is x(t) = q
mE0

e−iωt

ω0
2−ω2−iωγ

. Therefore, an
atom acquires a dipole moment proportional to the charge separation x in Eq. (1.10),

p(t) =
q2/m

ω2
0 − ω2 − iωγ

VEe−iωt = α(ω)Ee−iωt, (1.11)

where the Lorentzian prefactor α(ω) is the polarizability of the atom that describes
the frequency dependent strength of the resonant response, ω is the driving fre-
quency, ω0 is the frequency at which the system is resonant, and γ is the damping
of the material. For a material consisting of many atoms, the material polarization
density P is equal to the volume average of the dipole moments p.

Material polarization arises whenever the applied electric field distorts the elec-
tron distribution inducing a dipole moment p, whether in a medium consisting of,
e.g., molecules, plasmonic nanoparticles or metamaterial building blocks, schemat-
ically drawn in Fig. 1.3. In all cases the important figure of merit is the polarizabil-
ity α defined above through p = αE. A well known example where polarizability
is applied not to an atom or molecule, but to a bigger scatterer, is that of a small
sphere of dielectric constant ϵ, which in the long-wavelength limit has polarizability

α = 3V

(
ϵ− 1

ϵ+ 2

)
. (1.12)

The fact that the denominator yields a resonance in α for ϵ = −2, is exploited in
‘plasmonics’. Indeed, 10-100 nm sized gold and silver particles have polarizabili-
ties far in excess of their physical volume V at frequencies where ϵ = −2, which is
associated with a collective response of the free electron plasma. Similarly, meta-
material building blocks are polarizable metal structures which contain magnetic
polarizability in addition to an electric polarizability. Therefore, one can consider
metamaterial scatterers, such as split ring resonators, as a sum of two objects with
an electric dipole moment p and a magnetic dipole moment m. Fig. 1.3 (b) shows
how the incident electric field induces charge separation across a split ring gap, giv-
ing rise to the in plane electric dipole moment p. The current oscillating in the ring
will give rise to the out of plane magnetic dipole moment m. Section 1.3 discusses
this mechanism in detail.

12



1.3. Metamaterial building blocks: split ring resonator

(a) (b)) -

-
-
- +

+

+

+

Figure 1.3: Incident field (black arrows) induces a charge separation that sets up a dipole
moment in (a) a metallic particle and (b) a metamaterial scatterer.

1.3 Metamaterial building blocks: split ring resonator

The principle to realize metamaterials with unusual ϵ and µ is to assemble dense
arrays of nano-scatterers with strong electric and magnetic polarizability that, when
combined, render a strongly polarizable quasi-homogeneous medium. Therefore,
it is important to remain at lattice spacings < λ/2, so that diffractive effects as
in photonic crystals and gratings do not occur. We call this the effective medium
limit, since the E and H only ‘see’ a homogeneous material. Realizing negative
ϵ is relatively easy, since free electron metals by themselves supply negative ϵ at
optical frequencies. However, they still maintain µ = 1 at optical frequencies. In
1999, Pendry et al. [27] suggested that a response to the magnetic field H could be
evoked via resonances of metal rings. Since then, many efforts have been aimed at
further strengthening the magnetic response of metamaterial scatterers by introduc-
ing double-gap or double split ring structures [28, 29]. In the previous section we
have analyzed how an electric response arises in sub-wavelength scatterers via in-
duced dipole moments. In order to understand how the magnetic response arises in
metamaterials, we examine a case of an archetypical metamaterial building block,
the split ring resonator (SRR).

A split ring resonator exhibits strong resonances in the visible and infra-red
regime as an electric and magnetic response to both components of the electromag-
netic field of light. The magnetoelectric response is electrostatically described as
an LC circuit with a parallel plate capacitance C and inductance L of an N -loop
coil with N = 1. We can calculate the LC frequency of a split ring by a simple
electrostatic formula

ω =
1√
LC

(1.13)

where L is the inductance and C the capacitance of the Au ring. Assuming the
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‘coil’ has one loop, the inductance of a solenoid becomes

L =
µ0Aloop

t
, (1.14)

where Aloop is the area of the loop. The parallel-plate capacitance is given by

C = ϵ
wt

d
, (1.15)

where w, d and t are the dimensions of the capacitor as noted in Fig. 2.2 (a). The
incident magnetic field H = H0e

−iωt can drive a current in the ring that sets up a
voltage over the loop via Faraday’s law

V = −
∮
dH

dt
µ0dA = iωµ0H0e

−iωtAloop. (1.16)

Vice versa is also true. Incident electric field can excite charge separation across the
SRR gap, consequently inducing a current in the ring, as shown in Fig. 1.3 (b). The
current induced in the ring depends on the impedance Z via Ohm’s law V = I ·Z,
with the impedance of an LC circuit given by

Z = iωL+
1

iωC
+R, (1.17)

where R is the Ohmic resistance of the circuit. The current sets up a magnetic
dipole moment m = IAloop pointing out of the loop. Since evidently, ω =
1/

√
LC ∝ size, scaling down split rings pushes the resonance to optical frequen-

cies [30].
The first metamaterial made of cm-sized double-SRRs resonant structures was

reported in [28, 31], where negative refraction was demonstrated in the microwave
regime. The promise of NIMs in the visible part of the electromagnetic spectrum,
i.e., to create transformation optical devices such as cloaks and near field lenses, has
prompted state-of-the art fabrication of split rings with very small dimensions [31–
35]. However, due to the material properties of the most commonly used metal, Au,
size scaling ultimately reaches its limit at frequencies approaching the Au plasma
frequency [34]. Though the choice of metal determines the LC frequency limit,
resonance frequencies have remained above 750 nm [34].

Negative refractive index has furthermore been studied in literature in struc-
tures fabricated in metal-dielectric multilayers [36–39], such as rod-pairs [40] and
coaxial waveguides [41]. Shalaev et al. [40] have reported on a NIM in the op-
tical regime (1.5 µm) consisting of pairs of parallel Au nanorods. These cut-
wire pair structures consist of two nobel metal wires separated by a dielectric, as
shown in Fig. 1.4 (a), where the light incident along the stacking axis induces an

14



1.4. Metamaterial building blocks as scatterers

(a) (b) (c)

Figure 1.4: Schematic representation of metamaterials (a) cut-wire pair [40, 42], (b) fish-
net structure [43–45], and (c) metal-dielectric multilayer [39].

anti-symmetric mode resulting in a magnetic dipole moment induced between the
wires [42]. Particularly interesting is the fishnet structure where wire pairs (ϵ < 0)
and parallel-plate pairs (µ < 0) are fabricated together in metal-dielectric-metal
multilayers and together make up n < 0 [43–45], as shown in Fig. 1.4 (b). Chettiar
et al. [37] fabricated a film similar to the fishnet structure consisting of perforated
silver multi-layer on a glass substrate separated by a dielectric. In the near field,
Zhang et al. [36] experimentally demonstrated negative index at 2 µm via resonant
interactions of nanoholes in a multilayered metal-dielectric fishnet film. Recently,
Verhagen et al. [39] studied a metal-dielectric multilayer structure where refrac-
tive index is based on coupling between adjacent plasmonic waveguides. Such a
multilayer structure is schematically shown in Fig. 1.4 (c).

1.4 Metamaterial building blocks as scatterers

Many researchers have recently aimed to achieve negative refractive index by stack-
ing metamaterial building blocks in densely packed arrays. Due to the existence of
both electric and magnetic dipoles, these scatterers are expected to couple strongly
in arrays. Such coupling can at the same time result in unwanted complications
when predicting and engineering ϵ and µ, yet also can provide valuable insight in
the relative strengths of the electric and magnetic dipole moments. The key ques-
tion of this thesis is to identify what the polarizability that underlies the electric and
magnetic response is, and how dipole-dipole coupling can be quantified. We wish
to quantify how large the polarizability α of metamaterial building blocks is, and
to identify if any magnetic character is evident in scattering. Experiments outside
the domain of effective media have appeared only recently. These include exper-
iments by Husnik et al. [46], and Banzer et al. [47] that quantify the extinction
cross section of single split rings under differently polarized illumination, exper-
iments where split ring resonators act as near field probes [48, 49], as well as a
range of experiments on coupled systems. These experiments include extinction
measurements on split ring dimers [50] that point at resonance hybridization, as
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Introduction

well as reports of magnetization waves [51], structural and geometrical chirality in
arrays, as evident in, e.g., massive circular dichroism [52–59], and chiral effects in
split ring stereo-dimers studied by Liu et al. [60]. In many instances, metamaterial
building blocks are in fact very strong scatterers with large cross sections [46, 61–
63], comparable to the large cross sections of plasmonic structures. Therefore,
metamaterial building blocks are excellently suited to construct magnetic antennas,
array waveguides and gratings in which electric and magnetic dipoles couple and
form cooperative excitations, in analogy to the functionality imparted by plasmon
hybridization [64].

In order to introduce the measures that quantify how strongly nanoscatterers
scatter, let us consider the simple textbook problem of a nanoparticle placed in a
homogeneous electromagnetic field. The nanoparticle will either absorb part of
the light, or it will cause light to be scattered and propagate in different directions.
These phenomena both take power out of the incident beam, which is termed ‘ex-
tinction’. Energy conservation means that extinction equals absorption plus scat-
tering

Extinction = Absorption + Scattering. (1.18)

Let us now suppose the particle is so small, that it can be viewed as just a polarizable
point dipole

p = αEin. (1.19)

The amount of energy removed from the incident beam by the dipole is called the
extinction. It is equal to the cycle-average work done per unit time by the incident
field Ein to drive the dipole p,

W = ⟨⟨ReEin · Re
dp

dt
⟩⟩. (1.20)

Assuming a harmonic time dependence in the driving Ein(t) = E0e
−iωt the time

derivative of the dipole becomes dp
dt = −iωαE0e

−iωt, where E0 is the amplitude
of the incident electric field and ω is the driving frequency. Taking the real part of
Ein and dp

dt , the work done per cycle average becomes

W = ⟨⟨ReEin · Re
dp

dt
⟩⟩ = ωIm(E∗

0αE0). (1.21)

The loss of energy from the beam due to extinction normalized to the incident
intensity is the extinction cross section σext = W/I [65]. In case of a simple
spherical electric dipole scatterer, polarizability α is a scalar, and the extinction
cross section (units of area) is given by

σext = 4πkImα. (1.22)
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1.5. This thesis

We will see in Chapter 3 how the extinction cross section depends on a tensorial
and magnetoelectric α. Once excited, the dipole re-radiates a certain field Eout in
a process called scattering. However, some of the radiation will be absorbed by the
dipole, i.e., lost as heat in the scatterer, leading to a relation

σext = σabs + σscatt, (1.23)

where σabs is absorption cross section and σscatt is the scattering cross section,
all in units of area (m2). The scattering cross section quantifies how much power
an induced dipole radiates. It is obtained by dividing the angle integrated radiated
intensity of an oscillating dipole by the incident intensity, to get

σscatt =
8π2

3
k4|α|2. (1.24)

The ratio of scattering to extinction is called the albedo a of the particle. It tells us
how much light that was taken out of the beam the particle actually re-radiates. In
case of a lossless scatterer, σext = σscatt, the albedo equals one. This means that
the scattering resonance loses energy only due to radiative losses [65]. Material
absorption losses limit the albedo to a ≤ 1. Eq. (1.22) and (1.23) are best known in
the context of Rayleigh scattering for very small scatterers where α is simply given
by Eq. (1.12). In this regime, the equations imply the well known λ−4 increase of
scattering strength with wavelength, and the fact that scattering scales as V 2, while
absorption scales linearly with particle volume V . In other words, the smallest
particles tend to just absorb, while bigger objects are strong scatterers and weak
absorbers.

A fact that is not so broadly appreciated is that Eq. (1.22) and (1.23) hold
equally for very strong dipole scatterers that have cross sections comparable to λ2,
though in such cases the polarizability as in Eq. (1.12) must be modified to include
radiative damping. We will generalize this strongly scattering dipolar description
common for plasmon scatterers [66–69] to metamaterials in Chapter 3.

1.5 This thesis

The aim of this thesis is to characterize the magnetoelectric response of metama-
terial building blocks, specifically split rings, and to quantify scattering and ex-
tinction of sinlge building blocks as well as coupled systems. At the start of this
work, in 2008, several groups had just recently reported on achieving negative µ
using split rings [31, 33, 70]. Our quest does not revolve around engineering µ, but
concentrates on identifying what the underlying polarizability α is. To this end, we
have fabricated periodic arrays of split ring resonators with sub-wavelength lattice
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spacing and different dimensions along x and y directions in Cartesian coordinate
space. We present experimental proof of strong electric and magnetic dipole-dipole
coupling of SRRs in such arrays in Chapter 2. Chapter 3 is a theoretical study of the
polarizability of individual SRRs. We have developed an electrodynamic scattering
model that describes the magnetoelectric response of SRRs and predicts their ex-
tinction cross sections and radiation patterns. The theory shows strong support for
our experimental findings from Chapter 2 on coupling in arrays as evidenced by di-
rect comparison in Chapter 4. Furthermore, optical activity due to the magnetoelec-
tric coupling in the polarizability of geometrically achiral scatterers, as previously
reported for molecules, is explored in Chapter 5. In Chapter 6 we describe a cus-
tom built Fourier microscope set up to image radiation patterns of single photonic
structures. This set up can be used to probe radiation patterns of individual and
coupled plasmonic as well as metamaterial scatterers, a possibility that is outlined
in Chapter 7. Here we propose further experiments for quantifying the magnetic
response, coupling and optical activity of SRRs, as well as potential applications.
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Chapter 2
Electric and magnetic dipole coupling in

split ring arrays

We present experimental observations of strong electric and magnetic inter-
actions between split ring resonators in metamaterials. We fabricated near-
infrared (1.4 µm) planar metamaterials with different inter-split ring spacings
along different directions. Our transmission measurements show blueshifts
and redshifts of the magnetic resonance, depending on ring orientation rela-
tive to the lattice. The shifts agree well with a simple model with simultaneous
magnetic and electric near-field dipole coupling. We also find large broad-
ening of the resonance, accompanied by a decrease in effective cross section
per split ring with increasing density. These effects result from superradiant
scattering. Our data may shed new light on Lorentz-Lorenz approaches to
metamaterials.

2.1 Introduction

Full control over ϵ and µ requires ‘metamaterials’ of artificial nano-scatterers with
electric and magnetic response, arranged in sub-wavelength arrays. The archetyp-
ical building block is the split ring resonator consisting of a single cut metal loop
with an inductive response. In recent years the field of metamaterials has made
tremendous progress in shifting the resonant response from microwave to optical
frequencies [1–9]. An important conceptual question is whether the effective re-
sponse captured by ϵ and µ is influenced by coupling between constituents. Cou-
pling between SRRs in vertical 1D stacks [10, 11] has attracted great attention lately
outside the scope of metamaterials, e.g., for magnetic waveguides [10, 12–14], an-
tennas [15], metamaterial lasers [16], and stereomaterials [17, 18]. Although con-
stituent coupling might be anticipated to affect effective medium parameters [19],

23
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measured effective responses have been attributed to single constituents in all ex-
periments on metamaterial arrays to date.

In this chapter we present the first measurements of strong constituent cou-
pling in planar SRR metamaterial arrays. We fabricated and characterized SRR
lattices with a magnetic response at λ = 1.4 µm [4, 5] in which we vary the spac-
ing between SRRs along different lattice directions independently, as described in
Section 2.2. In Section 2.3 we observe large redshifts and blueshifts in the transmis-
sion resonances depending on SRR orientation relative to the lattices. We establish
that in-plane electric-electric dipole coupling and out-of-plane magnetic-magnetic
dipole coupling are strong competing interactions. In subsection 2.3.2 we explain
the shifts by a quasistatic electric and magnetic dipole coupling model [11], that en-
ables us to estimate the static magnetic and electric polarizability of SRRs. Finally,
in subsection 2.3.3 we discuss the role of dynamic effects on the metamaterial res-
onance, which are evident in density-dependent broadening and a saturation of the
transmission.

2.2 Methods

We have fabricated Au split rings arranged in arrays on glass substrates by electron
beam lithography and lift-off using poly(methyl methacrylate) (PMMA) resist [14],
without any adhesive layers. Fig. 2.1 shows a schematic of the fabrication process.
A Raith e-LiNE electron beam lithography machine was set to a beam current of
0.04 nA at 20 keV voltage, 10 µm aperture size, and a nominal dose of 160 µC/cm2.
We spin coated a bi-layer of PMMA (120 nm /100 nm thickness) separated by a thin
15 nm Ge layer on base-piranha cleaned glass substrate (10×10×0.5 mm, PGO).
Once the structures were written with the e-beam, the sample was developed in 3:1
methyl isobutyl ketone:isopropyl alcohol (MIBK:IPA) solution. An undercut in
the lowest PMMA layer is necessary as to avoid deposition of Au onto the PMMA
walls, and its subsequent lift-off with the PMMA layer. Ge is used as a mask during
plasma etching of the lowest layer of PMMA. The two PMMA layers have different
densities which ensure that the undercut is formed. After etching, 30 nm of Au was
evaporated in a physical vapor deposition machine (p∼10−7 mbar) after which the
remaining PMMA layer was removed in a lift-off in acetone at 60◦C. Geometrical
parameters are determined after scanning electron microscope (SEM) imaging with
image analysis software developed in Matlab.

A split ring with dimensions shown in Fig. 2.2 (a), (length l = 200 nm, width
w = 80 nm, thickness t = 30 nm, and gap size d = 80 nm) is expected to exhibit
a resonant response at λ = 1500 nm. It can be noted from Eq. (1.13) that the
frequency of the resonance will directly depend on the physical dimensions of the
split ring as 1/SRR size, and will further vary as gap width, arm width and thickness
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PMMA/Ge/PMMA

E-beam 

& develop Plasma etch (1)

Plasma etch (2) Evaporate Au Lift-off

Figure 2.1: A schematic of a step-by-step fabrication process of Au split rings on a glass
substrate with electron beam lithography.

are changed, due to changes in L and C. The electron beam dose determines the
lateral dimensions of the structure, and depends on the e-beam current, beam step
size, and beam dwell time. Furthermore, the dose, and hence size of the SRR, can
be affected via proximity effects of the beam during writing of the nearest neighbor
structures in arrays. Therefore, we have investigated the effects of size variation on
the LC resonance shifts prior to studies dependent on lattice density.

We quantify the LC resonance by optical transmission measurements. The
transmission was measured in a commercially available Witec confocal microscope
set up. The set up consists of a movable stage on which the sample is mounted, used
for navigation across the sample. A low NA lens (f=100 mm) is mounted in the
illumination path as to ensure quasi-collimated illumination from the Ando fiber
coupled halogen lamp. The transmitted intensity is collected with a 50x objective
and the spectra are collected by a Princeton Instruments Si CCD spectrometer for
visible wavelengths and InGaAs array for IR resonances. Fig. 2.2 (b) shows trans-
mission through arrays of SRRs with lattice spacing d = 500 nm, exposed with
different e-beam doses with dose scaling ranging from 1 to 1.5 times the nominal
dose. Insets in Fig. 2.2(b) (from 1 to 5) show the variations in SRR dimensions.
These are: vertical arm length l1=170, 180, 195, 200, 200; horizontal arm length
l2=185, 190, 200, 200, 200; gap width d = 100, 105, 90, 90, 85, and gap depthw =
65, 80, 80, 80, 80 nm (± 5 nm error). At this lattice spacing, almost no coupling of
SRRs in arrays is expected and therefore resonance shifts can only occur due to the
geometrical parameters of the split rings. Fig. 2.2(b) shows that the transmission
has two features. The feature at 1500 nm is the LC resonance, while the feature
at 800 nm is a higher order resonance that we disregard in this work. Fig. 2.2(b)
shows that only the center position of the transmission minimum at 1500 nm varies
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Figure 2.2: (a) A sketch of a split ring with indicated lateral dimensions. We fabricated
arrays of Au split rings on glass with periodicities dx,y = 300 nm (SEM micrograph)
and larger (inset). (b) Transmission spectra of split ring samples arranged in identical
lattices but different per-split ring size show a geometry dependence of the LC resonance
frequency. The SEM insets show a zoom in of split rings with lattice spacing dx = dy =
500 nm. The scale bar size is 100 nm.
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Figure 2.3: Transmission spectra for square split ring arrays with periodicities dx,y = 300
nm and larger (polarization along x). The magnetic resonance at 1.4 µm blueshifts and
broadens with increasing density. Each split ring has l =200 nm, w = 80 nm, d = 80 nm
and t = 30 nm (± = 5 nm).

with varying SRR dimensions, while width and depth of the transmission minimum
are negligibly affected. In general, reducing the lateral parameters l of SRRs results
in shifting of the resonance towards visible frequencies. From our measurements,
it can be seen that a 20% increase in l results in 50 nm resonance shift towards
the IR, due to an inverse dependence of the resonance frequency on the SRR arm
length. However, if l is increased, while d is decreased (1, 2), the resonance shifts
towards the visible part of the spectrum, due to the square root dependence of the
resonance on capacitor size.

Since the frequency of the resonance directly depends on the physical dimen-
sions of a split ring, we took great care to produce SRRs of identical dimensions
for our study on arrays of different densities, using image analysis of SEM micro-
graphs (see Fig. 2.2) to overcome proximity effects by post-selecting samples to
match a targeted size. Based on [4], our SRRs (l1 = l2 =200 nm, t = 30 nm,
d = 80 nm, w = 80 nm) are expected to have an LC resonance at 1.4 µm. Al-
though driven by the electric field [20, 21], we refer to the resonance as ‘magnetic’,
consistent with literature [22, 23]. To resolve the coupling strength between SRRs
along the x (along SRR base) and y (along SRR arms) directions separately, we
varied the pitches dx and dy independently between 300 nm and 550 nm, staying
below 550 nm to avoid grating diffraction in the range of the magnetic resonance.
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We measured polarization-resolved normal incidence transmission using the set up
reported in Ref. [14]. We illuminated a mm-sized area on the sample with a beam
from a halogen lamp (5◦ opening angle) and used a 20 µm pinhole in an interme-
diate image plane to select the transmitted intensity from single 36× 36 µm2 SRR
arrays, which we spectrally resolved by cooled Princeton Instruments Si CCD and
InGaAs array spectrometers, and normalized to transmitted intensity through bare
substrate.

