
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Instruction sequence expressions for the Karatsuba multiplication algorithm

Bergstra, J.A.; Middelburg, C.A.

Publication date
2013
Document Version
Submitted manuscript

Link to publication

Citation for published version (APA):
Bergstra, J. A., & Middelburg, C. A. (2013). Instruction sequence expressions for the