2.3 Results

2.3.1 Transmission measurements

Fig. 2.3 shows x-polarized transmission spectra measured on a sample with square
lattices (dx = dy) of 200 × 200 × 30 nm SRRs with split width d = 80 nm. We
observe the magnetic resonance at 1.4 µm only for polarization along x, as reported
by [4, 5, 20, 21], as well as higher order plasmon resonances at 500 nm and 800
nm [4]. Incident light polarized along the long axis of the SRR , i.e., along y, ex-
cites plasmons that due to the length of the arms exhibit resonances in the visible
part of the spectrum. In this chapter we focus on the magnetic resonance only.
Tracing the minimum in transmission versus SRR density in Fig. 2.3, we find that
the resonance blueshifts as SRRs are brought closer. A blueshift upon increased
coupling is expected by analogy with plasmon hybridization [12, 13, 24], since
the magnetic dipoles are all oriented perpendicular to the SRR plane, and hence
transversely coupled. To study this coupling in detail, we fabricated samples with
a large set of SRR arrays (split width d = 100 nm) where dx and dy are varied
independently. We expect a blueshift with increasing density for all arrays since
the magnetic dipoles are always transversely coupled. In Fig. 2.4(a) we plot the
measured center frequency of the resonance versus SRR spacing for three sets of
arrays. For square lattices dx = dy we indeed observe a continuous blueshift, con-
firming the data for gap width d = 80 nm in Fig. 2.3(b). We also observe a blueshift
when only dy is varied (dx = 500 nm). Remarkably, we measure a redshift when
only dx decreases and dy is fixed at 500 nm. This result is surprising since red-
shifts imply longitudinal coupling, which is inconsistent with the orientation of the
magnetic dipoles. The redshift can only be understood by noting that SRRs also
have an electric polarizability in addition to a magnetic dipole [11, 20, 21]. The
electric dipole moment points along the SRR base, hence allowing for longitudinal
coupling in the plane of the sample.
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Figure 2.4: (a) Frequency of the magnetic resonance versus lattice spacing. The frequency
blueshifts when decreasing dy whether dy = dx (black squares) or not (light gray triangles,
dx = 500 nm), while it redshifts when decreasing dx (dark gray circles, dy = 500 nm). The
inset shows raw spectra for dx = dy = 300 nm (black curve), dx = 500 nm, dy = 300 nm
(light gray curve), dx = 300 nm, dy = 500 nm (dark gray curve). (b) FWHM of the
magnetic resonance versus lattice spacing (color coding as in (a)). Curves are theory
(electrostatic in (a), electrodynamic in (b)).

2.3.2 Quasistatic model

We implement a model that takes into account simultaneous electric and magnetic
dipole coupling, similar to the model for SRR stereodimers reported in [11]. In this
model, all magnetic dipoles couple transversely while electric dipoles transversely
couple along y and longitudinally along x. We limit ourselves to electrostatic and
magnetostatic nearest-neighbor coupling, ignoring electro-dynamic effects, the air-
glass interface, and multipole corrections. However, this model captures the main
physics embodied in our observations. We will improve on this model in Chapters
3 and 4. For a system of coupled harmonic oscillators, the coupled resonances are
set by the Lagrangian first formulated by Liu et al. [11]

L =
∑
i,j

[L
2
(Q̇2

i,j − ω2
0Q

2
i,j)−

Mh

d3x
Q̇i,jQ̇i+1,j

−Mh

d3y
Q̇i,jQ̇i,j+1 + 2

Meω
2
0

d3x
Qi,jQi+1,j −

Meω
2
0

d3y
Qi,jQi,j+1

]
,

(2.1)

where L is the SRR inductance, Qi,j(Q̇i,j) represents the charge (current) on the
SRR at site (i, j), and where Mh and Me quantify the mutual inductance and the
electric dipole coupling with nearest neighbors only. Solving Eq. (2.1) for the
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resonance frequency at normal incidence (k∥ = 0) yields

ω = ω0

√√√√ 1− 4κe
d3x

+ 2κe
d3y

1− 2κh
d3x

− 2κh
d3y

(2.2)

where ω0 is the resonance frequency of a single SRR, and κe,h =Me,h/L. Eq. (2.2)
is similar to a prediction by Marqués et al. [19] for 3D SRR arrays. We fix κe =
1.04·10−21 m3, i.e., the SRR electric polarizability, to match the resonant extinction
cross section of 0.3 µm2 measured by Husnik et al. [25], and we set κh = 0.67κe as
previously reported for a system of two vertically stacked SRRs by Liu et al. [11].

First, we examine predictions with either κe or κh set to 0. Fig. 2.5(a) shows
the resonance ω versus dx,y assuming magnetic coupling only (κe = 0). The reso-
nance blueshifts for decreasing dx,y in all cases due to transverse magnetic dipole
coupling. Fig. 2.5(b) shows the resonance frequency for electric coupling only
(κh = 0). The resonance redshifts with increasing density both for square arrays
and strips of SRRs arranged side by side unless dx is fixed at 500 nm. This result
indicates that longitudinal coupling exceeds transverse coupling in square lattices
of strictly in-plane dipoles. This behavior is indeed observed for the purely electric
resonance at 800 nm, at least in the regime max(dx, dy) ≤ 400 nm where grating
anomalies [26] (asymmetric shoulders at 750 nm in Fig. 2.3(b)) do not yet set in.

Neither model with solely electric or solely magnetic interaction is consistent
with the measured shift of the 1.4 µm resonance, since we observe blueshifts in all
cases except when dx is varied and dy is fixed. Fig. 2.5(c) shows the calculated
ω taking into account both electric and magnetic interactions at κh=0.67κe. As in
the data, the resonance only redshifts when decreasing the distance dx at large dy.
In this case transverse electric coupling is weakest. The longitudinal electric cou-
pling exceeds the sum of weak transverse electric and strong transverse magnetic
coupling, leading to a net redshift. For a quantitative comparison with our data we
plot the shifts in Fig. 2.5(c) together with the data in Fig. 2.4. The good quantita-
tive agreement without any adjustable parameters confirms our interpretation that
SRRs in metamaterial arrays show strong electric and magnetic dipole-dipole inter-
actions. These interactions are best quantified in rectangular arrays, since in square
arrays studied sofar [4, 5] partial cancelation obscures the magnetically induced
blueshift. The data show that the ratio κe/κh = 0.67 reported for vertically stacked
SRRs [11] is also relevant for dipole-dipole coupling in the xy-plane, allowing a
direct identification of κe and κh with on-resonance electric and magnetic polariza-
bilities. It is remarkable that the magnetic polarizability αH is of the same order as
the electric polarizability αE , as opposed to the normal ordering αH ≪ αE [27].
This conclusion is in accordance with recent estimates of Merlin [27], that SRRs
have αH comparable in magnitude to αE provided ImϵAu ≫ λ/ℓ, where ℓ is the
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Figure 2.5: Electrostatic calculation of the magnetic resonance frequency as a function of
lattice spacing. Black curves: dx = dy . Light gray curves: dy varies at fixed dx = 500 nm.
Dark gray curves: dx varies at fixed dy = 500 nm. For magnetic coupling only (a),
resonances always blueshift with decreasing lattice spacing, while for electric coupling
only (b), the behavior of the resonances for dx = dy changes sign with respect to (c) (all
couplings). Insets in (a), (b) and (c) are sketches of the electric and magnetic coupling
between split rings. Curves in (c) are reproduced in Fig. 2.4.
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characteristic scatterer size. Given the dielectric constant of Au ImϵAu ∼ 10, and
the size λ/ℓ ∼ 7 of our SRRs, their LC resonances are indeed expected to be mag-
netic resonances with large αH . Into the visible, ImϵAu rapidly decreases, causing
αH to vanish [27], as argued independently in [9].

2.3.3 Width and depth of the resonance

A striking feature in our transmission data (cf. Fig. 2.3) in addition to the spectral
shifts, is the large broadening of the resonance as the density of SRRs increases.
In Fig. 2.4(b) we plot the measured full width at half minimum (FWHM) of the
transmission minimum versus lattice spacing. For square lattices, the width more
than doubles from 1000 to 2150 cm−1 as the pitch is reduced from 550 to 300 nm,
while for both types of rectangular lattices (dx or dy fixed at 500 nm) the width
increases from 950 to 1400 cm−1. Such broadening was also noted by Rockstuhl
et al. [5] for square arrays. Our extensive data on many rectangular and square
arrays allow us to quantitatively identify the source of broadening. From the outset
it is clear that the broadening is outside the scope of Eq. (2.1), since the (Ohmic)
damping rate is almost independent of coupling in any electrostatic model. Instead,
electrodynamical radiation damping, i.e., scattering loss into the far field must be
taken into account. As all oscillators in our sub-diffraction lattices are driven in
phase (k|| = 0), scattered light radiated by all oscillators interferes destructively
for all angles, except along the transmitted and reflected direction. Since the mag-
netic dipoles are aligned along the incident beam, they do not radiate any ampli-
tude into the k|| = 0 directions. Hence, all radiation damping is solely due to
the induced electric dipoles. For a quantitative analysis we use an electrodynam-
ical model for electric point dipoles with a Lorentzian resonance in αE according
to [13, 26], centered at 1.4 µm. We will improve on this model in Chapter 3 and 4.
We use σext = 4πkImα with k = 2π/λ, using the Lorentzian electric polarizabil-
ity α0 = ω2

0κe/(ω
2
0 − ω2 − iωγ) implicit in Eq. (2.2), and with radiation damping

1/α = 1/α0 − i23k
3 [13]. We take γ = 1.2 · 1014 s−1 for the Ohmic damping of

Au from [28]. We evaluate Eqs. (8,9) in Ref. [26] to predict the array transmission.
This dynamic model has no adjustable parameters, since the on-resonance polariza-
bility is fixed to match the extinction cross section of single SRRs that was reported
in [25]. We find a broadening of the collective transmission resonance that quanti-
tatively reproduces the measured broadening with decreasing lattice spacing for all
lattices (FWHM curves in Fig. 2.4). An important conclusion is that the large width
of the magnetic response commonly observed for SRR arrays [1–5] is not due to
intrinsic loss, but is quantitatively consistent with superradiant decay of the electric
dipoles. The collective enhancement of the single SRR radiative linewidth, already
suspected by [5], implies enhanced scattering and a reduction of the absorption of
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Figure 2.6: Effective extinction cross section per split ring derived from on-resonance
transmission. The black dashed line indicates the cross section of a single split ring
(from [25]). The cross section per split ring is limited by the area dxdy of the unit cell
(black and gray lines).

the array far below the albedo of single SRRs.
Finally we correlate the resonance broadening with the measured transmission

T on resonance. Fig. 2.6 shows the effective extinction cross section derived from
our measurements through σeff = dxdy(1−T ). For uncoupled scatterers we expect
constant σeff equal to the extinction cross section σext = 0.3 µm2 measured for a
single SRR in [25] (dashed line in Fig. 2.6), as indeed almost found in our data
for dx = dy > 500 nm. For d < 500 nm, we measure values for σeff far below
σext indicative of strong dipole-dipole coupling. The collective superradiant decay
(Fig. 2.4(b)) which widens the resonance reduces the extinction per element to
remain below the unit-cell area dxdy (curves in Fig. 2.6).

2.4 Conclusions

In conclusion, we have measured large resonance shifts as a function of density in
SRR arrays resonant at λ = 1.4 µm. These shifts are due to strong near-field
electric and magnetic dipole coupling that we analyzed in a quasistatic nearest
neighbor model. Furthermore, we observe electrodynamic superradiant damping
that causes resonance broadening and an effective reduction of the extinction cross
section per SRR. Since the data show that the response of SRR arrays is not sim-
ply given by the product of the density and polarizability of single constituents,
we conclude that a Lorentz-Lorenz analysis to explain effective media parame-
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ters of metamaterials ‘atomistically’ may need to be re-assessed [29]. Indeed, our
data has important repercussions: it calls for a shift away from the paradigm that
the highest polarizability per constituent is required to obtain the strongest electric
or magnetic response from arrays of electric or magnetic scatterers. Our experi-
ments show that increasing the density of highly polarizable constituents to raise
the effective medium response [4] is ineffective, since superradiant damping limits
the achievable response. To strengthen ϵ or µ, we propose that one ideally finds
constituents that have both a smaller footprint and a smaller polarizability per con-
stituent. We stress that even if constituent coupling modifies ϵ and µ, we do not
call into question reported effective medium parameters or the conceptual valid-
ity thereof per se. We propose that the effective medium parameters only loose
their usefulness when constituent coupling is so strong that collective modes of dif-
ferently shaped macroscopic objects carved from the same SRR array have very
different resonance frequencies or widths. In this regime interesting physics comes
into view, particularly regarding active devices. Specific examples are array anten-
nas for spontaneous emission [15] and ‘lasing spasers’ [16], where the lowest-loss
array mode will lase most easily.
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Chapter 3
Magnetoelectric point scatterering theory

for metamaterial scatterers

We present a fully analytical point scattering model which can be applied to ar-
bitrary anisotropic magnetoelectric dipole scatterers, including split ring res-
onators, chiral and anisotropic plasmonic scatterers. We have taken proper
account of reciprocity and radiation damping for electric and magnetic scat-
terers with any general polarizability tensor, including magnetoelectric inter-
actions. Our theory sheds new light on the magnitude of cross sections for scat-
tering and extinction, and for instance on the emergence of pseudo-chirality in
the optical response of geometrically non-chiral scatterers like split rings and
split ring clusters. Specifically, we predict which observables in scattering ex-
periments allow to fully quantify all components of the polarizability tensor
of split rings, including their off-diagonal magnetoelectric response. Finally,
we show that our model describes well the extinction of stereo-dimers of split
rings, while providing a completely new interpretation of the coupling mecha-
nisms underlying recent experiments.

3.1 Introduction

In order to understand the light-metamatter interaction in systems of strongly cou-
pled magnetoelectric scatterers, it is important to understand how individual meta-
material building blocks are excited and how they scatter. So far, explanations
of the observed phenomena have mainly rested on two pillars. On the one hand,
data are compared to brute force finite-difference time-domain (FDTD) simulations
of Maxwell’s equations, usually showing good correspondence [1–9]. The FDTD
method is essentially equivalent to performing a numerical experiment that still
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requires further interpretation in order to understand how, e.g., split rings scatter
or hybridize in coupled systems. There is general consensus that to lowest order,
metamaterial interactions in lattices of scatterers like SRRs must be described by
magnetoelectric point-dipole interactions. Hence, simple models with dipolar cou-
pling terms are the second main interpretative tool to predict, e.g., frequency shifts
due to electric and magnetic dipole-dipole interactions in lattices and oligomers.
These models either take the form of dipole models in which electro-static and
magneto-static polarizabilities are coupled to predict, e.g., ϵ and µ, and the exis-
tence of coupled excitations like magneto-inductive waves [10–16], or they take the
form of Lagrangian equations of motion for current oscillation in coupled LC cir-
cuits [17–20], as used in Chapter 2. To rationalize this LC circuit intuition, several
authors have analyzed current distributions obtained by FDTD simulations in order
to retrieve the microscopic parameters (i.e., the polarizability) underlying such a
dipolar interaction model, and in order to estimate multipolar corrections [5, 21–
26].

While there is general consensus that to lowest order, metamaterial interac-
tions must essentially be magnetoelectric point dipole interactions, we note that
the dipolar circuit models that are adequate to explain many basic features of sub-
wavelength clusters and metamaterial arrays, have significant limitations when ap-
plied to strong scatterers and larger clusters. This is a consequence of the fact that
electric circuit theories lack the velocity of light c as a parameter, by assuming
c = ∞ (k = 0) [17–20]. Such theories will be referred to in this work as ‘quasi-
static’ or ‘electro-static’ and ‘magneto-static’. Their validity ends when retardation
or interference become important, quantitative cross sections are required or super-
and subradiant radiative damping plays a role. For instance in the experiment of
Chapter 2, Fig.2.4 (b) shows superradiant damping not contained in quasi-static
models. A fair comparison of experiments with intuitive dipole requires a fully
electrodynamic theory that (1) contains finite c, (2) satisfies energy conservation in
the form of an appropriate optical theorem, and (3) can be used for dipoles with
tensorial electric, magnetic, and magnetoelectric response. Indeed, actual metama-
terial scatterers are very strongly bi-anisotropic, with large magnetoelectric cross
coupling whereby magnetic fields induce strong electric dipoles and vice versa. We
note that the theories existing sofar can be divided in two classes: on the one hand
LC models and electro-static and magneto-static polarizability approaches [10–20]
correctly deal with (3), but not with (1) and (2). On the other hand textbook elec-
tric point dipole scattering theories exist that correctly deal with (1) and (2), but
not with magnetoelectric effects (3). Electric point dipole scattering theory is well
known as a very effective means to describe random media, extraordinary trans-
mission and plasmon particle arrays [27–29] and has been applied to metamaterial
problems in cases without magnetoelectric effects [30, 31]. In this chapter we de-
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rive an electrodynamic theory for general magnetoelectric scatterers that satisfies
all three requirements. Essential ingredients for a consistent theory are generalized
Onsager constraints [15, 32, 33] for the electrodynamic polarizability, and a mag-
netoelectric optical theorem first derived by Belov et al. [34]. While our theory
sheds no light on the microscopic origin of the polarizability [35], a unique contri-
bution is that we show how any quasi-static model [10–20] can be converted into
an electrodynamically consistent scattering theory by a new tensorial method of
radiation damping addition. Furthermore we predict how extinction measurements
and measurements of radiation patterns (i.e., differential scattering cross section)
can be used to quantify the polarizability tensor.

This chapter is structured in the following way: Firstly, in Section 3.2 we review
in detail the general theory, taking into full account reciprocity, the optical theorem
and radiation damping. In Section 3.3 we apply this theory to set up the polariza-
bility of the archetypical metamaterial building block, a single SRR. In Section 3.4
we show which set of experiments can be used to retrieve the tensor polarizability
α. We predict that magnetoelectric coupling directly implies circular dichroism in
the extinction of single split rings, evidencing the utility of our theory to describe
extrinsic chirality [8, 9, 36–41]. We will verify this in Chapter 5. Thirdly, we show
in Section 3.5 that the theory can be simply applied to obtain quantitative scatter-
ing spectra of coupled systems. By way of example we examine the case of two
coupled resonators in the stereodimer configuration reported by Liu et al. [18].

3.2 Magnetoelectric point scatterer

3.2.1 Dynamic polarizability

A paradigm in scattering theory is the point dipole scatterer [27–29, 42, 43] to
model scattering by very small, but strongly scattering particles. In such a theory,
each scatterer is approximated as an electric dipole with an electric dipole moment
p = αEEE that is proportional to the driving electric field E. The proportionality
constant is the polarizability αEE . Generally, incident fields E and H induce a
(complex) current distribution in an arbitrary scatterer. It is the express point of
this chapter to assess what the scattering properties are of subwavelength scatterers
with strong electric and magnetic dipole moments, as this represents the physics
expected of metamaterial building blocks [17–20, 44]. Therefore we retain only
electric and magnetic dipole terms, neglecting higher order multipoles. We derive
a generalized point scattering theory for metamaterials that includes a magnetic
dipole moment m on an equal footing with the electric dipole moment p. By
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definition, the electric and magnetic fields due to an induced p and m are equal to(
Eout

Hout

)
= G0(r, r′)

(
p
m

)
, (3.1)

with a dyadic Green tensor G0 that describes the field at position r = (x, y, z) due
to a dipole at r′ = (x′, y′, z′). Throughout this chapter we suppress harmonic time
dependence e−iωt. We use a rationalized unit system that significantly simplifies
all equations and is fully explained in Table 3.1. The 6×6 Green dyadic of free
space can be divided in four 3×3 blocks

G0(r, r′) =

(
G0

EE(r, r
′) G0

EH(r, r′)
G0

HE(r, r
′) G0

HH(r, r′)

)
(3.2)

The 3×3 diagonals correspond to the familiar known electric field Green dyadic [28,
29] and magnetic field Green dyadic of free space, which in our unit system (see
Appendix) both equal

G0
EE(r, r

′) = G0
HH(r, r′) = (Ik2 +∇∇)

eik|r−r′|

|r − r′|
. (3.3)

The off diagonal blocks correspond to the mixed dyadics that specify the electric
field at r due to a magnetic dipole at r′, and the magnetic field at r due to an
electric dipole at r′, respectively. Explicitly:

G0
EH(r, r′) = −G0

HE(r, r
′)

= ik

 0 ∂z −∂y
−∂z 0 ∂x
∂y −∂x 0

 eik|r−r′|

|r − r′|
.

(3.4)

The central starting point in this work, is that we assume that p and m can be
induced by both the external electric and magnetic fields E and H according to the
most general linear response(

p
m

)
= α

(
Ein

Hin

)
. (3.5)

In Eq. (3.5), α is a 6×6 polarizability tensor, which consists of four 3×3 blocks,
each of which describes part of the dipole response to the electric or magnetic
component of the incident light

α =

(
αEE αEH

αHE αHH

)
. (3.6)
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This form and interpretation of the 6×6 polarizability in Eq. (3.6) is well known in
the field of bi-isotropic and bi-anisotropic media [33]. In this field, many authors
have analyzed the electro-static and magneto-static polarizability of Ω-particles,
split ring resonators, bi-(an)isotropic spheres in the Rayleigh limit, and chiral scat-
terers like wire helices [10–15, 33]. In addition to the purely electric polarizabil-
ity αEE known from plasmonics [45], the tensor also contains αHH that quanti-
fies the magnetic dipole induced purely by a driving magnetic field. Finally, the
off-diagonal blocks represent magnetoelectric coupling. The lower diagonal αHE

quantifies the magnetic dipole induced by an incident electric field, and αEH the
electric dipole induced by an incident magnetic field. Such magnetoelectric cou-
pling is well known to occur in the constitutive tensors of metamaterials [46, 47].
However, the relative strength of magnetoelectric coupling in the polarizability,
i.e., αEH , and αHE have not been experimentally quantified for the archetypical
building blocks of metamaterials, like split ring resonators.

An important distinction with earlier analyses of the 6×6 polarizability tensor
in quasi-static models [10–15, 33], is that in any scattering theory α is constrained
by reciprocity and energy conservation. As we discuss below, energy conservation
requires that the polarizability α must depend on frequency ω and the velocity of
light c. Hence, the polarizability that we discuss in this work is not a static polariza-
bility, but is known as dynamic polarizability [27, 28] This dynamic polarizability
is equivalent to the single scatterer t-matrix [28].

3.2.2 Onsager relation for dynamic polarizability

There are several constraints on α. In addition to any symmetry of the scatterer
itself that may impose zeros in the polarizability tensor, these constraints are due
to reciprocity and to energy conservation. We start by examining the constraints
imposed by reciprocity. It is well known from the field of bi-anisotropic materi-
als [33] that reciprocity imposes so-called Onsager constraints on the most general
constitutive tensors relating (D,B) to (E,H). Several textbooks [15, 33] and
Garcı́a-Garcı́a et al. [44] proposed that such Onsager constraints carry over di-
rectly to static polarizabilities. Chapter 7.1. in Ref. [15] lists Onsager relations for
the static polarizability in the following form:

αEE = αT
EE , αHH = αT

HH , and αEH = −αT
HE .

(3.7)

These textbooks [15, 33] derive the Onsager relations rigorously for constitutive
tensors (ϵ, µ and cross terms) by solving the wave equation in homogeneous, bi-
anisotropic space. To the best of our knowledge, the quoted Onsager relations for
static polarizabilities are based on the assumption that Onsager relations derived for
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effective medium tensors must hold also for microscopic constituent polarizabili-
ties, as we could not find any independent proof in literature. Here we rigorously
derive the Onsager relations Eq. (3.7) for the dynamic polarizability of electrody-
namic magnetoelectric point scatterers, and thereby show that the general point
dipoles proposed in this work can indeed be used as microscopic building blocks
for an exact scattering theory that describes the formation of bi-anisotropic media
from dense lattices of scatterers in the effective medium limit. Since the point scat-
tering building blocks fulfill the Onsager constraints, they are indeed the natural
building blocks to derive effective media constitutive tensors by homogenization
that also satisfy the Onsager relations.

In this work we focus solely on scatterers made from reciprocal materials (typi-
cally gold and silver), as is commonly true for the metallic scatterers that constitute
metamaterials. Since the materials that compose our scatterers are assumed to sat-
isfy reciprocity microscopically, the polarizability tensor must also lead to a scat-
tering theory that satisfies reciprocity. To derive reciprocity constraints on α, it is
sufficient to examine the Green function in the presence of just one point scatterer
at the origin. This Green function that quantifies the field at r2 due to a source at
r1 in presence of a single scatterer at rs can be written as [27, 28, 48]

G(r1, r2) = G0(r1, r2) +G0(r2, rs)αG0(rs, r1), (3.8)

Reciprocity requires for any Green function G (similarly split in four blocks) that(
GEE(r2, r1) GEH(r2, r1)
GHE(r2, r1) GHH(r2, r1)

)
=(

GEE(r1, r2) −GEH(r1, r2)
−GHE(r1, r2) GHH(r1, r2)

)T

(3.9)

which is equivalent to noting that swapping source and detector leaves the detected
field unchanged. An extra minus occurs for the off-diagonal terms, i.e., when swap-
ping a magnetic (electric) detector with an electric (magnetic) source. It is easy to
verify that Eq. (3.9) is indeed satisfied by the free space Green function G0.

Using this fact, we evaluate Eq. (3.9) for the Green function in Eq. (3.8) to find
if reciprocity constrains α. Since reciprocity is clearly satisfied for the first term in
Eq. (3.8), we now focus on the second term

G0(r2, rs)αG0(rs, r1) = G0(r1, rs)αG0(rs, r2). (3.10)

Expanding the matrix products in Eq. (3.9) while making use of the reciprocity of
the free Green function results in the Onsager relations for the dynamic polariza-
bility that are listed in Eq. (3.7). These relations are identical in form to the On-
sager relations for constitutive tensors [33], but are now derived on very different
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3.2. Magnetoelectric point scatterer

grounds. Whereas for bi-anisotropic media, Onsager relations on constitutive ten-
sors are derived by solving for the Green function of homogeneous bi-anisotropic
space, our new proof for Onsager relations that constrain dynamic polarizabilities
only uses reciprocity of the Green function of vacuum.

3.2.3 Tensorial magnetoelectric optical theorem

Energy conservation imposes an ‘optical theorem’ that constrains the dynamic po-
larizability such that (in absence of material absorption) extinction equals scat-
tering. The optical theorem for scalar electric dipole scatterers has been amply
discussed in literature, for instance in the work by Sipe and Van Kranendonk [49]
on resonant dielectrics, as well as in various references dealing with multiple scat-
tering theory of random media and plasmonics [27–29]. This same scalar optical
theorem has also been applied in the context of metamaterials to scatterers with a
magnetic response [30, 31] that is completely uncoupled from the electric response.
Extension of the optical theorem to 6×6 tensorial scatterers, i.e., including magne-
toelectric cross coupling, is not immediately trivial as one needs to re-evaluate the
definition of extinction, and of the amount of power radiated into the far field. Such
an extension to the general case is reported by Belov et al. in Ref. [34].

For completeness we summarize the derivation of this optical theorem reported
by Belov et al. [34]. As in the scalar electric case [27–29, 49], the optical theorem
is based on equating extinction to scattering. Here, extinction corresponds to the
amount of work done per unit cycle by the incident field Ein and Hin to drive p
and m, which is equal to W = ⟨⟨ReEin ·Redpdt +ReHin ·Redmdt ⟩⟩. This evaluates
to

W =
2π

Z
kIm

[(
Ein Hin

)∗
α

(
Ein

Hin

)]
, (3.11)

where (·)∗ indicates complex conjugate. The work per cycle can also be converted
into an extinction cross section by dividing out the incident intensity |E|2/(2Z)
(where Z is the impedance of the surrounding medium)

σext = 2Z
W

|E|2
(for scalar α : σext = 4πkImα).

The power per solid angle radiated by the induced dipoles in a direction specified by
a unit vector r̂ is found by calculating the far-field Poynting vector from Eq. (3.1).
It is composed of three terms.

dP

dΩ
=
dPp

dΩ
+
dPm

dΩ
+
k4

2Z
Re(p×m) · r̂, (3.12)

The first term in Eq. (3.12) represents the scattered radiation of just the electric
dipole p, which integrates to a total scattered power given by Larmor’s formula
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Pp = 4π
3Z k

4|p|2. The second term in Eq. (3.12) represents the radiation pattern
of just the magnetic dipole m, again given by Larmor’s formula. The third term,
however, can completely change the radiation pattern, as it contains the interference
between the fields of p and m. Hence the relative phase between the induced
p and m is important for the differential scattering cross section. To obtain the
total scattered power, one should integrate Eq. (3.12) over all solid angle. The
interference term integrates to 0, as it is an odd function of r̂. Therefore, despite
the fact that interference makes radiation patterns of magnetoelectric scatterers non-
trivial, Larmor’s formula for the scattered power immediately generalizes to P =
4π
3Z k

4
(
|p|2 + |m|2

)
. The optical theorem is obtained by equating scattered power

P to the work W done by the incident field (Ein,Hin)

Im

[(
Ein Hin

)∗
α

(
Ein

Hin

)]
=

2

3
k3

[(
Ein Hin

)∗
α∗Tα

(
Ein

Hin

)]
(3.13)

The incident field can be eliminated by expanding Im(.) = 1
2i [(.)− (.)∗] to yield

1

2i

[
α−α∗T ] = 2

3
k3α∗Tα. (3.14)

This optical theorem clearly reduces to the well known scalar optical theorem
Imα = 2/3k3|α|2 in case α is not a tensor, and can easily be converted in the
Sipe-Van Kranendonk form

α−1 − (α∗T )−1

2i
=

2

3
k3I (3.15)

reported by Belov et al. [34], provided that α is invertible.

3.2.4 Addition of radiation damping to general α tensor

The optical theorem (Eq. 3.14) in itself should be viewed as a condition that can
be checked for any given polarizability tensor to verify if it leads to an energy
conserving scattering theory. Given the large number of microscopic quasi-static
models for metamaterial scatterers, it is unfortunate that the optical theorem in itself
does not provide a recipe that specifies how to amend an electro-static polarizability
to satisfy energy conservation. In this section we provide such a recipe. Such a
method is well known for simple electric scatterers, where it is for instance known
that an electro-static Rayleigh polarizability α0 = 3V (ϵ − 1)/(ϵ + 2) for a small
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3.2. Magnetoelectric point scatterer

sphere of dielectric constant ϵ that in itself violates the optical theorem [50], can be
amended by ‘addition of radiation damping’. Any electro-static scalar α0 can be
converted into a bona fide dynamic polarizability that satisfies the optical theorem
by adding radiation damping [28, 29]

1

α
=

1

α0
− i

2

3
k3. (3.16)

Addition of radiation damping is key in any point dipole theory for, e.g., strongly
interacting plasmon particles, and has been derived on independent grounds both
from the optical theorem, and from size parameter expansions of dipolar scattering
coefficients in Mie theory for spheroids [42, 51–54].

Here we derive a general method to add radiation damping to any electro- and
magneto-static polarizability. This allows any polarizability that is derived from
a circuit model to be generalized to be a building block in an electrodynamically
consistent scattering theory. We start from Eq. (3.13), but now assume that α can
be diagonalized. This assumption is verified for split rings below. We call the
eigenvectors vi, and denote the eigenvalues, which we will refer to as ‘eigenpolar-
izabilities’, with Ai. Expanding the incident field at the scatterer in the orthogonal
eigenvectors (

Ein

Hin

)
=

∑
i

civi, (3.17)

and with αvi = Aivi and ⟨vi|vj⟩ = δij , Eq. (3.13) reduces to

2

3
k3

6∑
i=1

|ci|2|Ai|2 ≥
6∑

i=1

|ci|2ImAi, (3.18)

with strict equality for lossless scatterers. Since this equation must be satisfied
for any choice of incident wave (i.e., any combination of ci), the generalized opti-
cal theorem for 6×6 polarizability tensors in Eq. (3.14) and Ref. [34] can also be
expressed in terms of the eigenpolarizabilities as

2

3
k3|Ai|2 ≥ ImAi ∀i = 1 . . . 6, (3.19)

again with strict equality for lossless scatterers. Eq. (3.19) implies that the polar-
izability tensor represents an energy conserving scatterer, if and only if each of
its 6 eigenpolarizabilities are chosen to satisfy the simple scalar optical theorem
Imα = 2/3k3|α|2 derived for electric scatterers in Refs. [27–29, 49]. This new
interpretation of the generalized optical theorem highlights the importance of two
new quantities: the eigenpolarizabilities, and the corresponding eigenvectors of the
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point scatterer polarizability. It is now evident, that we can simply apply the scalar
recipe to each eigenpolarizability separately. A compact notation for this method
is:

α−1 = α−1
0 − 2

3
k3iI. (3.20)

We note that this expression, which is identical to Eq. (3.16) upon replacement
of 1/(·) by matrix inversion, provides a unique relation to translate a magneto-
/electro-static polarizability tensor α0 derived from LC circuit theory, to the cor-
responding electrodynamic polarizability that satisfies the optical theorem. We can
hence consistently assess how intuitive ideas based on a microscopic circuit model
for electro-static and magneto-static dipoles lead to quantitative predictions for ex-
tinction, scattering, as well as resonance hybridization, diffraction and super/sub
radiant damping in coupled systems, such as periodic systems, or arbitrary finite
clusters.

In addition to its application to metamaterial scatterers discussed in the remain-
der of this chapter, the formalism derived here can be used also for many other
problems of current interest. For instance, Alù and Engheta have recently resolved
an interesting paradox first introduced by Kerker et al., concerning the possibility
of realizing zero-forward-scattering magneto-dielectric nanoparticles that appear
to violate the optical theorem [55, 56]. Alú and Engheta used a size parameter
expansion of the Mie coefficients of small magneto-dielectric spheres to show that
magneto-dielectric spheres with electric and magnetic polarizabilities that are al-
most equal in magnitude but opposite in sign have a highly anisotropic scattering
pattern, and violate the optical theorem unless one includes size expansion terms
beyond the quasi-static limit. We note that all the essential physics of this problem
can also be studied with ease using our formalism. It is easy to verify that a diagonal
isotropic tensor with αE = −αH indeed corresponds to a spherical scatterer with
a highly anisotropic radiation pattern according to Eq. (3.12), with very small for-
ward scattering. If radiation damping is added as in Eq. (3.20), the optical theorem
is indeed satisfied, and forward scattering is low but not zero, in accordance with
Ref. [55]. Firstly, this simple example shows that magnetoelectric point dipoles can
have counterintuitive properties, such as highly anisotropic radiation patterns, very
much unlike simple electric dipoles. Secondly, our formalism provides an easy an-
alytical model that does not need a size parameter expansion of an exact solution,
in order to study or design in how far paradoxes like the zero-forward scattering
paradox extend to anisotropic particles that also have off diagonal, magnetoelectric
elements.
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3.3. Polarizability of split ring resonators

3.3 Polarizability of split ring resonators

3.3.1 Symmetry

As an example of our general theory we consider the specific example of split ring
resonators as studied in our experiments in Chapter 2. The quasi-static polarizabil-
ity of split ring resonators was discussed in detail by Garcı̀a-Garcı̀a et al. [44], and
also analyzed by Belov et al. [30], Shamonina et al. [11], Gorkunov et al. [13] and
Marqués et al. [14]. We consider the LC resonance of an infinitely thin split ring
in the xy plane, with split oriented along the x axis, as shown in Fig. 3.1(a). Such
a split ring can only have an electric dipole moment along x and a magnetic dipole
moment along z. As outlined in Ref. [44], the only nonzero tensor elements are
αxx
EE , αzz

HH and the cross coupling terms αzx
HE αxz

EH .

αSRR =


αxx
EE 0 ... 0 αxz

EH

0 0
...

. . .
...

0 0
αzx
HE 0 ... 0 αzz

HH

 . (3.21)

The symmetry constraints that set which elements of αSRR are zero, are valid both
for the electrodynamic and quasi-static polarizability of split rings.

3.3.2 Quasi-static RLC model

We now construct the electrodynamic polarizability by starting from a quasi-
electro/magneto-static polarizability derived from a single resonant RLC equation
of motion. Therefore we take a common resonant frequency dependence out of the
tensor elements, writing

αstatic
SRR = α(ω)


ηE 0 ... 0 iηC
0 0
...

. . .
...

0 0
−iηC 0 ... 0 ηH

 , (3.22)

where ηE , ηC and ηH are constant and α(ω) is a Lorentzian prefactor

α(ω) =
ω2
0V

ω2
0 − ω2 − iωγ

. (3.23)

Here, ω0 is the SRR resonance frequency ω0 ≈ 1√
LC

, γ is the damping rate due to
the Ohmic loss of gold and V is the physical particle volume. As in the plasmonic
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Figure 3.1: Split ring radiation patterns corresponding to the polarizability tensor eigen-
vectors. Panel (a): (Sketch) A single split ring resonator can have an electric dipole mo-
ment p along the x-axis due to charging of the split. Circulating current j in the ring gives
rise to a magnetic dipole moment m in the z-direction. Panels (b,c): Radiation patterns of
the two eigenmodes of a split ring in the case of no off-diagonal magnetoelectric coupling
(ηE = 0.7, ηH = 0.3, ηC = 0). The electric dipole moment oriented along the x-axis ra-
diates most of its amplitude in the ky, kz plane, while the magnetic dipole oriented along
the z-axis radiates mostly into the kx, ky plane. Panels (d,e): radiation patterns of the
eigenvectors with magnetoelectric cross coupling (ηC = 0.4). Panel (f): indication of the
polarization of the light radiated by the eigenvector with largest eigenvalue (panel (c)).
Light is linearly polarized for wave vectors along the cartesian axes, but elliptically polar-
ized in general. The direction of strongest circular dichroism in extinction and scattering
is in the xz-plane.

case, this approximation is coined ‘quasi’-static, as it does contain frequency ω,
but does not contain the velocity of light c. In this formulation, all the frequency
dependence, and the units of αSRR are contained in α(ω). The parameters ηE ,
ηH and ηC are dimensionless. For a lossless split ring ηE , ηH and ηC are all real,
and assumed positive on the basis of the anticipated in-phase response at very low
frequencies [44]. The i multiplying ηC is needed to ensure lossless scattering (for
γ = 0), and can be understood microscopically as reflecting the fact that any charge
separation that is induced through a current lags the current by a quarter wave (and
vice versa). In our model all Ohmic losses are introduced via γ.

3.3.3 Limit on magnetoelectric coupling

Having constructed a quasi-static polarizability in accordance with RLC circuit
models proposed in earlier reports, we apply radiation damping according to Eq.
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(3.20) to obtain a scatterer that has a correct energy balance [57]

α−1
SRR = (αstatic

SRR )−1 − 2

3
k3I. (3.24)

So far we have not explicitly discussed absorption loss, except through the inclusion
of the material damping constant γ in the quasi-static polarizability. Starting from a
quasi-static polarizability with quasi-static eigenpolarizabilities Astatic

i , the albedo
for each eigenillumination vi can be expressed as

ai =
1

1− 3
2k3

Im( 1
Astatic

i
)
. (3.25)

This albedo quantifies the fraction of energy absorbed in the scatterer compared to
the total energy extinct by the scatterer when illuminated at eigenillumination. It
follows that for any lossy scatterer the imaginary part of each eigenvalue Astatic

i

of the quasi-static polarizability tensor must be positive to ensure 0 ≤ a ≤ 1. In
the case of a tensorial α with loss included as in Eq. (3.22) and Eq. (3.23), one
needs to explicitly verify that each eigenvalue has positive imaginary part. The
eigenvalues of Eq. (3.22) are Astatic

± = α(ω)λ± with λ± = 1/2(ηE + ηH ±√
(ηE − ηH)2 + 4η2C). Since Imα(ω) ≥ 0 and λ± are real, we find that both

eigenvalues have positive imaginary part only if both λ+ and λ− are positive. Thus,
loss sets an additional constraint on the polarizability tensor, and limits the magne-
toelectric coupling to

|ηC | ≤
√
ηEηH . (3.26)

This result implies a very important limitation on magnetoelectric scatterers: it
states that a magnetoelectric cross coupling (ηC) can only be generated if there
is a sufficiently strong directly electric, and directly magnetic response. We note
that this constraint is very similar to the constraint on the magnetoelectric cross
coupling in constitutive tensors derived for homogeneous bi-anisotropic media in
Ref. [33] that recently attracted attention in the framework of proposals for repul-
sive Casimir forces [58–61]. While our derivation was specific for split rings, we
note that similar constraints hold for all magnetoelectric scatterers. In the presence
of material loss, the magnetoelectric coupling terms are limited by the fact that all
quasi-static eigenpolarizabilities must have positive imaginary part.

3.4 Predicted scattering properties of single split rings

In the remainder of the chapter we discuss some insights that the proposed magne-
toelectric point scattering theory provides in how split rings scatter. In this section
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we will consider the eigenmodes and the radiation patterns of a single SRR for α
given by Eq. (3.24). Next, we predict which set of experiments will provide full
information on the elements of the polarizability tensor. We will show how measur-
able extinction cross sections can be translated back to retrieve SRR polarizabilities
and magnetoelectric cross polarizabilities of a single SRR. Although the results we
present are general, we use a specific set of parameters for all the figures presented
in this chapter. These parameters are chosen to fit to the properties of split rings
that are resonant at λ = 1.5 µm (ω0/2π = 200 THz) and that consist of 200 by
200 nm gold split rings with a thickness of 30 nm and a gap width of 90 nm. Thus
we take V = 200 × 200 × 30 nm3. We set the damping rate to be that of gold
γ = 1.25 · 1014 s−1 as fitted to optical constants tabulated in in Ref. [62]. We
use ηE = 0.7, ηH = 0.3 and ηC = 0.4. These parameters were chosen because
(A) they reproduce quantitatively the extinction cross section under normal inci-
dence along the z-axis measured by Husnik et al. [7], and (B) they fit well to our
transmission data on arrays of different densities of split rings taken at normal inci-
dence [17] and as a function of incidence angle [63]. The chosen values correspond
to on-resonance polarizabilities αEE = 4.6V , αHH = 2.1V and αEH = 2.5V ,
all well in excess of the physical SRR volume V as is typical for strong scatterers.
Finally, we note that the calculated albedo fits well to the albedo a = 0.5 to 0.75
calculated by FDTD by Husnik et al. [7].

3.4.1 Radiation patterns and eigenvectors of the polarizability tensor

In Fig. 3.1, we consider the eigenstates of the split ring polarizability tensor pre-
sented in Eq. (3.24). We first assume that the cross coupling terms are absent,
i.e., ηC = 0, in which case the polarizability tensor is diagonal, with eigenpolar-
izabilities α(ω)ηE and α(ω)ηH . The corresponding orthogonal eigenmodes are
(px,mz) = (1, 0) and (px,mz) = (0, 1). Fig. 3.1 (b) and (c) show radiation pat-
terns of the two eigenmodes. Fig. 3.1(b) shows the radiation pattern of the purely
electric eigenmode (px,mz) = (1, 0) and Fig. 3.1(c) shows the radiation pattern of
the purely magnetic eigenmode (px,mz) = (0, 1). Note that both px and mz radi-
ate as simple dipoles with a sin2 θ far field radiation pattern [64]. The two eigen-
modes can be selectively excited by impinging with a plane wave incident along the
z-axis with x-polarized E-field (electric eigenmode), or with a plane wave incident
along the x-axis with y-polarization (z-polarized H-field, magnetic eigenmode).
The extinction cross section of a single split ring at these two incidence conditions
is set by σext = 4πkIm(αEE) and σext = 4πkIm(αHH).

Next, we consider extinction and eigenmodes for arbitrary values of the cross
coupling. It is easy to see that the extinction cross section at the two special il-
lumination conditions (incident along z, x-polarized, and incident along x, with
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y-polarization, respectively) remain equal to σext = 4πkIm(αEE) and σext =
4πkIm(αHH). However, for nonzero ηC , these incidence conditions and polar-
izabilities do not correspond anymore to the eigenvalues and eigenvectors of the
polarizability tensor, which now have mixed magnetoelectric character. In the ex-
treme case of strongest magnetoelectric coupling (ηC =

√
ηEηH ), the eigenvectors

reduce to (px,mz) = (1, i
√
ηE/ηH) and (px,mz) = (1,−i

√
ηH/ηE). The as-

sociated far-field radiation patterns of these eigenvectors correspond to coherent
superpositions of the radiation pattern of an x-oriented electric dipole, and a z-
oriented magnetic dipole, with a quarter wave phase difference. Fig. 3.1(d,e) show
the on-resonance radiation pattern, assuming ηE = 0.7, ηH = 0.3 and ηC =0.4.
Note that these parameters are close to the limit of strongest possible magnetoelec-
tric coupling. Fig. 3.1(d,e) reveal that the radiation pattern of each eigenmode is
non-dipolar. Rather than a sin2 θ donut-shaped pattern, an elongated radiation pat-
tern occurs, with maximum extent in the y-direction. The polarization in the far
field is linear for directions along the cartesian axis, but is generally elliptical.

3.4.2 Extinction cross sections to measure polarizability

Fig. 3.2 shows the extinction cross section predicted by our point scattering model
of a single split ring for different incidence conditions. In Fig. 3.2(a), the inci-
dent wave vector is swept from the z-direction to the y-direction, while main-
taining x-polarized light. For this set of incidence conditions the resulting ex-
tinction cross sections only depend on αEE and αHH , and are entirely indepen-
dent of the off-diagonal coupling strength αEH . The cross section increases from
σext = 4πkImαEE as the split ring is only driven by the incident Ex field when
light is incident along z, to σext = 4πk(ImαEE + ImαHH), as the split ring is
driven by the incident Ex field plus the incident Hz field. When the wavevector
is rotated to the the x-axis, the extinction cross section diminishes to 4πkImαHH ,
as the split ring is only driven by Hz . The chosen values ηE = 0.7, ηH = 0.3
and ηC = 0.4 that we also used for Fig. 3.1(d,e) yield extinction cross sections
σext = 4πkImαEE = 0.29 µm2 and σext = 4πkImαHH = 0.13 µm2. The
predicted σext = 4πkImαEE = 0.29 µm2 is consistent with the measurement
(σext = 0.3 µm2) reported by Husnik et al. [7]. It is important to note that mea-
surements along cartesian incidence directions and with linear cartesian polariza-
tions yield only the diagonal elements of the polarizability tensor. Indeed, the pro-
posed measurements form a redundant set of measurements of αEE , αHH , and
(αEE + αHH), but do not provide any insight into the magnetoelectric cross cou-
pling in the electrodynamic polarizability tensor [65].

In order to measure the eigenpolarizabilities, it is necessary to selectively ad-
dress the eigenvectors of the polarizability tensor. As noted above, the eigen-
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Figure 3.2: We calculate extinction cross section σext as a function of illumination angle
and polarization. In panel (a), we sweep the incident wave vector over a total angular
range of 180◦, over a trajectory (see panel (a), top) starting from the z-axis (labelled 0◦)
to the −y-axis (labelled 90◦) , and then through the xy-plane to the x-axis (full 180◦). The
dashed line represents σext for linearly polarized incident illumination, where in (a) the
polarization is kept in the xy plane as shown (i.e., polarization is along x for the first 90
degrees of the trajectory, rotating continuously to polarization vecor along y in the second
part of the trajectory). The solid curve represents extinction for right handed circularly
polarized illumination, which for the incidence conditions in (a) is half the extinction seen
for linearly polarized light. For the trajectory of incident wave vectors in panel (a), σext at
normal incidence to the split ring is a measure for only αEE as Ex is the only driving field.
Increasing the angle to 90◦ both polarizationsEx andHz excite the dipoles in the split ring,
so σext is a measure for the sum of the terms on the diagonal of the polarizability tensor
(αEE + αHH). Changing the incidence condition to 180◦ removes the Ex component of
the field, leaving only Hz of the incident light to drive the split ring. Hence σext at 180◦

in panel (a) is a measure for purely αHH . In panel (b) we sweep the incident wave vector
from the −x-axis (labeled -90◦) via the z-axis (again labeled 0◦) to the +x-axis (labeled
90◦). The color- and linetype coding is as in panel (a). However, now we constrain the
linear polarization to have no y-component. Panel (b) σext shows that as a function of the
incident angle in the xz-plane for right-handed circular polarization minima and maxima
in σext occur as a function of angle, which are a measure for the eigenpolarizabilities α−
and α+, respectively. Both sets of measurements in panel (a) and (b) together provide
information on all the components of the polarizability tensor, αEE , αHH , and αEH .

52



3.4. Predicted scattering properties of single split rings

vectors in the case of strong magnetoelectric coupling ηC ≈ √
ηEηH tend to

(px,mz) = (1, i
√
ηE/ηH) and (1,−i

√
ηH/ηE). These eigenvectors require si-

multaneous driving by Ex and Hz , with a quarter wave phase difference. We
note that such fields can be generated by circularly polarized light with incident
wave vector constrained to the xz-plane. Indeed, at maximally strong magneto-
electric coupling and ηE = ηH , circularly polarized light incident at 45◦ from
the z-axis would selectively excite exactly one eigenmode. Therefore, we expect
angle-resolved extinction measurements for oppositely handed circularly polarized
beams to reveal the eigenpolarizabilities. Fig. 3.2(b) plots the extinction cross sec-
tion for right handed circular polarization, as a function of angle of incidence in the
z-plane, for illumination tuned to theLC resonance frequency. Naturally, at normal
incidence the extinction is exactly half the extinction obtained for linear polariza-
tion, as a consequence of the fact that Ey does not interact with the split ring at all.
Strikingly, the extinction cross section is predicted to behave asymmetrically as a
function of incidence angle. The extinction increases when going to positive angle
and decreases when going to negative angle. Changing handedness is equivalent
to swapping positive and negative angles. A detailed analysis shows that the maxi-
mum in extinction corresponds to the largest eigenvalue of the polarizability tensor
(σext = 2πkImα+), while the minimum in extinction corresponds to the small-
est eigenvalue (σext = 2πkImα−). Therefore, circularly polarized measurements
reveal the eigenvalues of the polarizability tensor. Combining such circularly polar-
ized extinction measurements with the measurements under cartesian incidence in
Fig. 3.2(a), therefore allows to extract all components of the polarizability tensor.
In addition to the contrast in extinction, the angle at which the maximum circular
dichroism occurs is a second, independent measure for the magnetoelectric cou-
pling strength. The measurements in Fig. 3.2(a) and (b) together hence provide
full, even redundant, information on ηE , ηH and ηC .

3.4.3 Pseudo-chirality

The results plotted in Fig. 3.2(b) show that magnetoelectric coupling in the 6×6 po-
larizability tensor directly implies pseudo-chirality. Pseudo-chirality refers to the
objects ability to exhibit optical activity under specific conditions while the object
itself is geometrically achiral. This concept will be discussed in Chapter 5. It is
exhilarating that this interesting phenomenon first reported by [9, 39] for the trans-
mission of arrays of scatterers is naturally present in the theory. However, while
previous analysis of pseudo-chirality focused on transmission through periodic ar-
rays, we predict that circular dichroism already appears in the extinction cross sec-
tion of a single split ring, with a strength set by how close the magnetoelectric
coupling strength is to its limit

√
ηE , ηH . Here we use the term ‘circular dichroism
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Figure 3.3: Extinction cross sections σext versus frequency and twist angle for a split ring
stereodimer structure. Panel (a) shows the geometry (top view and side view) in which
two split rings are vertically stacked. The upper split ring is rotated around the z-axis by
the twist angle ψ. We calculate extinction for light impinging from the z-direction with
polarization along x, i.e., along the base of the lower split ring in (b,c,e,f). In (d,g) we
use 45◦ incidence in the xz-plane, so that the H-field of the excitation light directly cou-
ples also to the magnetic polarizability. Panels (b), (c) and (d) show extinction assuming
no cross coupling term (ηC = 0) while (e), (f) and (g) show extinction assuming strong
magnetoelectric coupling (ηC = 0.4). Panels (b) and (e) assume the damping rate of gold
γ = 1.25 × 1014 s−1. To more clearly bring out the four mode structure, we reduce the
damping ten-fold for the calculations in (c,d,f,g). There are four modes present in the sys-
tem. White lines in (b,e) indicate the frequencies of the modes, as taken from the resonances
in the low-damping case, i.e., the resonances in panels (d,g).

in extinction’ not to refer to differential absorption of left and right circular polar-
ization as in usual circular dichroism, but to differential extinction. Indeed, the cir-
cular dichroism in extinction is a difference in extinction cross section for left and
right circularly polarized light that occurs independently of whether there is mate-
rial loss, as opposed to, e.g., asymmetric transmission phenomena through arrays,
that are claimed to require dissipation [39]. For maximally magnetoelectrically
coupled systems, the smallest eigenvalue is identically zero, implying that such a
scatterer is transparent for one circular polarization, and achieves its strongest scat-
tering for the opposite handedness. We expect that our 6×6 polarizability tensor
can be successfully used to describe all sub-λ pseudo-chiral scatterers reported to-
day [9, 36, 39, 66], as well as clusters and periodic arrays thereof, which we focus
on in Chapter 5.
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3.5 A coupled system: Split ring dimers

So far, this chapter has focused purely on the scattering properties of single mag-
netoelectric point scatterers. In the remainder of the chapter we illustrate that our
method can be easily used to analyze multiple scattering by magnetoelectric scat-
tering clusters. In order to calculate the response of a system of coupled magne-
toelectric dipoles, we generalize the general self-consistent equation that describes
scattering of clusters of electric dipoles p as reviewed in [29]. Assuming a system
of N magnetoelectric point scatterers situated at positions r1 . . . rN , the response
upon illumination by an incident field (Ein(r),Hin(r)) is determined by a set of
6N self consistent equations for the induced dipole moments in each scatterer. The
dipole moment induced in scatterer n with polarizability tensor αn is

(
pn

mn

)
= αn

( Ein(rn)
Hin(rn)

)
+

∑
q=1...N
q ̸=n

G0(rn, rq)

(
pq

mq

) (3.27)

Using this equation we can attempt to reinterpret recent measurements that evi-
dence significant coupling in split rings in 2D arrays, as well as in oligomers [17–
20]. Here we focus on the extinction of a dimer of split rings in socalled ‘stere-
odimer’configuration, first studied by Liu et al. [18]. Fig. 3.3 shows such a ‘stere-
odimer’, consisting of two SRRs in vacuum (V = 200 × 200 × 30 nm3, resonant
at a wavelength around 1500 nm), both parallel to the xy plane, vertically stacked
with a small height difference of 150 nm. The upper SRR is rotated by a twist angle
ψ around the z-axis. On the basis of the report by Liu et al. [18], we expect two
resonance peaks with an angle dependent splitting, which can be explained in an
LC model as the summed effect of electric dipole-dipole coupling and magnetic
dipole-dipole coupling.

We calculate the extinction versus twist angle and wavelength of an incident
beam incident from the +z direction, with x-polarization. This beam directly ex-
cites px in both rings, which also drive each other. We first analyze the experiment
assuming that there is no magnetoelectric coupling term (setting ηC =0, although
we keep ηE =0.7 and ηH = 0.3). As Fig. 3.3(b) shows, the extinction shows a
single strong resonance that is blueshifted relative to the single SRR resonance at
220 THz. As a function of twist angle, this broad resonance redshifts to 200 THz
at a twist of 90◦, and shifts back to 220 THz at a twist of 180◦. There is no sign of
a second resonance, which might be hidden below the strong resonance. To bring
out the second resonance more clearly, we reduce the loss in Fig. 3.3(b), to a 10
times lower value γ = 1.25 · 1013 s−1 for gold in Fig. (c) and (d). For this almost
absorption-free system, Fig. 3.3(c) indeed shows two resonances in extinction. The
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blue shifted resonance is now observed to cross with a narrow red shifted resonance.
The crossing is symmetric around 90◦ and is consistent with the hybridization of an
electric dipole fixed along x, with a second one above it twisted by an amount ψ.
The two branches have a very different width and strength, consistent with the fact
that a symmetric configuration of dipoles couples more strongly to external fields
(blue shifted resonance), than an antisymmetric ‘dark’ configuration (red shifted
resonance).

To verify whether the two resonances observed in Fig. 3.3(a) are all resonances
in the system, we change the angle of incidence to 45◦ in the xz plane, so that
the exciting field has an Hz component to drive the split rings, in addition to an
Ex component. Fig. 3.3(d) shows that in this case four resonances occur in ex-
tinction. In addition to the two curved bands excited by Ex, there are also two
non-dispersive bands with a twist independent splitting. Obviously, these bands are
due to the coupling of two magnetic dipoles in symmetric (broad and intense band)
and antisymmetric head-to-tail configuration. The existence of four instead of two
modes is a new insight compared to LC circuit models [18, 21], but is logical in
view of the fact that split rings have both a magnetic and an electric response, which
are decoupled under the assumption ηC = 0.

Next we analyze the extinction in presence of magnetoelectric coupling, set-
ting ηC = 0.4. Again, we first examine the extinction in presence of realistic loss
(γ = 1.25 · 1014 s−1) for gold in Fig. 3.3(e). As also predicted by FDTD simu-
lations by Liu et al. [18], there appear to be two bands. The blue-shifted band is
again very broad, but now has a frequency shift away from the single SRR reso-
nance that is significantly larger for twist angle 180◦ than for 0◦. These effects were
explained by Liu et al. as due to an additive (subtractive) correction to the dominant
electric hybridization at twist angle 180◦ (0◦) that occurs due to magnetic dipole
coupling. A surprise is that the diagram is not symmetric anymore around 90◦ twist
as in the case of zero magnetic coupling. Instead, the extinction appears to show
an anticrossing at twist angle 60◦. These features were also predicted by FDTD
simulations by Liu et al. [18]. However, the presence of an anticrossing at twist an-
gle ψ = 60◦ could not be interpreted by Liu et al. [18] within an LC static circuit
model, except by invoking higher order multipolar corrections. Here we see that a
purely dipolar model may also explain all features of the experiment provided that
magnetoelectric coupling is accounted for. While we do not claim that multipolar
effects are not present in actual experiments, it is an important insight that split
ring polarizabilities with magnetoelectric coupling terms may provide much richer
physics then expected from quasi-static circuit theory. A main advantage of point
dipole theory is that the underlying mode structure does not need to be recouped
from FDTD simulations, but is easily resolved by repeating a calculation of extinc-
tion cross sections with low loss (as done in Fig. 3.3), or by analyzing the poles of
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the coupling matrix in Eq. (3.27) that relates (p,m) to (Ein,Hin). The computa-
tional effort for N split rings is equivalent to diagonalizing or inverting a 6N ×6N
matrix.

To more clearly bring out all the resonances we artificially reduce the damping
γ = 1.25·1013 s−1 to ten times less than the damping of gold, and plot the response
of the system under normal incidence (f) and 45◦ incidence (g) in Fig. 3.3 (f,g). The
anticrossing at twist angle ψ = 60◦ appears to be due to the coupling of four modes,
as opposed to the intuition from LC circuit theory that only two resonances anti-
cross. The existence of four, rather than two modes in a split ring dimer appears
surprising and is a second indication of the rich physics of magnetoelectric scat-
terers. Intuition from LC circuits is that although the subspace of driving fields is
two dimensional (Ex andHz), nonetheless only one mode per split ring exists. The
usual reasoning in LC models is that the relation between electric and magnetic
dipole moments is completely fixed and independent of driving, since the loop cur-
rent and accumulated charge are directly related. Such a constraint is not general: in
electrodynamic multipole expansions, magnetic polarizabilities are determined in-
dependently from the electric ones. The intuition from LC theory that there is only
one mode per scatterer is only retrieved in our model right at the limit of strongest
magnetoelectric coupling ηC =

√
ηEηH , since in that case one eigenpolarizability

is identically zero. We note that the values ηE = 0.7, ηH = 0.3, ηC = 0.4 used
in this chapter (that we fitted to our angle-resolved transmission experiments on
200× 200 nm Au split rings on glass) are close to the limit of strong magnetoelec-
tric coupling. In Chapter 5 we focus on why physical scatterers are exactly at the
limit of strongest magnetoelectric coupling ηC =

√
ηEηH and what the implica-

tions thereof are for optical activity of such scatterers.

3.6 Conclusion

In conclusion, we have developed a new multiple scattering theory by means of
which we can calculate scattering and extinction for any magnetoelectric scatterer
with known polarizability tensor, as well as for arbitrary finite clusters. As opposed
to LC circuit models, our new model obeys energy conservation, contains all inter-
ference effects, and allows quantitative prediction of absolute cross sections, spec-
tral linewidths and lineshapes. Since the electrodynamic polarizability tensor can
be directly constructed from quasi-static circuit theory, we expect that our model is
readily applicable to many current experiments using chiral and nonchiral metama-
terial building blocks for which quasi-static models have been proposed.

Our model does not give any insight into whether the response of a given struc-
ture is truly dipolar or not. Also, our model does not provide any insight or quan-
titative predictions based on microscopic considerations for the magnitude of the
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polarizability. For such microscopic considerations, based on, e.g., current density
distributions derived from full wave simulations, we refer to [5, 22–26]. Rather,
our model allows one to verify if specific data or microscopic calculations are con-
sistent at all with point dipole interactions, allowing to verify or falsify common
intuitive explanations in literature that have sofar been based on quasi-static con-
siderations. Also, our model allows one to assess if a single polarizability tensor
indeed can describe a range of different experiments with, e.g., split ring clusters,
as should be expected from a consistent model. Finally, our model is the simplest
electrodynamical model to consistently describe how metamaterials and photonic
crystals are formed from magnetoelectric scatterers. A first step is to confirm the
parameters used in this work for ηE , ηH and ηC by targeted experiments. While
the value for ηE used in this work is consistent with the extinction cross section
measured by Husnik et al. [7], we propose that the new insight that magnetoelectric
coupling is far stronger than the magnetic polarizability be confirmed by off-normal
circularly polarized extinction measurements as proposed in Section 3.4, which is
the topic of Chapter 5.

The most important property of our theory is that a polarizability tensor vali-
dated for a single scatterer can readily be used to predict all quantitative scattering
properties of composite lattices and antennas. We hence expect that new insights
can be obtained in effective medium constants of metamaterial arrays. Our ana-
lytical model not only facilitates design, but will also for the first time allow to
determine rigorously whether, even in the ideal case (no loss, no multipole correc-
tions), metamaterial building blocks can give rise to a desired ϵ and µ, despite the
large importance of electrodynamic corrections [17, 47, 67]. In addition to gen-
erating new insights for metamaterials, our theory also opens new design routes
for gratings and antennas with unprecedented polarization properties. As an exam-
ple, in this chapter we analyzed the four mode anticrossing due to magnetoelectric
coupling in stereo-dimers. This analysis is easily extended to magnetoelectric Yagi-
Uda antennas, diffractive gratings of chiral building blocks, and magneto-inductive
waveguides that may provide new ways to control the propagation and emission of
light [43, 68, 69].

Appendix: Unit system

Throughout this chapter we used units that significantly simplify notation through-
out, as they maximize the interchangeability of electric and magnetic fields. Con-
version to SI units is summarized in Table 3.1. For the conversion in Table 3.1,
we use ϵ for the host dielectric constant, c for the velocity of light, and Z for
the impedance of the background medium. In this unit system, a plane wave
has |E|/|H| = 1, and intensity I = |E|2/(2Z), since the Poynting vector is
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Quantity Symbol Relation to SI
Electric field E ESI

Magnetic field H ZHSI

Electric dipole moment p pSI/(4πϵ)
Magnetic dipole moment m mSI(Z/(4π))

Electric-electric polarizability αEE αSI
EE/(4πϵ)

Magnetic-magnetic polarizability αHH αSI
HH/(4π)

Electric-magnetic polarizability αEH αSI
EH(c/(4π))

Magnetic-electric polarizability αHE αSI
HE(Z/(4π))

Electric-electric Green tensor GEE 4πϵGSI
EE

Magnetic-magnetic Green tensor GHH 4πGSI
EE

Electric-electric Green tensor GEH 4π/ZGSI
EE

Magnetic-magnetic Green tensor GHE 4π/cGSI
EE

Table 3.1: Conversion between SI units and the unit system used throughout this chapter.

S = 1/(2Z)Re(E∗ × H). In these units, the cycle-averaged work done by an
electric field E to drive an oscillating p equals W = 2πk/ZIm(E · p). The mag-
netic counterpart is W = 2πk/ZIm(H ·m)
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Chapter 4
Response of periodic arrays: experiment

versus lattice sum dipole predictions

We implement the magnetoelectric polarizability tensor derived in the previ-
ous chapter as a building block for an electrodynamic model that describes the
collective response of scatterers in periodic arrays. This model rigorously ac-
counts for dipole coupling in arbitrary periodic lattices by generalizing Ewald
lattice sums [1] to deal with the lattice response to both E and H . We re-
interpret the transmission measurements in Chapter 2 on split ring arrays
with different lattice spacings and explain the resonance shifts and width in
terms of the lattice response. We find excellent correspondence between the
data and the new theory.

4.1 Introduction

Scattering experiments on metamaterials are frequently done using periodic planar
arrays of magnetoelectric scatterers with sub-diffraction lattice spacings. The chain
of reasoning from measurement to effective media parameters generally leads from
measured intensity reflection and transmission coefficients that are used to validate
brute force FDTD simulations, which in turn lead to parameter retrieval on basis
of calculated amplitude reflection and transmission coefficients [2–8]. Very re-
cently several groups reported non-trivial coupling phenomena between split rings,
depending on their density, their local lattice coordination and their relative ori-
entation [9–16]. Essentially, the physics is determined by dipole-dipole coupling
between split rings. Since split rings have cross sections far in excess of the lat-
tice unit cell in typical metamaterials the coupling is very strong. Also, since split
ring polarizabilities are comparable to the unitary limit, their coupling is essentially
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Figure 4.1: Calculated transmission spectra for square split ring arrays with varying lat-
tice spacing. The magnetic resonance at 1.5 µm blueshifts and broadens with increasing
density.

electrodynamic. In other words, coupling is not only via near field d−3 interactions,
but also strongly via radiation into the far field. Indeed, lattice transmission data
reported in Chapter 2 show strong superradiant broadening effects at high densities.

In Chapter 3, we have derived how the polarizability tensor α can be approxi-
mated for a single SRR. In order to make successful predictions for measurements
on arrays, apart from knowing the polarizability α of individual scatterers, one
needs to understand the collective behavior of the lattice. Here, we expand our
electrodynamic model of Chapter 3 to calculate reflection and transmission coef-
ficients of magnetoelectric scatterers arranged in a periodic lattice. The collective
response of lattices of scatterers with a scalar electric polarizability has previously
been derived in [1]. Therefore, the aim of this chapter is not to derive a new theory,
but to validate the electrodynamic picture of SRR response in arrays from the al-
ready existing theory, but with a tensorial α [17]. Technicalities of the theory can
be found in [1, 18, 19].

4.2 Lattice sum theory

In this work we consider the response to plane wave illumination of a 2D periodic
lattice of point scatterers, which is defined by a set of lattice vectors Rmn = ma1+
na2, or equivalently a set of reciprocal lattice vectors gmn = mb1 + nb2 , where
m and n are integers, and a1,2 and b1,2 are real space and reciprocal space basis
vectors, respectively. The response of a particle at position Rmn is selfconsistently
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set by the incident field, plus the field of all other dipoles in the lattice according to(
pmn

mmn

)
= α

[(
Ein(Rmn)
Hin(Rmn)

)

+
∑

m′ ̸=m,n′ ̸=n

G0(Rmn −Rm′n′)

(
pm′n′

mm′n′

) .
(4.1)

For plane wave incidence with wave vector k||, using translation invariance of the
lattice, we can substitute a Bloch wave form (pmn,mmn)

T = eik||·Rmn(p00,m00)
T

to obtain (
p00

m00

)
= [α−1 − G ̸=(k||, 0)]

−1

(
Ein(R00)
Hin(R00)

)
. (4.2)

Here, G ̸=(k||, 0) is a summation of the free space 6× 6 dyadic Green function G0

over all positions on the 2D periodic real space lattice barring the origin

G ̸=(k||, r) =
∑

m,n ̸=0

G0(Rmn − r)eik||·Rmn . (4.3)

We will refer to the summation without exclusion of m = n = 0 as G(k||, r).
The combination of Eq. (4.2) and (4.3) is the lattice sum formulation that has pre-
viously been reported in [1] for scalar Green function lattice sums where it was
implemented using Ewald’s technique [18]. We are not aware of any reported im-
plementation of lattice sums for the 6 × 6 dyadic Green function G0. The key
difficulty sits in the fact that the sum in Eq. (4.3) is poorly convergent since G0

decays only as 1/R, whereas the number of terms with radius R < Rcutoff grows
as R2

cutoff . Ewald summation is the technique to deal with these difficulties. We
refer to the excellent review by C. M. Linton [18] for an explanation of the tech-
nique for scalar Green functions. The dyadic case is obtained simply by pulling the
derivatives in Eq. (3.3) and (3.4) that relate scalar and dyadic summand into the
sum.

Once p and m are calculated via Ewald summation, we would like to find far
field reflection and transmission. To find the reflected and transmitted waves, we
note that for an observation point r in the far field, the Green function due to a
source at r′ can be written as

G0(r− r′) = k2
exp(ik|r− r′|)

|r− r′|
M (4.4)

where M is a dimensionless matrix with elements of order unity that only depends
on the direction, not the length of r − r′. For a simple electric dipole, M · p
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quantifies p̂− (p̂ · r̂)r̂, where r̂ is the unit vector along (r−Rm,n) the observation
vector. Taking the scattered field intensity as the sum over all lattice points(

E(r)
H(r)

)
=

∑
n,m

k2
exp(ik|r−Rnm|)

|r−Rnm|
eik||·Rn,mMn,m

(
p00

m00

)
(4.5)

we make the usual far-field expansion assumption that the orientational factor M
does not vary with n,m and we substitute

exp(ik|r−Rm,n|)
|r− r′|

=
i

2π

∫
dq

exp(iq · (r|| −Rm,n) + kzz)

kz
(4.6)

with kz =
√
k2 − |q|2 and where integration is over parallel wave vector q. Using

the completeness relation of the lattice,

∑
m,n

eik||·Rmn =
2π2

A
∑
m,n

δ(k|| − gmn), (4.7)

where A is the area of the unit cell, one might recast the summation to reciprocal
space. As a consequence, one retrieves diffracted orders in the far field of the form(

E(r)
H(r)

)
=

∑
g,|kg|≤k

(
Eg

Hg

)
eik

g·r (4.8)

where the diffracted wave vectors are kg = (k|| + g,±
√
k2 − |k|| + g|2) =

k(cosϕ sin θ, sinϕ sin θ, cos θ). The far fields associated with each order are(
Eg

Hg

)
=

2πik

A cos θ
M(θ, ϕ)

(
p0

m0

)
(4.9)

Where the orientation matrixM(θ, ϕ) is the orientation dependent matrix from [20]
(Chapter 15). Since these are only scattered fields, one still needs to add the incident
field to obtain the zero-order transmitted beam. Dividing with the incident field, one
obtains the transmission and reflection coefficients that are related via t = 1 + r.
The transmission coefficient for x-polarized incidence and detection, for instance,
is then simply given by

txx = 1 +
2πik

A cos θ
(M(θ, ϕ)[α−1 − G ̸=(k||, 0)]

−1)xx. (4.10)
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4.3 Results

We have calculated transmission for many sets of parameters for α, to test whether
the lattice sum model can mimic the response measured for 200×200×30 nm SRRs
in square and rectangular arrays that we reported in Chapter 2. As an example, we
show transmission for square lattices in Fig. 4.1, with the same lattice spacings used
in Chapter 2. Fig. 4.1 shows two clear dips in the transmission spectra for all lattice
spacings. The dip at λ = 1.5 µm is the previously discussed LC resonance, while
the second dip at λ = 900 nm is a higher order resonance attributed to the plasmons
excited along the bottom arm of the SRR [9]. Here, we have used 2πc/ω0 = 1.6
µm, γ = 8.3 × 1013 s−1, αE = 3.6V , αH = 1.6V and αC = 2.1V for the LC
resonance [21]. To mimic the higher order resonance, we have inserted 2πc/ω1 =
0.96 µm, αE = 1V , αH = 0.5V and αC = 0.4V , where V = 0.0012 µm3. We
assume the lattice to be embedded in a medium with refractive index n = 1.23, i.e.,
the average of the air and glass index on either side of the SRRs. Fig. 4.1 shows that
the lattice sum model can indeed qualitatively reproduce all salient features also
observed in the experimental data. These features include a blue shift of the LC
resonance with increasing density, as well as significant broadening. A shoulder
appears on the red side of the LC resonance for the highest density. Such resonance
splitting would be expected on basis of the fact that the LC resonance of split rings
has two, not one eigenpolarizabilities. This edge is not evident in the data, and
would require further study with a spectrometer that extends further into the IR.
Finally, we note that the exact shape of the higher order resonance depends on
the assumed surrounding refractive index: this resonance overlaps with a grating
diffraction resonance into the glass, and not into the air. Fair account of this would
require a model that can deal with the interface.

In order to determine which, if any, set of polarizability parameters best de-
scribe the data, we have performed transmission calculations for both rectangular
and square lattices, for a large set of parameters αE , αH , and αC . In this scan
of parameter space, we have kept the resonance frequency and damping constant
fixed, 2πc/ω0 = 1.6 µm and γ = 8.3 × 1013 s−1. Since our scatterers are found
at an air-glass interface, we assume the lattice to be in a homogeneous medium of
index n = 1.23. We extract both the center frequencies and the linewidth of the
transmission resonance, and define the set of parameters αE αH , and αC that best
matches our data, as those that best fit center frequency and linewidth simultane-
ously. Fig. 4.2 shows center frequency and linewidth as measured in Chapter 2,
together with the dependence associated with the set of parameters that best fit the
data. We find that the data cannot be fitted reasonably at all with parameters outside
the range 0.5V < αE,H,C < 3.9V . Only within this range do our calculations rea-
sonably reproduce the extinction cross section σext reported by Husnik et al. [22].
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Figure 4.2: (a) Frequency of the magnetic resonance versus lattice spacing. The frequency
blueshifts when decreasing dy whether dy = dx (black squares) or not (light gray triangles,
dx = 500 nm), while it redshifts when decreasing dx (dark gray circles, dy = 500 nm). (b)
Linewidth of the magnetic resonance versus lattice spacing (color coding as in (a)). Dashed
lines in (a) are electrostatic theory, while full lines in (a) and (b) are electrodynamic theory
based on lattice sums.

The best fitting parameters are αE = 3.6V , αH = 1.6V , and αC = 2.1V with
estimated errors of ∆αE = ±0.8V , ∆αH = ±0.5V , and ∆αC = ±0.4V . Pa-
rameter values in the order of particle volume V indicate that split rings are strong
scatterers on resonance. Fig. 4.2(a) shows the density dependence of the center
frequency predicted by the lattice sum model together with the values extracted
from experiment, and with the static model represented as dashed lines. The lat-
tice sum calculation notably reproduces the strong resonance redshift for side-side
coupled split rings, as well as the strong blueshift for both square arrays and the
top-bottom coupled structures. A notable difference with the quasistatic model in
Chapter 2 is the strong blueshift with increasing density for the square lattice that
is observed also in the data, but not so clearly in the static model. A calculation
of resonance frequency and FWHM with zero magnetoelectric cross coupling is
shown in Fig. 4.3 (a) and (b) (dotted line). The lattice sum calculation now shows
a very different behavior for square lattices, as the blueshift now disappears. The
normal incidence linearly polarized transmission spectra hence point to a signifi-
cant magnetoelectric cross coupling term αC ≫ 0 which we will quantify directly
in experiments reported in Chapter 5. Fig. 4.2 (b) shows the FWHM versus lattice
spacing as measured and calculated with the lattice sum model. Since the Ohmic
damping does not depend on the coupling in the electrostatic model, the FWHM
broadening with decreasing lattice spacing can only be explained by the radiation
damping in an electrodynamic picture, which the lattice sum model fully takes into
account.
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Figure 4.3: (a), (b), and (c) are the comparison between the data and lattice sum cal-
culations of the center frequency, resonance linewidth and the effective extinction cross
section per split ring derived from on resonance transmission with and without the magne-
toelectric cross coupling term. The full lines are lattice sum calculations with αE = 3.6V ,
αH = 1.6V , αC = 2.1V , dotted lines with αE = 3.6V , αH = 1.6V and without the cross
coupling term. The black dashed line in (c) indicates the cross section of a single split ring
(from [22]).

So far we have used only the resonance shift and the resonance width, to quan-
tify the polarizability tensor. An interesting question is if the same parameters also
satisfactorily explain other parameters measurable in the experiment. In Fig. 4.3 (c)
we plot the effective extinction cross section per split ring as a function of lattice
spacing with magnetoelectric coupling (full line) and without (dotted line). While
the trend of a marked increase of effective cross section with reduced density is
evident, the effective extinction cross section is generally underestimated. We have
found no set of α’s that quite fits all three quantities center frequency, width and σeff
simultaneously.The fact that no set of parameters can be found that simultaneously
fit the center frequency, width, and cross section, is likely due to the asymmetric
dielectric environment. The presence of an interface can significantly redistribute
scattered light and can furthermore alter the local density of states (LDOS) of scat-
terers and thereby their extinction [23]. This is an interesting outlook with which
we hope to further expand the lattice sum theory in the future.

4.4 Conclusion

We have shown how a point dipole lattice sum calculation can be implemented for
point scatterers arranged in a 2D periodic array. We have extended the theory to
apply to any magnetoelectric scatterer, and as such, explain the frequency shifts and
superradiant broadening of the resonance peak with lattice spacing as seen in trans-
mission measurements. We conclude that the polarizability of split rings is large
compared to particle volume, quantifying the intuition that split rings are strong
scatterers. Moreover our lattice sum calculation shows that the strong blueshift of
the resonance for square lattices points at strong magnetoelectric cross coupling.
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Indeed, it appears that driving with an electric field is more effective in setting up
a large magnetic dipole moment, than direct magnetic driving. We pursue a more
direct experimental method to quantify this observation in Chapter 5.

We envision that the model we have proposed in this chapter can be further
improved and extended to deal with interesting questions. Firstly, the renormal-
ization of the polarizability and the far field response due to the presence of an
interface would be required to improve quantitative matching with data. Moreover,
one can envision designing magnetoelectric gratings that have diffractive orders
overlapping with the LC resonance. Such gratings could have interesting chiral
properties, due to the inherent optical activity that the magnetoelectric coupling in
split rings entail. Also, we envision that the theory can be extended to deal with
finite stacks of 2D lattices. Such an approach would allow one to build a fully elec-
trodynamically coupled model system to examine if and how ϵ and µ emerge as a
metamaterial grows from a surface to a bulk material.

Finally, we compare our theory with a recent model by Decker et al. [24] that
explains resonance frequency shifts and linewidth broadening from data obtained
by oblique incidence excitations of SRR arrays by accounting for long-range inter-
action effects between the split rings. These are described in a Lagrangian static
model modified to account for a finite size of the lattice via a phase lag between
adjacent split rings in an array [24, 25]. Both theories explain the response of an
array for both far-field and near-field interactions, and account for a phase gradient
over the array (Bloch waveform, Eq. (4.2)). However, it is not obvious if the model
by Decker et al. satisfies the optical theorem. Violation of energy conservation
can fundamentally only be avoided if radiative damping is chosen self consistenly
according to Eq. (3.20). Our theory rigorously satisfies the optical theorem by intro-
ducing the radiative damping term in the polarizability. Further radiative damping
is contained in the rigorous electrodynamic lattice sums which explains the super-
radiant broadening of the resonance. In contrast, the theory of Decker et al. only
takes into account radiation of electric dipole moments in the plane of the array,
while magnetic dipole moments are neglected. This is an important point since in
this thesis we show that magnetic dipole moments have significant polarizabilities
comparable to the particle volume. A consistent model should equally account for
radiation by electric and magnetic dipoles. For normal incidence experiments on
nondiffractive samples, the far field radiated by magnetic dipoles cancels. However,
our model can deal with any incidence angle, and any diffraction case.
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Chapter 5
Ubiquity of optical activity in planar

metamaterial scatterers

Recently it was discovered that periodic lattices of metamaterial scatterers
show optical activity, even if the scatterers or lattice show no 2D or 3D chiral-
ity, if the illumination breaks symmetry. In this chapter we demonstrate that
such ‘pseudo-chirality’ is intrinsic to any single planar metamaterial scatterer
and in fact has a well-defined value at a universal bound. We argue that in
any circuit model, a nonzero electric and magnetic polarizability derived from
a single resonance automatically imply strong bianisotropy, i.e., magnetoelec-
tric cross polarizability at the universal bound set by energy conservation. We
confirm our claim by extracting polarizability tensors and cross sections for
handed excitation from transmission measurements on near-infrared split ring
arrays, and electrodynamic simulations for diverse metamaterial scatterers.

5.1 Introduction

Many historical debates on how to describe the effective electrodynamic response
of media composed of subwavelength building blocks currently acquire new rele-
vance in nano-optics. On the one hand, the drive for arbitrary ϵ and µ is generated
by the idea that light fields can be arbitrarily reshaped by conformal transforma-
tions, provided we can create arbitrary constitutive tensors [1–3]. On the other
hand, a convergence with plasmonics has led to the realization that subwavelength
scatterers mimic and even greatly enhance rich scattering phenomena known from
molecular matter [4, 5]. For example, resonantly induced optical magnetism in
2D and 3D chiral metal nano-objects have been reported to result in giant circu-
lar birefringence, optical rotatory power, broadband optical activity, and circular
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Figure 5.1: (a) Any scatterer α with nonzero electric and magnetic polarizability shows
oblique incidence optical activity, with transparency for one handedness of incident light at
off-angles, and maximum extinction when the incident beam is rotated by 90◦. At normal in-
cidence, the scatterer shows no optical activity. (b) Common planar scatterers for which we
verify optical activity and bianisotropy: (1) scanning electron micrograph of 230×230×30
nm Au SRRs. Structures (2)-(6): Ω particles of varying arm length. Structure (7) model for
SRR in (1). Structure (8,9,10): double split ring and double gap ring [24].

dichroism in frequency ranges from microwave, mid-IR, near IR to even visible
frequencies [6–14]. The fact that strong optical activity is easily attained using chi-
ral subwavelength scatterers is promising for many applications such as broadband
optical components, as well as providing excellent candidates for achieving neg-
ative refraction [15], or repulsive Casimir forces [16]. Moreover, the promise of
enhancing detection of molecular chirality via enhanced chirality in the excitation
field, is expected to be of large importance for, e.g., discrimination of enantiomers
in biology or medicine [17–20].

A question of essential importance is how to control the optical activity of a
single building block, i.e., have independent control over the degree of magnetic
response, electric response and magnetoelectric cross coupling or ‘bianisotropy’
whereby incident electric (magnetic) fields cause a magnetic (electric) material po-
larization in a single building block [21]. For instance, in attempts to reach negative
indices, researchers soon found that the archetypical SRR has a magnetoelectric re-
sponse that is undesirable, yet difficult to remove without also losing the magnetic
response [22]. Completely opposite to the desire to remove this bianisotropy, it
has also been realized that all applications exploiting optical activity benefit from
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strong magnetoelectric coupling. Currently it is unclear if there exists any univer-
sal bound to which optical activity can be benchmarked, or conversely, if it is at
all possible to avoid bianisotropy without also losing the magnetic response [23].
In this chapter, we discuss precisely such a universal bound for magnetoelectric
coupling for single scatterers, disentangled from any lattice properties. We claim
that Onsager’s relations constrain optical activity to always be at this maximum
bound for any dipole scatterer based on planar circuit designs, independent of ge-
ometrical chirality. Our claim is supported by measurements on SRRs at telecom
wavelengths and rigorous full wave calculations [24] in which we retrieve cross
sections and polarizabilities for various metamaterial scatterers (see Fig. 5.1(a,b)).

The central quantity in this chapter is the polarizability tensor that quantifies
the magnetic response, electric response and magnetoelectric cross coupling (bian-
isotropy) intrinsic to a single metamaterial building block according to [21, 23]:(

p
m

)
=

(
αE iαC

−iαT
C αH

)(
E
H

)
(5.1)

For molecules, optical activity is due to weak cross coupling, i.e., a perturbative
αCE ≈ 10−3αEE, while αH ≈ 0. In contrast, the paradigm of metamaterials is
that a single scatterer acquires a magnetic dipole moment m at least comparable to
the electric moment p, with αE , αH , and possibly αC of the same order, which all
derive from a single resonance [25].

5.2 Methods

In order to quantify the polarizability for the canonical SRR, we performed trans-
mission measurements as well as full-wave calculations. For the experiments we
fabricated Au SRRs resonant at telecom wavelengths arranged in square arrays on
glass substrates by e-beam lithography [26, 27] and lift-off using ZEP520 resist.
Fig. 5.1(b) shows a SEM image of a SRR array with 530 nm lattice spacing, which
is so dilute that coupling between SRRs is small [27], as seen in Chapters 2 and 4,
yet so dense that no grating diffraction occurs. Each SRR measures 230×230×30
nm, with a gap between the arms that is 100 nm wide and 145 nm deep. We record
transmission by illuminating the sample with a narrow band of frequencies at a
time, selected from a supercontinuum laser (Fianium), using an acousto-optical
tunable filter (Crystal Technologies) with a bandwidth of 1-2 nm [28]. The beam is
chopped for lock-in detection on an InGaAs photodiode. We polarize the incident
beam using a broadband quarter-wave plate, to provide circularly polarized excita-
tion. We weakly focus the beam onto the sample (f=100 mm). Light is collected
with a low NA collection lens (f=20 mm), and passed through a telescope and pin-
hole to ensure spatial selection from within a 200× 200 µm2 e-beam write field, as
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Figure 5.2: Transmission spectra from a periodic square array of 230 × 230 nm split
rings with d = 530 nm. The spectra were taken as a function of angle of incidence, where
dashed curves denote negative angles, and solid curves positive angles with respect to the
sample normal. (a,c) and (b,d) are transmission spectra shown for right- and left-handed
circularly polarized illumination. Inset in (a) and (c) shows the the sample rotation axis
for (a,b) and (c,d), respectively, taking the incident k-vector as pointing through the paper.
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monitored by an InGaAs camera. A motorized rotation stage allows transmission
measurements versus incident angle relative to the sample normal.

Fig. 5.2 shows transmission versus wavelength for left and right handed circu-
larly polarized incident light, for incidence angles from -50◦ to +50◦. Fig. 5.2 (a)
shows data when the angle is varied from normal incidence by rotating the SRRs
around their mirror axis y. At normal incidence, the magnetic LC resonance is
evident around 1600 nm wavelength as a minimum in transmission. As opposed
to the deep minima reported in Chapter 2 for linear, x-polarized transmission (E
along the gap) of dense arrays, the transmission dip is shallow since our lattice is
dilute and the LC resonance is associated only with Ex and Hz , and completely
transparent for Ey. As the incidence angle is moved away from the normal, the
excitation also offers Hz as a driving field, a quarter wave out of phase with Ex.
A very clear asymmetry around the normal develops. For right-handed light the
transmission minimum becomes continuously shallower towards negative angles,
and the sample is nearly transparent for −50◦. In contrast, the transmission mini-
mum significantly deepens from 28% to 75% when going to large positive angles.
The asymmetric behavior with incidence angle is mirrored for opposite handedness
(Fig. 5.2(b)), consistent with oblique incidence optical activity. For linear polariza-
tion the transmission is symmetric around normal incidence (not shown).

5.3 Results

The fact that optical activity is symmetry-allowed even for lattices containing 2D
non-chiral objects aligned with the lattice symmetry, was already reported by Plum
et al. [29], who coined this ‘extrinsic 3D chirality’, as well as Persoons et al. [4, 5]
who previously observed a handedness in nonlinear experiments on surfaces of
achiral molecules that were asymmetrically illuminated. In contrast to symme-
try arguments that only distinguish between allowed and forbidden effects without
quantifying the strength of optical activity, it is the express aim of this chapter
to ascertain what the single element polarizability is that leads to the strong opti-
cal activity. We exclude the array structure factor as the cause of handed behav-
ior [30], as the optical activity disappears when we rotate the SRRs by 90◦ in the
sample plane (Fig. 5.2 (c) and (d)). We hence conclude that the single SRR po-
larizability must contain the strong ‘pseudo-chiralilty’ that is expressed as huge
circular dichroism contrast in the extinction cross section, despite SRRs being
neither 2D nor 3D chiral. Qualitatively, the LC description of a single SRR in-
deed contains optical activity under oblique incidence. Charge motion is set by
q̇ = (iωL + R + 1/iωC)−1[iωµ0AHz + Ext], where L is the inductance, C the
capacitance, R the Ohmic resistance, t the capacitor plate gap and A the enclosed
area. Full transparency despite the presence of suitable driving Ex along the gap
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Figure 5.3: (a) A schematic representing circularly polarized light under oblique inci-
dence. The gray lines represent Ex and Hz fields that are quarter wave out of phase. (b)
Circles: effective extinction per SRR from transmission data color coded for two hand-
edness. Solid line: single scatterer extinction cross section expected in a dipole model.
Dashed line: lattice sum calculation for a square array with pitch d=530 nm of magneto-
electric dipoles.

and Hz through the split ring occurs when iωµ0AHz = −Ext. Conversely, op-
timum driving of a SRR benefits from an opposite quarter wave phase difference
between Ex and Hz so that [iωµ0AHz + Ext] has maximum magnitude. Circular
polarization at oblique incidence provides the required quarter wave phase differ-
ence between Ex and Hz , as shown in Fig. 5.3 (a). Alternative to explanation via
Hz and Ex, one could explain the handed behavior in Fig. 5.2 (a) and (b) as a re-
sponse to ∂xEy, since rotation introduces a phase gradient between the two vertical
arms that reverses with handedness, and with the sign of the rotation angle. In
Fig. 5.2 (c) and (d), no such gradient exists, so no optical activity is observed. The
explanations are equivalent since H = ∇× E.

We quantify the asymmetry in extinction from the data as in Chapter 2, i.e.,
by analyzing the effective extinction cross section per SRR defined as σ = (1 −
TR,L)d

2, where d is the lattice spacing and TR,L is the minimum in transmission
for right and left handed circularly polarized light [27]. Fig. 5.3 (b) shows that this
effective extinction cross section varies between 0.07 and 0.16 µm2 as the angle
is swept from ±50◦ to ∓50◦ (mirrored dependence for opposite handedness). For
a single magnetoelectric dipole scatterer Ref. [23] and Chapter 3 predict that the
extinction cross section generally depends on angle θ as

σR,L(θ) = σ− + (σ+ − σ−)[1 + cos(2(θ ± θ0))]/2. (5.2)

Measurements on a single object would provide the electrodynamic [31]αE through
the normal incidence extinction σR,L(0) = 2πkImαE , while the maximum and
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minimum attained extinction σ± encode electrodynamic polarizability eigenvalues

via σ± = πkIm(αE + αH ±
√

(αE − αH)2 + 4α2
C). Such a fit of the single

object extinction to the measured effective extinction would provide αE = 4.1V ,
αH = 3.6V and αC = 1.4V expressed in units of the geometrical volume of
the SRR (V = 0.0012 µm3) [32]. Since the response of SRRs in arrays is mod-
ified by lattice coherences, as seen in Chapter 4, this parameter extraction using
a single-object expression for extinction does not provide the most accurate esti-
mate. To improve on the parameter extraction, we calculate lattice transmission
by rigorous electrodynamic lattice sums involving all multiple-scattering interac-
tions between SRRs [33]. Consistent with our data, the calculated transmission
shows strong optical activity under oblique incidence. We extract αE = 6.4V ,
αH = 0.9V , αC = 2.1V at λ=1600 nm from a comparison to data, highlight-
ing that the response of SRR arrays is consistent with remarkably strong maximum
magnetoelectric cross coupling.

In Chapter 3 [23] we analyzed how electrodynamic scatterers with arbitrary
polarizabilities of the form in Eq. (5.1) scatter. In that work, we realized that once
one applies the optical theorem to a planar scatterer (in-plane p, out-of-plane m),
ᾱC ≤

√
ᾱEᾱH appears as the maximum value that ᾱC – the cross coupling after

taking a common resonant frequency factor out of Eq. (5.1) [25] – can possibly
attain to avoid violation of energy conservation. Here we claim that any planar
circuit-derived scatterer is necessarily exactly at this upper bound, i.e., at maxi-
mum cross coupling, at least in the static limit. To prove this assertion we analyze a
generic model for the polarizability of a planar scatterer under two general assump-
tions: (1) a linear response and (2) that an electric and magnetic dipole response
originate from the same equation of motion for charge q moving through the scat-
terer. Linear response implies q = CE(ω)E + CH(ω)H , where E (H) is in the
plane (perpendicular to the plane) of the scatterer. Since p and m both derive from
the same charge motion, px = Apq and mz = Amq̇ = iωAm(ω)q, where Ap

and Am are geometry-dependent constants. One now finds the electrostatic circuit
polarizability as

α0 =

(
ApCE(ω) ApCH(ω)
iωAmCE(ω) iωAmCH(ω)

)
. (5.3)

For reciprocal materials, Onsager’s relations constrain αE and αH to be symmetric,
as well as requiring ApCH(ω) = −iωAmCE(ω). Taking out a common frequency
factor L(ω) ∝ CE(ω) that describes the circuit resonance, one finds that α0 always
take the form [25]

α0 = L(ω)
(

ᾱE iω
√
ᾱEᾱH

−iω
√
ᾱEᾱH ω2ᾱH

)
. (5.4)

The surprise is that Onsager constraints leave no freedom to choose the off-diagonal
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Figure 5.4: Master diagrams summarizing optical activity and bi-anisotropy mapped as
a function of ξ = (αE − αH)/((αE + αH) and η = (αC)/((αE + αH). All structures
we tested (data-points, numbered as in Fig. 5.1(b)) are close to the locus of maximum
cross coupling (ellipse), except (8). The color scale shows optical activity contrast Ψ, in
the dipole approximation (color scale) and for tested structures (dots). Panel (b) is a 3D
representation of (a).

coupling ᾱC . Hence, any scatterer that can be described as a planar circuit element
is cross coupled, with cross coupling ᾱC =

√
ᾱEᾱH . Combining this finding

with our result from Chapter 3 [23] we conclude that any planar circuit-derived
scatterer is not just cross coupled, but that this coupling is at the maximum cross
coupling limit derived in Chapter 3. Maximum cross coupling means one vanishing
eigenpolarizability α− = 0, hence complete transparency of the scatterer for one
handedness under oblique incidence, which means huge optical activity contrast.

Based on our experiment, we can now assess whether the strong cross coupling
in real scatterers is indeed close to the predicted maximum. From the polarizability
we extracted from the very strong circular polarization contrast in extinction ob-
served for split rings in Fig. 5.3 we indeed find almost maximum cross coupling,
since αC ≈ 0.88

√
αEαH . Furthermore, we use full-wave simulations to examine

the polarizability, and pseudo-chirality in extinction of many scatterers. We use 3D
Surface Integral Equation (SIE) calculations [24], to obtain full-wave solutions for
archetypical metamaterial scatterers including SRRs, Omega particles with straight
legs of different length, double SRRs and double-gap rings as shown in Fig. 5.1(b).
We use tabulated optical constants for gold [31], and the following dimensions:
inner/outer radii in µm 0.74/1.19 (2-6), 1.6/2.5 and 2.7/3.6 (8), 2.7/3.6 (10), with
a gap of 450 nm resp 200 nm for structures (2-6) resp. (10). For scatterers (2-6)
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we increased the outer arm length from 0 to 900 nm. Scatterer thickness is 30 nm
throughout. The respective resonance wavelength of the scatterers in µm are 1.600,
15.40, 16.06, 16.41, 16.80, 17.58, 1.544, 62.50, 23.25, and 16.50 for structures
(1-10). Note that resonances (8,9) are two resonances in one structure. We cal-
culate scattering cross sections and polarizability tensors independently from each
other. To extract the polarizability, we excite the same scatterer with six linearly
independent illumination conditions, obtained as counter-propagating linearly po-
larized beams set in (out of) phase to yield just electric (magnetic) Cartesian exci-
tation. We project the calculated scattered E field evaluated on a spherical surface
concentric with and in the near field around the scatterer on vector spherical har-
monics to retrieve p and m [34]. As a consistency check on the polarizability
retrieved by matrix inversion we verify that the Onsager constraints are satisfied,
which are not a priori assumptions in the retrieval [35]. We summarize results
for all scatterers in a ‘master plot’ that allows comparison independent of scatterer
size. The scatterers are shown in Fig. 5.1 (b). As a first dimensionless variable we
use ξ = (αE − αH)/(αE + αH), which equals ±1 for purely electric (magnetic)
scatterers, and 0 for equal electric and magnetic polarizability. As a dimensionless
second variable we take the normalized cross coupling η = αC/(αE + αH). The
locus of maximum cross coupling is the ellipse η =

√
1− ξ2/2. Fig. 5.4 shows

that most metamaterial scatterers we analyzed have ξ well away from 1, indicat-
ing significant magnetic polarizability. Furthermore all particles are essentially on
the locus of maximum cross coupling, confirming our claim that bianisotropy is
ubiquitous.

As third axis for the master plot we use a measure for optical activity in scat-
tering. All scatterers we simulated show an angular dependence of the scatter-
ing cross section of the form in Eq. (5.2). The dimensionless parameter Ψ =
|σR − σL|/(σR + σL) evaluated at 45◦ incidence angle quantifies the maximum
attained difference in extinction |σR − σL| (maximal always at 45◦) normalized
to (twice) the angle-averaged extinction cross section σ+ + σ−. Fig. 5.4 shows Ψ
versus ξ and η as predicted by point scattering theory. Evidently, optical activity
is expected to be absent for zero cross coupling, and to increase monotonically as
cross coupling increases. Very strong contrast in extinction per-building block is
expected along most of the locus of maximum cross coupling, vanishing only for
purely electric, and purely magnetic dipole scatterers (ξ = ±1). The full-wave
simulations show that all the commonly used metamaterial scatterers exhibit strong
optical activity in surprisingly good agreement with the dipole model given that the
circuit approximation, and the neglect of multipoles and retardation in Eq. (5.4) are
very coarse assumptions. Freedom to deviate significantly from the dipole model
requires multiple overlapping resonances in a single scatterer. Indeed, the most
noted deviations occur for the object (8,9) which has two hybridized resonances of
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separate parts.

5.4 Conclusions

To conclude, we have shown that planar metamaterial scatterers that rely on a single
resonance to generate a simultaneous electric and magnetic response are maximally
bianisotropic and strongly optically active, whether they exhibit geometrical chiral-
ity or not. Earlier findings based on symmetry arguments proposed that extrinsic
3D chirality requires loss [29]. We find that optical activity is in fact ubiquitous for
planar magnetoelectric scatterers, irrespective of absorption. The cancelation of
optical activity for zero absorption noted by [29] does not occur in α but occurs in
special cases where observables are subject to additional symmetries, such as wave
vector conservation in non-diffracting periodic systems. Our findings have impor-
tant implications for controlling bianisotropy independently of ϵ and µ in metama-
terials, since they imply that it is fundamentally impossible to independently con-
trol bianisotropy for single resonant objects. The only route to avoid bianisotropy in
lattices of resonators is to use heterogeneous lattices that contain distinct, or multi-
resonant elements (e.g., double-split rings in Fig. 5.4) to independently generate ϵ
and µ, or to use lattices of effectively larger ‘super-cells’ with rotated copies of the
same building block to cancel off-diagonal coupling. Of course, larger supercells
jeopardize the metamaterial objective of creating non-diffractive arrays. Our results
are promising for enhancing far-field or near-field chirality [19] in scattering appli-
cations where it is desired. In general, since maximum cross coupling is ubiquitous,
optical activity is a very robust phenomenon that is easily extended to, e.g., finite
clusters, random assemblies, or multi-element antennas. For instance, we predict
that one can create chiral variants of the plasmon Yagi-Uda antenna to generate or
selectively enhance circularly polarized single emitters. Enhanced chirality in the
near field will promote discrimination between enantiomers on the single molecule
level using the fact that chiral fluorophores have enantioselective absorption cross
sections. Also, near-field chirality can result in enantioselective resonance shifts
for non-fluorescent species [18–21].
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Chapter 6
Fourier microscopy of single plasmonic

scatterers

We report an experimental technique for quantifying the angular distribution
of light scattered by single plasmonic and metamaterial nanoscatterers, based
on Fourier microscopy in a dark field confocal set up. This set up is a necessary
tool for quantifying the scattering properties of single plasmonic and metama-
terial building blocks, as well as small coupled clusters of such building blocks,
which are expected to be the main ingredients of nano-antennas, light harvest-
ing structures and transformation optics. We present a set of measurements on
Au nanowires of different lengths and show how the radiation pattern of single
Au nanowires evolve with wire length and as a function of driving polarization
and wave vector.

6.1 Introduction

In order to build functional devices and materials from plasmonic and metamaterial
scatterers, it is important to quantify how single building blocks scatter into the far
field [1–6]. Such a quantification requires to not only determine the magnitude
of their scattering, absorption and extinction cross section [3], but also to mea-
sure the distribution of light scattered into each direction [7, 8]. Measurements
of angular distributions of light are highly challenging as signal levels from single
nano-objects are low. Therefore, one often resorts to studying arrays of identical
nano-objects. However, in scattering experiments on arrays one typically faces
the problem that the radiation patterns of collections of scatterers are dominated
by grating diffraction orders (periodic arrays), or speckle (random arrays). Sepa-
rating this ‘structure factor’ from the angle-dependent radiation pattern of single
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objects in such measurements is challenging since it is difficult to create a feature-
less structure factor. Recently, Fourier microscopy, or ‘backaperture imaging’, has
been utilized by several groups as a method to measure angle-dependent radiation
patterns. This method is based on collecting the light radiated by a single nanos-
tructure using a standard high NA objective, and the realization that the objective
back aperture contains k-space information of the electromagnetic field. Fourier
microscopy was first applied to measure the radiation pattern of single molecule
emitters, thereby allowing to determine their orientation [9, 10]. This method was
also used recently [7, 11] to measure the directivity of emission for molecules
coupled to a Yagi-Uda antenna and plasmon nano-apertures.

Surprisingly, the application of Fourier microscopy to scattering experiments
is much less widespread [12–15]. For the geometry of metal particles on trans-
parent substrates that is possibly of biggest interest in the fields of plasmonics and
metamaterials, Fourier microscopy is most difficult to implement due to issues with
background light. The only implementation that we are aware of [16] is limited to a
very small subset of collection angles, namely only those angles above the total in-
ternal reflection angle in glass. Shegai et al. [8] have applied back aperture imaging
to study radiation from the endpoints of nanowires. However, in their work light
can only be collected from parts of a bigger structure, as the focused illumination
applied to one part of a structure to excite it needs to be removed by spatial filtering.
So far, however, the possibility of recording angle resolved scattering data over a
full objective NA for single nano-objects on simple transparent substrates has not
been reported. In this chapter we present an optical set up that can record radiation
patterns for such subwavelength objects upon excitation with a well defined inci-
dent wave vector and polarization. In this way, it is possible to for the first time
quantify how, e.g., single elements in plasmon antennas and metamaterials scatter.
We present a set of measurements on radiation patterns of Au nanowires of differ-
ent lengths. We demonstrate that while ultrashort Au nanobars radiate as a single
point dipole, longer single nanowires can be understood as a collective oscillation
of a line array of dipoles.

6.2 Experimental setup

Our homebuilt experimental set up is sketched in Fig. 6.1 (a). A basic design con-
straint that we impose is that the driving field has a well defined wave vector and
polarization. Therefore, we opt for an input beam with a large focus, i.e. 30 µm
spot size, that has a relative wave vector spread |∆k|/|k| ≤ 0.02. Since any typi-
cal plasmonic scatterer has a cross section that is at most 10 times its geometrical
cross section ( 0.1 µm2), just 10−4 of the incident power is scattered in total per
object. In a Fourier microscope this is not all collected by a single detector ele-

88



6.2. Experimental setup

ment (as in an imaging microscope), but is spread over a detector array with 104

channels. Hence, each angular detection channels receives only about one photon
per 108 incident photons, making a very bright source and excellent background
suppression in the set up a necessity. Therefore, we have used a supercontinuum
light source (Fianium), which has a spectrum in the range from 450 nm to 1750
nm, in combination with an acousto-optical tunable filter (AOTF) for frequency se-
lection. The combination of Fianium and AOTF provides at least 0.1 mW in a 5 nm
bandpass windows centered at any wavelength in the visible or near-infrared. Since
scattering does not differ in frequency from the input beam, as in fluorescence ex-
periments, it is not possible to differentiate the signal from the background signal
by means of frequency filtering. Therefore, we have utilized dark field microscopy
in total internal reflection (TIR) mode to excite our structures.

The samples are placed on the front facet of a glass prism with index match-
ing immersion oil (Sigma 56822, n=1.516) between the glass substrate and the
prism, as schematically depicted in figure 6.1 (b). The incident beam impinges
on the sample at an incidence angle θI that is greater than the critical angle θC
needed for TIR. Our structures are hence excited by an evanescent wave that has
a wave vector component along the prism equal to the parallel wave vector of the
incoming light (k||), and with some evanescent decay from the interface, set by

kz =
√

|k|||2 − (ω/c)2. The scattered light is collected by a high NA 100x Olym-
pus objective (NA=0.95), meaning that we collect scattered parallel wave vectors
in the range −0.95ω

c ≤ |k||| ≤ 0.95ω
c . The microscope objective is mounted on a

Newport ultralign micrometer stage for fine focusing and positioning, which is set
at the end of an optical rail. This rail furthermore contains a set of two telescope
lenses in order to create an intermediate real space image plane. We use this plane
to select light from just one single nano-object, by placing a pinhole mounted on
a flip mount. In our setup, we use a telescope lens with f = 50 mm, which im-
plies a magnification of 27x. Therefore one could use commercially available 50 to
120 µm pinholes for spatial selection. In general, care must be taken that pinholes
are small enough to exclude adjacent objects, yet large enough that Airy diffrac-
tion rings from the pinhole do not dominate the Fourier image. Moreover, we have
found it necessary to deal with the fact that commercial pinholes are not circular,
and the fact that the abrupt edges of binary pinholes always diffract. Therefore,
we use Gaussian graded pinholes defined by digitally transferring 16-bit black and
white tiff-file definitions of gaussian circular grayscale patterns in photographic
black and white slide film by laser writing (www.colorslide.com). These pinholes
have a smooth, apodized transmission in Fourier space. In order to block residual
transmission through the nominally non-transmitting part of the film away from
the pinhole (for which we estimate an optical density of 3), we glue the apodized
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Figure 6.1: (a) A schematic of the Fourier microscope set up. The set up consist of a
high NA objective (NA=0.95), a set of telescope lenses L1 and L2 with equal focal lengths
(f=50 mm), a Fourier lens L3 (f=200 mm) and a tube lens L4 (f=200 mm) that focuses
the image on a silicon Charge Couple Device (CCD). To select a single scatterer, we place
a pinhole in the image plane between L1 and L2. (b) A schematic representing the posi-
tion of a nanowire on the prism front facet with a long axis oriented parallel to the y-axis,
excited with s or p polarized incident light. (c) Ray diagram demonstrating the front and
back aperture image planes. The light scattered by nano-objects is collected by the objec-
tive which forms a collimated beam (black lines). Each point in the back aperture of the
objective (dashed black line) corresponds to a different wave vector (gray lines) scattered
by any nano-object. (d) SEM image of an array of 200 nm long, 50 nm wide and 30 nm
thick nanobars arranged in a periodic lattice with 4 µm lattice spacing. The inset shows
an SEM zoom in of a 2 µm long, 50 nm wide and 30 nm thick Au nanowire.
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Figure 6.2: (a) Fourier space image of a uniform layer of 100 nm dye-doped fluorescent
beads excited with unpolarized incident light at 480 nm. The total exposure time is 0.4 s.
(b) The blue line is the transmission function extracted from the measurements in (a).

pinholes onto a stainless steel thin film with a mechanically drilled 300 µm hole.
When used as a simple imaging microscope, the set up contains as only additional
element a tube lens (f = 200 mm) that images the pinhole plane on a CoolSnap
EZ Silicon CCD camera. In order to retrieve the radiation pattern of a single nano-
object, i.e. the k-space image, we place a flippable Fourier lens between telescope
and tube lens, at a distance 4ftelescope + fFourier from the back focal plane of the
objective to focus the CCD camera on the microscope back aperture, rather than on
the sample plane (i.e., at infinity in our infinity corrected microscope). Figure 6.1
(c) shows a ray tracing image of the light collected by the objective in real (black
lines) and k-space (grey lines). Independent of the position of the object, each ra-
diation angle is focused onto a unique location in the back aperture of the objective
(dashed black line).

We calibrated the objective transmission function as a function of collection
angle by measuring the intensity distribution in the back aperture from fluorescence
emitted by dye-doped fluorescent beads (Invitrogen Fluospheres F8800) [17]. We
have deposited a uniform layer of 100 nm beads by spincoating a 5% concentrated
solution. The dye molecules have an emission peak at 535 nm. A set of band
pass filters was used in the incoming beam (tuned to 480 nm) and the detection
beam in order to selectively collect only the fluorescent light coming from the layer
of dye molecules. The isotropic emission collected by our objective is shown in
figure 6.2 (a). It has a non-uniform intensity distribution in Fourier space firstly
because equidistant angles are not equidistant in the k|| space that our CCD images,
and secondly because of the angle dependent apodization function T (k||) of the
objective. For an angularly isotropic emission we expect the collected intensity to
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vary as

I(k||) =
P

cos(arcsin(k||))
T (k||), (6.1)

where k|| = |k|||/k0. In our measurements, the objective transmission function
T (k||) is angle independent for angles between 0 ≤ | sin θ| ≤ 0.6, rolling off
to 50% of its peak value at sin θ = 0.86, as shown in figure 6.2 (b). Since the
objective is specified for near infrared applications, we expect that the transmission
edge, which essentially reaches zero already at an NA of 0.89, moves to larger
angles for longer wavelengths, where the NA is specificied as 0.95 by the objective
manufacturer [17]. The relation between pixel on the CCD camera and wave vector
emitted in the object plane is easily calibrated by using the Fourier microscope
without spatial filter. Since we use periodic structures, the collected pattern consists
of grating diffraction orders that are equidistant in k||-space. Indeed, in accord with
the Abbe sine condition by which the objective is designed, we retrieve equidistant
lattices of dots in k||-space on the CCD camera, the spacing of which serves as
calibration. In our set up, the full NA of the objective corresponds to a diameter of
approximately 300 pixels on the camera.

6.3 Results and discussion

6.3.1 Fourier microscopy of an array of ultrashort gold nanobars

In order to demonstrate the potential of Fourier microscopy of single nano-objects,
we have fabricated samples with Au nanobars of different lengths. The shortest
bars that we fabricated (200 nm long, 50 nm wide, 30 nm high) are sub-wavelength
(Fig. 6.1), and hence expected to have only weakly directional scattering patterns.
In contrast, the longest bars (4 µm long, 50 nm wide, 30 nm high) are so long
that they are expected to have several plasmon guided mode Fabry-Perot reso-
nances and potentially quite directional scattering patterns [18–20]. The inset of
Fig. 6.1 (d) shows a SEM image of a single 2 µm long and 50 nm thick nanowire.
The nanobars were fabricated by defining lines in e-beam lithography in ZEP-
520 resist, employing thermal evaporation of Au, and subsequently lift-off in 1-
methyl-2-pyrrolidinone (NMP). The nanowires are arranged in periodic square ar-
rays with lattice spacing equal to 20 times the nanowire length, as shown in Fig. 6.1
(d). The pitch is large enough to avoid any coupling between objects, yet small
enough so that we can easily find fields of objects in widefield or darkfield mi-
croscopy. Fig. 6.3 (a), (b), and (c) show Fourier images of a periodic array of 200
nm Au nanowires with 4 µm lattice spacing, without spatial filtering, excited by
p-polarized light (a) and polarization analyzed along (b) and across (c) the nanobar
length. The white edge around the intensity distribution depicts the measured NA
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Figure 6.3: (a) Fourier space image of a periodic square array of 200 nm long, 50 nm wide
and 30 nm thick Au nanobars with 4 µm lattice spacing excited with p-polarized incident
light at 600 nm with 20 µW. The total exposure time is 10 ms. (b), (c) Radiation patterns
under the same illumination conditions as in (a) and polarization analyzed across (b) and
along (c) the nanobar length, as denoted by the black arrows. (d), (e), (f) Fitted sin2 (red
line) to cross sections along the central column ((a), (c)) and row ((b)) of grating orders in
our measurements in (a), (b) and (c), respectively, with a scaling factor of 11×108 and an
offset of 3×106 counts per pixel, per mW incident power and per ms exposure time.
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of our objective (full white line), corresponding to all wave vectors up to 89 % of
the maximum wave vector in free space (dashed white line), while the center of
the image corresponds to k||=0. The Fourier space is clearly dominated by grating
orders, as expected for a periodic array.

Interestingly, not all grating diffraction orders are equally intense. We expect
[2] that the Fourier space scattering of a periodic array of scatterers is the product of
the radiation pattern of each single scatterer and the structure factor of the array that
is a set of δ-peaks at the vectors k|| +G (where G is any of the reciprocal lattice
vectors, Eq. (4.9)). In other words, the radiation pattern of an array makes up a
sparse sampling of the single object radiation pattern. In this data we recognize
that the central orders near k|| = 0 are much weaker than the orders at larger
angles, as seen from cross sections through our data along kx in figure 6.3 (d), (e),
and (f) (blue lines). For this data set, we have used excitation with p-polarized
light, obtained by placing a polarizer in the incident beam. For p-polarized driving
we expect that each nanobar obtains a large, out of plane dipole moment. For
out-of-plane dipoles we expect that the single building block radiation pattern is
strong at large angles and weak near k|| = 0, since the radiation pattern of a single
dipole is given by P ∼ sin2 θ = k2||. We demonstrate this behavior by fitting the
sin2 to the cross sections in figure 6.3 (d), (e) and (f) (red lines). The fact that the
grating diffraction orders represent a discrete sampling of this single block radiation
pattern is further confirmed by a polarization analysis, realized by placing a second
polarizer immediately after the microscope objective. The grating diffraction orders
reveal a radial polarization around the intensity node at k|| = 0, consistent with the
radial polarization expected for a single out-of-plane dipole moment.

6.3.2 Fourier microscopy of single scatterers

The measurements in Fig. 6.3 (a) and (b) show that Fourier microscopy of arrays of
nano-objects is strongly limited by the fact that angle-dependent scattering strength
is sampled only at a sparse set of points, set by the grating diffraction orders. We
will now present measurements that show that it is possible to even measure radia-
tion patterns of single sub-wavelength plasmonic scatterers with our Fourier micro-
scope. To this end we flip the spatial selection filter into the image plane between
lens L1 and L2 in the telescope (Fig. 6.1), to select a single scatterer. When the
spatial selection filter is in place, the grating orders disappear and we can observe
the full structure of the radiation pattern. In Fig. 6.4 (a) and (b) we show radiation
patterns (measured without a polarizer in the collection path) of 2 µm and 1 µm Au
bars that are perpendicular to the scattering plane of the incident, p-polarized light.
In this configuration, the incident beam excites the entire object in phase (k|| = 0),
since the extent of the nanowires as measured along the incident wave vector is only
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Figure 6.4: (a) Fourier space image of a 1 µm long, 50 nm wide and 30 nm thick Au
nanowire excited by p-polarized incident light. (b) Fourier space image of a 2 µm long,
50 nm wide and 30 nm thick Au nanowire excited by a p-polarized incident light. (c) and
(d) are calculated radiation patterns of 2 µm and 1 µm long Au nanowires multiplied by
the transmission function, respectively. (e) Fourier space image of a 2 µm long, 50 nm
wide and 30 nm thick Au nanobar excited with s-polarized incident light. The nanobars
are excited at 725 nm and 200 µW. The total exposure time is 1 s in (a), 100 ms in (b),
and 10 ms in (e). (f) An average cross-cut of (e) along ky (red curve) agrees well with the
calculated sinc2 behavior (blue line).
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50 nm (the wire width). The images reveal low to no intensities in Fourier space
around k|| = 0, with most of the intensity concentrated at high angles, specifically
at high kx, yet small ky. Furthermore, upon comparison of the radiation pattern of
the 2 µm and 1 µm wire, we observe that while both radiation patterns are con-
fined to a narrow range of wave vectors near ky = 0, this confinement is roughly
two times greater for the longer wire. The measurements further show secondary
maxima around the main lobe centered at ky = 0. An increasing concentration
of scattered radiation around a central direction with wire length was also noted
by Shegai et al. [8], demonstrating stronger directionality for wires with a higher
geometrical aspect ratio. Complementary measurements for s-polarized driving on
a 2 µm Au bar (Fig. 6.4 (e)) also show strong directionality when dipole moments
are excited along the bar. Again the radiation pattern is confined to a narrow region
around ky = 0. A striking difference with p-polarized driving, however, is that in-
tensity is more uniformly distributed along the kx-axis, with no apparent reduction
of intensity at k|| = 0. This set of measurements clearly shows the main advan-
tage of our Fourier microscope, i.e., the ability to map the full back aperture of
our objective for light scattered by a single nano-object. For instance, the striking
difference in radiation pattern depending on polarization of the driving would not
have been noticed in set ups [7, 8, 16] that collect only large wave vectors beyond
total internal reflection.

In order to understand the radiation patterns of our nanowires, we implement
a simple model. We hypothesize that the radiation pattern of wires can be simply
described as that of a set of point dipoles arranged in a line over the length of the
wire. For this case, we expect that different volume elements along the length L
of the wire are all excited in phase, and with equal incident amplitude and are all
polarized along the optical axis of the setup. Due to the slight phase differences
accumulated for waves traveling to a given observation point in the far field from
different positions on the wire, the radiation pattern of a line of dipoles is modified
by the form factor of the wire, obtained by integrating over the wire. In the theory
of microscopic imaging with high NA aplanatic lenses that satisfy the Abbe sine
rule, it is well known that the back aperture field can be found directly from the field
on a reference sphere of radius f , where f is the objective focal distance [21, 22].
If we divide the wire into area elements dxdy, the field on the reference sphere will
be

E(θ, ϕ) ∼
Efar

dip(θ, ϕ)

f

∫
wire area

e−ik0Rf (θ,ϕ,x,y)dxdy, (6.2)

where Efar
dip(θ, ϕ)/f is the electric field amplitude given by the radiation pattern

of a single dipole. For a case where f ≫ L, the distance from the radiator to
reference sphere Rf (θ, ϕ, x, y) simplifies to Rf = f − k||

k0
· r||, where k|| =
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k0(cosϕ sin θ, sinϕ sin θ, cos θ), and where r|| = (x, y, 0) . For a wire of length L
oriented along the y-axis, and of infinitesimally small width, the integral simplifies
to

E(k||) = Efar
dip(k||)

eik0f

f

L/2∫
−L/2

e−ikyydy ∝ Efar
dip(k||)sinc(k

y
||L/2), (6.3)

This calculation is analogous to calculating Fraunhofer diffraction of a slit, but
now is applied to nanoscale scatterers with wide radiation patterns that are far from
paraxial. Our calculation predicts that the polarization content and intensity is di-
rectly inherited from the radiation pattern of a single point dipole multiplied by
a sinc function that applies irrespective of incident or collected polarization. The
calculation in essence predicts that the radiation pattern of a nanowire is that of a
single dipole multiplied by a sinc2 function that ensures that the longer the wire
is, the stronger the radiation is confined to the plane transverse to the wire. The
excellent correspondence between the data in Fig. 6.4 and the calculation not only
concerns the width of the central lobe, set by the sinc2 function, but also the ap-
pearance of a minimum in scattered intensity at the center of the pattern that is
proportional to |Efar

dip(k||)|2 . In addition, the calculation also correctly predicts the
location of side lobes in the ky direction. For completeness we provide a cross-
cut through data and theory, obtained by integrating data in Fig. 6.4(e) along kx.
Data (red line) and theory (blue line) in Fig. 6.4 (f) are in excellent agreement. The
absence of a hole in the radiation pattern in Fig. 6.4(e) is furthermore consistent
with the fact that |Efar

dip(k||)|2 has no central minimum for in-plane oriented dipole
moments.

As noted above, our calculation predicts that the polarization content of the
scattered light is directly inherited from the radiation pattern of a single point
dipole. To verify this prediction, we place a polarizer directly behind the micro-
scope objective to analyze the polarization of the scattered light, as reported in
Fig. 6.5 for p-polarized excitation. Since the single-dipole riadation pattern is ra-
dially polarized, analyzing the polarization of the 2 µm nanowire radiation pattern
along kx only retrieves the main lobe of the sinc2 function. For cross polarization,
i.e., polarization along the wire, the field Ey(k||) has a node at ky = 0. As a conse-
quence the main lobe is crossed by a nodal line and is strongly suppressed so that it
becomes comparable in brightness to the low intensity side lobes at larger ky. Our
measurements with the polarization analyzer (Fig. 6.5 (a) and (b)) show very good
agreement with the calculations (Fig. 6.5 (e) and (f)). We have also polarization
analyzed Au nanowires that are perpendicular to the scattering plane, but with s-
polarized incident light. Fig. 6.5 (c) and (d) show measured radiation patterns that
are polarization analyzed along (c) and across (d) the nanowire length. Again, the
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Figure 6.5: (a), (b) Polarization analyzed radiation patterns of 2 µm long, 50 nm wide and
30 nm thick Au nanowires excited by a p-polarized incident light at 650 nm with 200 µW
along (a) and across (b) the nanowire length, as denoted by the black arrows. The exposure
time in (a) is 300 ms and in (b) 1 s. (c), (d) Polarization analyzed radiation patterns for
the same nanowire excited by an s-polarized incident light at 650 nm and 200 µW along
(c) and across (d) the nanowire length, as denoted by the black arrows. The exposure time
in (c) is 500 ms and in (d) 1 s. (e)-(h) Calculated radiation patterns corresponding to the
illumination conditions measured in (a)-(d), respectively, multiplied by the transmission
function.
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measurements show very good agreement with the calculations of the same polar-
ization analysis shown in Fig. 6.5 (g) and (h). Note that the calculation in Fig. 6.5
(g) has much lower intensities than (e) and (f). For both arrays of short nanobars
and single nanowires we have data sets for wavelengths in the range from 500 nm
to 725 nm that are detectable by our CCD camera. In this wavelength range, we
observe no strong wavelength dependence of the radiation patterns, since the reso-
nance for a z-oriented dipole does not fall within this wavelength range. The only
noticeable differences arise in array measurements from grating diffraction, as the
location of the grating diffraction orders is wavelength dependent.

6.3.3 Radiation pattern of single Au nanowires oriented in the scatter-
ing plane

So far we have considered radiation patterns of single Au nanowires perpendicular
to the scattering plane of the incident beam, in which case the whole wire is ex-
cited in phase. Many excitations in small nano-objects will benefit from excitation
with k|| different from 0. For instance, for understanding the excitations of 1D ob-
jects like wires and particle chains, it would be advantageous to phase-match the
excitation wave vector to that of guided modes. Therefore, we have also studied
radiation patterns of Au nanowires that are oriented in the scattering plane of the
incident wave. Fig. 6.6 (a) shows a measured radiation pattern of an array of 2 µm
long Au nanowires with 40 µm lattice spacing. A nanowire that is excited with p-
polarized light has a radiation pattern dominated by the sinc2 function that is given
by the total length of the object, as previously discussed. However, now the sinc
function is rotated by 90◦ together with the wire (Fig. 6.6 (b)), and displaced from
wave vector k|| = 0 to be centered at the incident wave vector k||. Of course, since
we are working in TIR, the incident wave vector and hence the main lobe of the
sinc2 function is just outside the part of Fourier space accessible to our objective.
In our configuration the central lobe is located at the left hand side just outside the
Fourier image (red dashed line in Fig. 6.6 (b)). A striking difference with measure-
ments with in-phase excitation (Fig. 6.4) is furthermore that the overall collected
signal per bar is much weaker. We attribute this weak signal to the fact that the
main lobe of the sinc2 function is beyond the light line in air, reducing scattering
into the collection side of the set up. It is for this reason that Fig. 6.6 shows data
obtained without pinhole on a sample with a very dilute set of wires (40 µm lattice
spacing), rather than with pinhole. Compared to data with pinhole (not shown), the
advantage is a large boost in signal, though at the price of obtaining only a sparse
sampling of the radiation pattern, due to grating diffraction as in Fig. 6.3.

We have measured radiation patterns for p-polarized incident light and nanowire
orientation for a wide range of incident frequencies. Fig. 6.6 (b) shows the position
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Figure 6.6: (a) A schematic representing the position of a nanowire on the prism front
facet with a long axis parallel to the x-axis, excited with p polarized incident light. (b)
Fourier space image of a horizontal 2 µm long, 50 nm wide and 30 nm thick Au nanobar
excited with p-polarized incident light at 550 nm and 8 µW. The exposure time is 1 s. (c)
Location of the fringe intensity maxima measured in (b) along kx. The black lines show
the predicted position of the intensity lobes away from the zero-order lobe. Symbols are
black, red, green, blue, cyan, magenta, dark yellow and purple for fringe orders m = 1-8,
respectively, marked by numbers. (d) Symbols (connected by lines for clarity): maximum
fringe intensity normalized to the m=2 fringe intensity versus parallel wave vector. The
black dashed line depicts the expected 1/|kinx −kx|2 behavior of the intensity lobes. Fringes
with the same wavelength but different orders are color coded.
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of radiation pattern fringe maxima for a 2 µm nanowire as a function of incident fre-
quency. As expected, the fringe maxima are equidistantly spaced by kx/k0 = λ/L,
and originate from a central zero-order lobe just outside the diagram. Further, we
would expect the fringe intensity to drop off as 1/|kinx − kx|2. However, we don’t
observe such a monotonic fringe intensity drop off in all our data sets. Specifically,
Fig. 6.6 (c) shows that all fringes are more or less comparable in brightness for
λ < 650 nm across the whole back aperture. Only for λ = 725 nm and above (not
shown) do we find a drop off in fringe brightness commensurate with the expected
sinc2 tail. A possible explanation is that plasmonic resonances of the wire modify
the radiation patterns. Indeed, it has been predicted [20, 23] that the current distri-
bution excited in a metal wire not only has a component directly proportional to the
incident field (wave vector k||), but also due to standing plasmon wave oscillations
along the wire. Such standing waves would add extra contributions to the radiation
pattern that are again of the form of sinc(kL/2), but centered at kx = ±kSPP , i.e.,
at the guided plasmon wave vector. A detailed analysis of fringe intensity versus
kx would allow to extract the dispersion relation of the nanowire. However, in our
data, this analysis is obscured by the fact that plasmon resonances in lithographi-
cally fabricated Au wires are generally not very strong due to losses, and by the fact
that in total internal reflection illumination, the plasmonic x-oriented mode is only
weakly driven. Indeed, for incident angles higher than the critical angle required for
TIR, θI > θC , the evanescent wave at the surface of the prism has an electric field
component along z, which for the incidence angle in our experiments (52◦) is 2.5
times greater than the x-oriented field. Separating the non-resonant, but strongly
excited polarization perpendicular to the wire from the weakly excited but possibly
resonant wire plasmon radiation patterns is outside the scope of this chapter. For
application of Fourier microscopy to complex resonant structures in general, it is a
major challenge to simultaneously control the required incident phase gradient over
the structure and achieve the desired polarization, while also remaining in total in-
ternal reflection or dark field excitation mode. We suggest that combining Fourier
microscopy with wavefront phase shaping [24] may be a promising route to ex-
tract further quantitative information to benchmark models such as those proposed
in [20, 23].

6.4 Summary and conclusion

In conclusion, we have built a Fourier microscope that is suited for measuring the
radiation pattern of single plasmonic and metamaterial scatterers. We have suc-
cessfully measured radiation patterns of single Au nanowires with different lengths
down to 200 nm, even though signal levels drastically reduce with size. Since
Fourier microscopes always operate in dark field mode, the incident excitation field
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is limited in polarization and wavefront. We have shown that even with the class
of driving fields available in total internal reflection mode one can obtain useful
quantitative response characteristics, as long as the polarization and phase gradient
applied over the structure are precisely known. We hence anticipate that we will be
able to extend this method directly to quantify the magnetoelectric scattering prop-
erties in Fourier space of many interesting, but previously uncharted, plasmonic and
metamaterial structures, such as split ring resonators, cut-wire pairs, pseudo-chiral
objects, and oligomers where spectra are characterized by Fano resonances [25–
27].
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Chapter 7
Outlook

The main proposition of this thesis is that split rings scatter as magnetoelec-
tric dipoles. In this chapter we ask how can one either challenge and overturn,
or further confirm this view. We suggest that the validity of a dipole picture
can be directly tested by measuring radiation patterns of single and coupled
split rings. Therefore, we present a theoretical investigation of the radiation
patterns of single split rings, as well as stereodimers of split rings on a glass
substrate. We discuss problems such experiments will likely encounter. Fi-
nally, we outline prospective applications of metamaterial scatterers that go
beyond achieving negative refractive index.

7.1 Experiments to test the model

Throughout this thesis we have aimed to quantify the response of individual split
ring resonators. Based on our experiments that study coupling of split rings, we
have developed a fully electrodynamical model that assigns an electric, magnetic
and magnetoelectric polarizability to split rings. This model successfully pre-
dicts quantitative extinction cross sections, radiation patterns and optical activity
of metamaterial scatterers, as far as we have probed in array experiments shown in
Chapters 2, 4 and 5. In our model, the main premise is that electric, magnetic, and
magnetoelectric dipole moments, should have approximately equal strength that is
large compared to the ‘unitary limit’ of strongest scattering while simultaneously
ignoring all higher order multipole moments. Naturally, these should be assump-
tions of considerable debate. Firstly, as exemplary formulated by Merlin [1], many
researchers would expect e.g. electric quadrupole moments to dominate over the
magnetic dipole response of SRRs. Secondly, a particular problem with assigning
magnetic dipole moments is that its magnitude is not origin independent. Finally,
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some researchers wish to avoid the magnetic dipole moment picture altogether,
stating simply that the LC resonator feels the gradient in E due to its size (which
H = ∇×E is arguably a part of). Hence, it is important to ask if we can devise
experiments that could further confirm or falsify the hypothesis of a dipolar de-
scription. One would expect a breakdown of any dipole moment picture as soon as
higher order multipole moments are excited, which happens in two circumstances.
First, if the object is single, but large compared to the wavelength, even a plane
wave excitation excites multipoles. Second, if strong gradients are applied over an
object due to the very nearby presence of a second scatterer, or due to highly local
excitation, multipoles could be excited even for small objects. Here we do not fo-
cus on this second, trivial case in which multipoles occur, since we are interested in
the intrinsic single building block description. As further tests beyond array mea-
surements, we can think of two tests in scattering experiments. Firstly, one could
attempt to measure the radiative linewidth of the extinction cross section as the
split ring is held in front of an interface. Buchler et al. [2] showed that that such an
experiment is indeed feasible. He demonstrated that for a single plasmon particle,
the linewidth varies with frequency due to an LDOS effect similar to the lifetime
modification of a fluorophore at an interface. In this experiment, one might test
if the assumed magnetic scatterer actually probes the magnetic dipole local den-
sity of states (LDOS) [3], or higher order multipolar LDOS generalizations [4].
As a second experiment, which is achievable with the tools offered in this thesis,
we propose that the radiation pattern of a single split ring could be measured. In
Chapter 6 we demonstrated that one can measure the radiation pattern of a single
scatterer, but only provided one manages to create a dark field set up. For isolated
metal scatterers, as opposed to e.g. holes in a metal screen, this means that one
cannot study the radiation pattern of a split ring in homogeneous space, but only
of split rings on a high-index interface, under TIR conditions. This geometry has
two disadvantages. First, one cannot choose the incident field and its polarization
freely. Second, a major part of the light goes into the substrate where one does not
measure.

7.1.1 Fourier microscopy of split rings

Let us calculate if measuring radiation patterns of split rings would yield inter-
esting results on the magnetoelectric dipolar behavior of split rings in a best case
TIR scenario. First we calculate the driving field by calculating the field at the
glass-air interface in absence of any scatterer, assuming incidence from glass under
TIR incidence, for various polarizations. Next, we calculate the complex induced
dipole moments (p, m) by multiplying the fields with the split ring polarizabil-
ity. Here, care should be taken that the polarizability is modified by the presence

106



7.1. Experiments to test the model

of the interface according to 1/α = 1/[1/αvacuum − Gscattered], where αvacuum is
the electrodynamic polarizability in vacuum, and Gscattered is the scattered part of
the Green function Gscattered = Ginterface − Gfree (as shown in Ref. [5], Chapter 10
and pages 494-495). This correction takes into account that both the resonance
frequency and the radiative linewidth of the scatterer is modified at the interface.
Intuitively this can be understood as resonance hybridization of the split ring reso-
nance with its own mirror image in the interface. We use values for αvacuum based
on ω0 =1.26×1015 s−1, αE = 3.4V , αH = 1.5V , and αC = 1.9V , close to max-
imally cross coupled as argued in Chapter 5, where V =0.0012 µm2 is the particle
volume, and where Ohmic damping γ = 1.25 × 1012 s−1 is set to be negligibly
small for this best-case scenario calculation [6]. As a final calculation step we
calculate the radiation pattern by superimposing the electric and magnetic fields
radiated by the induced electric and the magnetic dipole, far field expansions for
which were first derived in [7–10].

For a single SRR 80% of the emission is directed into two lobes that point into
the substrate, as shown in Fig. 7.1 (a). These lobes are close to the critical angle
associated with the air-glass interface, as is well appreciated in the field of single
molecule microscopy [5], where similar phenomena occur in emission. The re-
maining 20% is emitted into the air side, and is emitted over a broad angular range.
The plots in Fig. 7.1 (b)-(f) show polar diagrams of air-side radiation converted into
intensity distributions patterns as expected to be seen by our objective (NA=0.95),
polarization-analyzed in the back aperture. On the air side, we expect to collect
< 20% of the emission as a rather homogeneous pattern extending over the full ob-
jective, much like the pattern simply expected from a horizontal electric dipole, as
shown in Fig. 7.1 (b). Note that the minute left-right asymmetry in the un-polarized
and linearly polarized graphs is not an artefact, but due to asymmetric excitation in
an TIR geometry. An interesting observation is that circular polarization analysis
of scattered light is expected to show a handedness-dependent asymmetry in the ra-
diation pattern. This asymmetry seen in Fig. 7.1(e) and (f) is related to the expected
off-angle pseudochiral extinction and the fact that the magnetoelectric response is
maximally cross coupled.

We have also studied calculated radiation patterns of stereodimer structures
made of a pair of SRRs, previously reported in [11], in order to decide if stere-
odimers would provide sharper features that would allow for easier determination
in experiments than the broad features of single split rings. Coupling in such struc-
tures results in a complex resonant behavior as a function of twist angle, where
frequency splitting and the anti-crossing carry interesting physics, as shown in Fig.
3.3 that could be observed in radiation patterns. We would hope to find large dif-
ferences in radiation pattern or in optical activity therein for 0◦/90◦/180◦ twist an-
gle, and for the different resonances. We calculated the eigenfrequencies of the
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Figure 7.1: (a) Calculated radiation pattern of a single split ring on a glass-air interface.
(b) Calculated radiation pattern of an individual split ring collected by a high NA objective
(NA=0.95) on the air side. The patterns in (c) and (d) are analyzed with a linear polarizer,
while in (e) and (f) they are analyzed with a circular polarizer.
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Figure 7.2: Radiation patterns of split ring stereodimers with 0◦, 90◦ and 180◦ twist angle.
The radiation patterns in the second and third row are polarization analyzed with circular
polarizer of handedness that is depicted by the black arrows on the left hand side.

two anticrossing bands in presence of the dielectric interface, by obtaining normal-
incidence extinction versus twist angle and versus frequency for dimers resonant at
1500 nm, buried just inside a n = 1.5 dielectric, and with 150 nm vertical center-
to-center spacing. Next, we calculated the radiation patterns on the air side for
0◦/90◦/180◦ twist, assuming TIR incidence (45◦ incidence angle in glass, linearly
polarized), as shown in Fig. 7.2. The extinction at this angle is very similar to
normal-incidence results, as shown in Fig. 3.3. For all cases, circular analyzers
again bring out handedness-dependent asymmetry in the angular radiation pattern,
very much as in the single SRR case. When comparing the different resonances
at set twist, or patterns at different twists for a given resonance branch, it can be
noted that there are subtle differences only. Indeed, the asymmetries don’t change
in sign, or orientation, or magnitude significantly.

From the above analysis, it is tempting to conclude that measuring radiation
patterns of single SRRs can be used to demonstrate the presence of electric and
magnetic dipoles especially in the case when they are analyzed for circularly polar-
ized light. In the case of linear analysis, the signal reaching our detector does not
show large differences between a single in-plane electric dipole and a magnetoelec-
tric scatterer such as a SRR. Circular polarization analysis, however, shows a clear
handedness-dependent left-right asymmetry due to the magnetoelectric coupling
that is at its maximum, as presented in Chapter 5. Such a set of measurements could
therefore conceivably confirm or reject the hypothesis that a split ring is in fact a
magnetoelectric scatterer consistent with our point dipole model. However, we note
that the overall problem in the above mentioned measurements is the signal strength
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especially at infrared frequencies, where the set up proposed in Chapter 6 has worse
performance due to the poorer characteristics of IR detectors, and the fact that no
feature in the radiation pattern stands out as particularly sharply defined. Therefore,
we must conclude that the possibilities for quantifying SRR response and its dipo-
lar nature via radiation patterns are slim. The essential problem is the modification
of the radiation pattern by the air-glass interface. Collection into air means only
a fraction of the light is collected, which gives a comparatively featureless signal.
The situation is exacerbated by the fact that in our experiments (Chapter 6 and our
initial attempts on split rings), either signal is too low when trying to measure from
single objects, or grating diffraction patterns sample single object radiation pat-
tern only sparsely, as demonstrated in Fig. 6.3. Pilot experiments of structures in
Fig. 7.3 (a) indeed show no clear signature discriminating Fig. 7.1 against different
models. One could argue that the dominating interface asymmetry could be avoided
by embedding a split ring in a homogeneous medium, e.g. immersion oil. However,
this would remove the dark field conditions required for Fourier microscopy. The
air-glass interface could be avoided altogether if one places confidence in Babinet
principle to do the reverse experiment, using air split rings in a metal film, instead
of metal split rings in a dielectric [12, 13]. We have used focused ion beam milling
to generate such split rings in Au, as shown in Fig. 7.3 (b). Here, both sides of the
structure could be index-matched while keeping a dark-field microscopy approach.
By way of pilot experiment, we have extended the Fourier microscope described in
Chapter 6 to the IR regime where metamaterial scatterers have the strongest elec-
tric and magnetic responses. The IR branch of our set up is the same as the VIS
branche described in Chapter 6. The addition is the illumination in the infra-red
wavelength regime, where the frequency selection is performed by the IR AOTF
with a range from 1100 - 1800 nm and the signal is detected by an InGaAs CCD
(Vosskühler NIR-300 PGE). We show signal collected from complementary split
rings (c-SRRs) in the gold film immersed in oil (Sigma 56822, n =1.516) with a
high NA objective (NA=1.4). Fig. 7.3 (c) shows a Fourier space image of an ar-
ray of c-SRRs with lattice spacing of 10 µm illuminated at 1550 nm with linearly
polarized light along the x axis and analyzed with a circular polarizer for one hand-
edness. Initial results indeed show that we can obtain a clear signal and asymmetry
reversal under circular illumination. However, interpretation of the results is diffi-
cult due to the fact that according to simulations, the index matching liquid shifts
the resonance towards the infra-red regime even beyond 1700 nm, i.e., outside the
range of our Fourier microscope. Data on resonance can hence not be obtained.
The asymmetry in the signal has been verified to not be an artefact, but come from
the combined asymmetry of illumination and split ring orientation (52◦). Upon
reversing the illumination angle, the asymmetry in the signal in Fig. 7.3 (c) also
reverses. In conclusion, we suggest that experiments involving c-SRRs would be a
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Figure 7.3: (a) SEM image of a 200 × 200 × 30 nm Au split ring on a glass substrate.
Scale bar is 500 nm. (b) SEM image of a 210× 210× 30 complementary split rings milled
in a Au film. Scale bar is 250 nm. (c) Radiation pattern of an array of complementary split
rings with a lattice spacing of 10 µm illuminated with x-polarized linear light and analyzed
with a circular polarizer for one handedness. The bright spot on the left hand side of the
back aperture image originates from the incident illumination k-vector at TIR angle. The
dashed white line represents the vacuum light line, while the full white line is the NA of our
objective (NA=1.4).

good approach to measure radiation patterns, providing one can build a Fourier mi-
croscope that works in the range 1700 nm - 2500 nm wavelength. Due to hardware
restrictions this is a daunting task, yet the only clear route to perform experiments
with full control over the incident wavevector and polarization. These experiments
could also be used to verify wether or not Babinet principle can be used at all to
describe the response of complementary structures with the same magnetoelectric
response formalism we developed for split rings, or whether e.g. plasmonic effects
in the film spoil Babinet’s principle.

7.1.2 Cathodoluminescence measurements

Radiation patterns might also be accessed by measuring the cathodoluminescence
(CL) of split rings [14, 15]. CL spectroscopy has been used to demonstrate cou-
pling and directivity of radiation of plasmonic structures such as ridge antennas,
plasmonic whispering gallery cavities, ultrathin strip antennas and Yagi-Uda anten-
nas [14, 16–20]. Recently, complementary measurements to CL based on electron
energy loss spectroscopy (EELS) [21, 22] were demonstrated for single SRRs. We
have attempted to measure radiation patterns of very small SRRs by utilizing CL.
Since the CL system available at AMOLF is operational in the VIS, this requires
very fine fabrication of 100× 100 nm SRRs in Au layer. Therefore, we have fabri-
cated arrays of 100×100×30 nm SRRs on a silica-on-silicon substrate by e-beam
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lithography as described in Chapter 2. The substrate choice is directly limited by
the fact that only very few substrates provide background-free CL measurement
capabilities. The SRRs are fabricated in an array with lattice spacing of 1200 nm
as to ensure single SRR measurements. CL excitation maps are obtained by raster
scanning the electron beam across the SRR, where the CL signal is spectrally ana-
lyzed on a silicon CCD camera [17]. In order to improve the signal to noise ratio,
we have binned the data into 40 nm wavelength slices. Fig. 7.4 (a) shows a CL in-
tensity map collected from a SRR at the wavelength range from 718 nm to 759 nm.
As reported in transmission experiments, the fundamental mode of SRRs with such
small dimensions (100× 100× 30 nm) on a dielectric substrate is found at λ =850
nm, while higher order resonances appear at shorter wavelengths [23]. Fig. 7.4 (a)
shows a distinct field distribution across the split ring, which we attribute to the
second SRR mode [21, 22, 24]. The LC resonance is found at wavelengths where
our detector reaches the end of its range.

Based on the above experiment, we extract the following recommendations for
further experiments. Firstly, as regard detection, the current set up is equipped with
a spectrometer operating in the VIS, that requires state-of-the art structure fabrica-
tion in order to shift the resonances to the VIS. Expanding the set up to the near-IR
regime would benefit measurements on structures that are not easily scalable and
are resonant in the IR. Secondly, as regards choice of material system, during the
measurements subtle asymmetries arise when examining multiple SRRs, due to
the presence of ‘hot spots’. Evaporated Au is highly polycrystaline which is not
suitable for fine structure fabrication where the fine features of the structure are
of the same order as the crystal grain size of the Au layer. Therefore, we pro-
pose that a significant improvement could come from using Au SRRs fabricated
from monocrystalline gold. Fig. 7.4 (c) shows such SRRs milled with a focused
ion beam from monocrystalline gold flakes [25, 26], deposited on a 15 nm Si4N3

membrane (Norcada Inc.), as shown in Fig. 7.4 (b). Thirdly, the substrate choice
should be carefully considered. CL measurements are extremely sensitive to back-
ground, for which reason, SiO2 on Si, or just bare Si is always used as substrates.
Unfortunately, this choice directly implies that the split ring would be right at a
highly asymmetric dielectric interface that strongly changes the radiation pattern.
An alternative would be to use ultrathin Si4N3 membranes, which are commercially
available as substrate. The advantage is that for 50 nm membranes no background
is generated, as electrons are simply transmitted. Unfortunatelly, initial measure-
ments and calculations [27] indicate that even thin slabs of Si4N3 act as waveguides
that capture most of the light radiated by the SRRs. While this poses a restriction
on quantifying SRR physics per se, it at the same time could be highly interest-
ing to study waveguide-coupled magnetoelectric antenna systems [28]. As a fourth
recommendation, we anticipate that it is possible to avoid luminescence from a
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Figure 7.4: (a) CL excitation map of split rings as a function of electron beam position.
(b) SEM image of a monocrystaline Au flake on a Si3N4 membrane. Scale bar is 5 µm. (c)
SEM image of a 100 × 100 × 30 nm split ring milled with a focused ion beam from a Au
flake deposited on a Si4N3 membrane [25, 26]. Scale bar is 200 nm.

substrate and material choice by studying complementary SRRs in a gold film on
top of a silica substrate. In this way, the Au film quenches the luminescence from
the silica substrate.

7.2 Applications

Understanding the nature of the magnetoelectric response of metamaterial scatter-
ers is essential for creating functional structures for future applications that rely
on manipulating metamaterial responses. We strongly believe that the potential of
metamaterial building blocks is not only limited to achieving negative refractive
index. In this section we outline some applications which are inspired by coupling
in arrays and optical activity of split ring resonators, by analogy with plasmonics.

The great appeal of plasmonic and metamaterial scatterers is the possibility
of manipulating and controlling light propagation on a subwavelength scale due
to strong photonic interaction in small physical volumes. For example, hallmark
plasmonic structures exhibit localized field enhancement, such as in bow-tie an-
tennas [29], or energy transfer via electric dipole-dipole far-field coupling in finite
plasmonic antennas, for instance in dimer antennas, Yagi-Uda antennas, and Fano
structures [30–35]. Arranging subwavelength plasmonic particles in linear arrays
leads to enhancement and directivity of light emission from single molecules and
quantum emitters that couple to such arrays [17, 29, 30, 32–34, 36]. Furthermore,
periodic arrays of metallic nanostructures give rise to surface lattice resonances due
to diffraction in the plane of the array [37]. It has been shown that by tuning lo-
calized plasmon resonances to overlap spectrally with diffractive resonances, one
can create structures that enhance light emission brightness, rates and directivity
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from single emitters and ensembles of emitters, such as semiconductor nanocrys-
tals [38, 39]. Thereby, dipole-dipole and dark-bright mode coupling in plasmonic
arrays is of importance for increasing the efficiency of light emitting devices, as
well as in sensing.

In the proceedings of this thesis we have seen that metamaterial building blocks
are, just like plasmonic structures, strong scatterers with large scattering cross sec-
tions that couple strongly in arrays. In analogy to plasmonics, one hence expects
that functional structures can arise from coupling of induced electric and magnetic
dipoles in split ring dimers, arrays or gratings. On the basis of their characteristics,
we propose that metamaterial scatterers can add new features especially through
their pseudochirality to many applications, including light sources, sensors, detec-
tors, single-photon devices and thin optical components.

Sources Optical antennas provide an excellent way to couple photons in and out
of nanoscale emitters [40]. Recently, Curto et al. have experimentally demon-
strated directional emission from a single quantum emitter coupled to an optical
Yagi-Uda antenna consisting of plasmonic particles [34]. In analogy to plasmonic
structures, we propose that antennas made of split rings will result in directional
light sources for photonic applications. Coupling in linear SRR arrays has been ex-
tensively studied for the microwave regime by Shamonina et al. [41], who have
identified the existence of so-called magneto-inductive waves that arise due to
dipole-dipole coupling of split rings, where the inter-ring spacing can be tuned to
enable energy transfer along the antenna. Through magnetic, electric and magneto-
electric dipole coupling, arrays of differently oriented split rings will exhibit bound
guided modes with a complicated dispersion, that could furthermore be different
for forward and backward modes [42, 43]. In addition to plasmonic structures,
split rings exhibit optical activity that, combined with the prospect of directionality
can result in directional sources of circularly polarized beams. Such an optically
active antenna can be realized by arranging SRRs in an axial linear array with each
SRR inclined at approximately 45 degrees to the axis. Due to alignment with the
eigen-illumination directions, the directional lobe of the antenna is circularly polar-
ized. Fig. 7.5 shows a schematic of the optically active photonic source driven by
a molecule placed in the middle of the antenna. According to a simple calculation
with our point dipole model, the radiation pattern shows equal emission distribution
in the forward and backward directions with a 100:1 handedness contrast in each
output beam. These types of antennas offer full polarization control of the outcom-
ing beam that might serve to create sources in which directionality and handedness
are coupled, and that spoof or selectively enhance magnetic transitions [3, 44]. An
exciting prospect is to combine this control over photon spin with metamaterial an-
tennas, with control over photon orbital angular momentum [45], which can be pos-
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Optically active Yagi-Uda antenna

molecule

Opposite arms,

opposite handedness

Figure 7.5: Variation of a Yagi-Uda antenna based on coupling between split rings. Stack-
ing split rings under an angle in which split rings exhibit optical activity can be used to
generate handed sources driven by e.g. single molecules. Strong directivity of such anten-
nas is seen in the radiation pattern.

sibly obtained via nanoscale antenna versions of spiral phase plates. Creating such
antennas could be an interesting route to obtain control over both spin-selection
and orbital angular momentum selection rules in III-V quantum dots [46].

Sensor for enantiomers Split ring antennas may offer a new way to enhance cir-
cular dichroism detection of single enantiomers. A chiral molecule has a selective
absorption for different handedness of circularly polarized light. Measuring circu-
lar dichroism, or a circular absorption contrast, via fluorescence detection of chiral
molecule is difficult because of very low absorption cross section differences for
different handedness of circularly polarized light. The difference has been reported
to be less than one part per thousand [47]. Enhancing detection of molecular chi-
rality via photonically induced chirality in the excitation field is expected to be of
importance for e.g. spectroscopic discrimination of enantiomers that are known to
have very different biological or pharmaceutical activity. This endeavour requires
not only to optimize, but also to rethink the concept of handedness of the pump
field, since in the near field the pump field will not be a transverse wave. We refer
to Tang et al. [48] for a generalization of chirality in near fields.

Lasing spaser Recently, several groups have studied resonances of plasmonic
and metamaterial scatterers in presence of gain as means to achieve lasing [49–53],
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where feedback is not provided by mirrors, but by strong confinement in localized
resonances. In order to reach lasing, one needs the gain to overcome the radia-
tive and absorptive losses arising in the metallic structures. Zheludev et al. [54]
suggested that spontaneously formed coherent current oscillations in metamaterial
arrays coupled to a sufficiently strongly amplifying medium will lead to laser emis-
sion perpendicular to the metamaterial array. In Chapters 2 and 4 we have shown
that lattice modes of magnetoelectric dipoles are in fact so strongly coupled to the
forward direction, i.e., the k|| = 0 direction, that they show high radiative losses
and superradiant broadening. Therefore, the key question is which modes, as clas-
sified by their parallel wavevector k||, actually have the lowest loss. In Chapter 4
we presented a theory based on lattice sums that allows to classify the resonance
frequency and damping of all the modes, taking all electromagnetic coupling mech-
anisms into account. We propose that calculating the complex dispersion relation
using this theory would help to calculate both the radiative and the guided array
modes [55] in search for the lowest loss mode.

Thin film filters and optical components As already proposed by Gansel et
al. [56], thin films of 3D helices can be used as an analog of Hertz’s linear po-
larizer, but for circular polarization generation. Our findings on optical activity of
split rings have important consequences for such applications, where a circular po-
larizer can be realized by potentially simpler, 2D structures, due to the extinction
dependence on the light handedness and incidence angle, at any wavelength. As
previously suggested, the angular dependence means one can selectively transmit
or block light of a certain handedness into specific angles, which could be used to
make circular polarization beam splitters. Another exciting application of split ring
arrays is as diffractive beam splitters, where arranging split rings in arrays with
carefully engineered lattice spacings could be used to engineer all aspects of the
polarization state of diffracted orders, both on the reflected and transmitted side of
the grating. Such 2D arrays of SRRs could furthermore be directly imprinted on
top of light emitting diodes (LEDs) to control emission polarization and directivity,
similar to the application of diffractive plasmonic gratings [57]. Also, new forms
of polarization control in integrated photonic platforms could be obtained, for in-
stance by direct application of metamaterial lattices on top of vertical cavity surface
emitting lasers (VCLSs), as well as on top of integrated photodetectors.
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Summary

Research in the field of metamaterials is driven by the possibility to create materials
with optical properties, such as electric permittivity ϵ and magnetic permeability µ,
that can be tuned arbitrarily, unlike naturally occurring materials that offer only
a limited range of responses to light. This allows for exciting applications that
are based on phenomena such as negative refraction and arbitrary rerouting of light
through space. Realizing arbitrary optical parameters is far from trivial and requires
a fundamental understanding of metamaterial building blocks.

In general, metamaterials are made by fabricating dense arrays of building
blocks that exhibit a response to both electric, as well as magnetic fields of light.
Split ring resonators (SRRs) are metamaterial building blocks known to exhibit
magnetic resonances in the visible and infra-red regime. Thus far, arrays of split
rings have been considered as effectively homogeneous media with effective ϵ and
µ. In this thesis we show that single SRRs are in fact strong scatterers, with cross
sections exceeding their physical volume so that metamaterials should rather be
viewed as strongly scattering media. Due to their large scattering cross sections,
we expect split rings to couple strongly in arrays and give rise to interesting ra-
diation patterns. To this end, we have performed optical measurements on arrays
of metamaterial scatterers and developed an electrodynamic point dipole theory to
quantify the electric and magnetic responses captured by the polarizability α.

In Chapter 2, we present experimental observations of strong electric and mag-
netic interactions between split rings at 1.4 µm. Using electron beam lithogra-
phy, we fabricated gold split rings on glass substrates arranged in periodic arrays.
Our transmission measurements show blueshifts and redshifts of the magnetic res-
onance, depending on split ring orientation relative to the lattice. The shifts are the
first evidence for magnetic dipole-dipole coupling at optical frequencies in planar
split ring arrays. We also find that these interactions induce superradiant broaden-
ing of the resonance, accompanied by a decrease in effective cross section per split
ring with increasing density.

In Chapter 3, we derive a fully electrodynamic point scattering theory to quan-
tify the scattering behavior of arbitrary systems of point-like magnetoelectric scat-
terers. We have taken proper account of reciprocity and radiation damping for
electric and magnetic scatterers with any general polarizability tensor. Specifically,
we show how reciprocity and energy balance put constraints on the electrodynamic
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polarizability tensor and predict which set of experiments will provide full infor-
mation about all the terms in the polarizability tensor. We show how the differential
scattering cross section can be translated back to retrieve split ring polarizabilities
and magnetoelectric cross polarizabilities. Our theory sheds new light on cross
sections, pesudo-chirality, and differential scattering cross sections of split ring
scatterers and stereodimers of split rings.

In Chapter 4, we use the 6x6 dyadic Green function to analytically solve for the
response of finite periodic arrays, allowing us to simply predict their transmission
and reflection. We show that all features of transmission measurements on split
ring arrays are quantitatively reproduced by our electrodynamic model, including
resonance peak shifts due to electric and magnetic dipole coupling and resonance
broadening due to superradiant damping.

In Chapter 5 we experimentally demonstrate a surprising result that geometri-
cally non-chiral split rings exhibit chirality in their optical response. Predicted by
our electrodynamic model, strong magnetoelectric coupling in the polarizability of
split rings implies optical activity for all magnetoelectric scatterers whose response
can be described by a single equation of motion derived from circuit theory. Optical
activity offers an additional route to achieving transparency for one handedness and
angle of incidence, while it results in strong scattering for the reverse handedness
and incidence.

In Chapter 6, we present a custom built Fourier microscope to image radiation
patterns of single nanoscatterers. Although plasmonic and metamaterial building
blocks have extinction cross section exceeding their geometrical area, the intensi-
ties scattered by single structures are low compared to the incident field, making
them exceptionally difficult to detect. In this chapter we report on a background
free experimental technique in which the sample is excited by means of total in-
ternal reflection and the angular distributions of scattered light is retrieved from
microscope back-aperture imaging. To demonstrate the operation of our set up, we
present measurements on gold nanorods and show that they have a radially polar-
ized single dipole radiation pattern. Our dark-field microscope is excellently suited
for measuring angular distribution of light of metamaterial and plasmonic scatterers
with small absolute cross sections that are expected to have anisotropic radiation
patterns due to magnetoelectric coupling.

In Chapter 7, we present a set of measurements that will challenge the point
dipole view of metamaterial building blocks and propose applications beyond neg-
ative refraction of such magneto-electric scatterers. We theoretically study how one
can measure radiation patterns of split rings and split ring stereodimers, thereby
proving, or disproving, our magnetoelectric theory. We present the difficulties that
such experiments will entail. In addition, we present suggestions to demonstrate
the magnetoelectric character of split rings by utilizing cathdoluminescence exper-

122



Summary

iments, as well as resorting to experiments that rely on Babinet’s principle. Finally,
we suggest applications of split rings that extend beyond achieving negative refrac-
tive index and transformation optics, such as in lighting, sensing and as thin film
optical components.
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Samenvatting

Licht kan beschreven worden als een golf die bestaat uit een elektrisch en mag-
netisch veld. Natuurlijke materialen koppelen alleen met licht via het elektrisch
veld met een sterkte die beschreven wordt door de elektrische permitiviteit ϵ. Meta-
materialen zijn kunstmatige materialen die ook aan het magnetisch veld van licht
koppelen, beschreven door een magnetische permeabiliteit µ. Nanofotonica onder-
zoek aan metamaterialen is met name gedreven door de mogelijkheid om metama-
terialen te ontwerpen waarvan zowel ϵ als µ naar believen aangepast kan worden.
Deze materialen zouden tot nieuwe toepassingen kunnen leiden die gebaseerd zijn
op fenomenen zoals negatieve brekingsindex en het willekeurig afbuigen van licht.
Het realiseren van zulke materialen is echter niet eenvoudig, zonder een funda-
menteel begrip van de bouwstenen van metamaterialen. In het algemeen worden
metamaterialen gemaakt door het fabriceren van nanodeeltjes die een elektrische
en magnetische respons op licht hebben, geordend in een dicht rooster. Een ‘split
ring resonator’ (SRR) is een voorbeeld van een bouwsteen voor metamaterialen die
zo een respons in het zichtbaar en infrarood deel van het spectrum heeft. Tot nu
toe is in de literatuur een rooster van SRRs als een homogeen medium met een ef-
fectieve ϵ en µ beschouwd. In dit proefschrift laten we zien dat een enkele SRR in
feite een sterke licht verstrooier is, met een verstrooiingsdoorsnede groter dan zijn
fysiek oppervlak. Vanwege deze eigenschap verwachten we dat SRRs een sterke
interactie met elkaar hebben. Om dit te bewijzen hebben we optische experimenten
gedaan aan periodieke roosters van SRRs, en hebben we een elektrodynamische
theorie ontwikkeld die een SRR beschrijft als een elektrische alsmede magnetische
dipool. Met deze theorie kunnen we de elektrische en de magnetische respons van
SRRs kwantificeren. We verwachten dat deze responsen aanleiding zullen geven
tot interessante stralingspatronen.

In Hoofdstuk 2, bespreken we onze experimentele waarneming van sterke elek-
trische en magnetische interactie tussen SRRs in het nabije infrarood. Met behulp
van elektronen bundel lithografie hebben we gouden SRRs op een glazen substraat
gemaakt, geordend in roosters. Transmissiemetingen aan roosters van verschil-
lende vorm en dichtheid laten frequentie verschuivingen zien van de magnetische
resonantie. Deze verschuivingen van de resonant respons zijn het eerste bewijs van
sterke interactie tussen magnetische dipolen in vlakke roosters van SRRs. Deze
interacties zijn ook zichtbaar in de verbreding van de resonante respons, en de ver-
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mindering van de effectieve doorsnede van een SRR met de toename in dichtheid.
In Hoofdstuk 3, leiden we een volledig elektrodynamische theorie af om het

verstrooiingsgedrag van willekeurige systemen van magnetoelektrische dipolen,
zoals SRRs, te kwantificeren. Deze theorie is gebaseerd op reciprociteit en energie
behoud en stelt grenzen aan de algemene polariseerbaarheidstensor, welke de basis
vormt van de magnetoelektrische respons. Met deze theorie kunnen we effectieve
doorsneden, pseudochiraliteit in de respons op circulair gepolariseerd licht, en de
richting in welke SRRs licht verstrooien berekenen.

In Hoofdstuk 4, maken we gebruik van voornoemde elektrodynamische theorie
om transmissie en reflectie van oneindige periodische roosters van magnetoelek-
trische verstrooiers te voorspellen. De frequentieverschuiving en verbreding van
de resonante respons gemeten in hoofdstuk 2 wordt succesvol gereproduceerd met
ons model.

In Hoofdstuk 5, laten we zien dat geometrisch niet-chirale SRRs een asym-
metrische optische respons hebben die, afhankelijk van de invalshoek, sterk afhangt
van de draaizin van inkomend circulair gepolariseerd licht. Deze opvallende ‘op-
tische activiteit’ komt door sterke koppeling tussen de magnetische en elektrische
termen in de polariseerbaarheidstensor voor SRRs, zoals voorspeld door onze elek-
trodynamische theorie. We concluderen dat zo’n asymmetrische respons noodza-
kelijkerwijs optreedt voor alle magnetoelektrische verstrooiers die beschreven kun-
nen worden met een enkele bewegingsvergelijking afgeleid uit de benadering dat
de strooier een platte resonante stroomkring is. De asymmetrische respons betekent
dat de dipolen licht sterk verstrooien bij een bepaalde draaingsrichting van de po-
larisatie van het licht en hoek van inval, terwijl ze bij dezelfde draaizin geen licht
verstrooien voor een complementaire hoek van inval.

In Hoofdstuk 6, wordt een zelfgebouwde Fourier microscoop beschreven. Deze
microscoop kan het verstrooiingspatroon (differentiele werkzame strooingsdoorsnede)
van een enkele nanoverstrooier afbeelden. Zulke stralingspatronen zijn moelijk
detecteerbaar, omdat de verstrooier een heel zwak signaal geeft vergeleken met
het invallende licht waar het mee aangeslagen wordt. Onze microscoop biedt een
achtergrondvrije techniek waarin de verstrooier aangeslagen wordt in totale interne
reflectie. De hoekverdeling van het verstrooide licht is meetbaar door te kijken naar
de ‘back aperture’ van het microscoop objectief. Om de functionaliteit van onze mi-
croscoop te demonstreren, laten we resultaten van metingen aan gouden nanostaaf-
jes zien. In vergelijking met SRRs bestaan deze nanodeeltjes uit alleen elektrische
dipolen, zoals de gemeten verstrooingspatronen aantonen. Onze microscoop kan
gebruikt worden om de hoekverdeling van het verstrooide licht te meten van mag-
netoelektrische verstrooiers die een asymmmetrisch verstrooingspatroon hebben.

In Hoofdstuk 7, testen we onze elektrodynamische theorie en we stellen toepasin-
gen voor van magnetoelektrische verstrooiers, naast voornoemde negatieve brek-
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ingsindex. Zo stellen we voor dat onze theorie nader getest kan worden door
verstrooingspatronen van SRRs te meten. We hebben deze patronen theoretisch
berekend voor de realistische experimentele situatie dat de SRRs zich op een glas
substraat bevinden. We bespreken welke problemen we in zulke experimenten
verwachten. Daarom stellen we ook alternatieve routes voor om het magnetoelek-
trische karakter van SRRs te demonstreren met behulp van cathodoluminescentie
of met het principe van Babinet. Tot slot stellen we toepassingen voor die gebruik
maken van de sterke interactie in roosters én de asymmetrische optische respons
van SRRs, in verlichting, sensoren en optische componenten van dunne lagen.
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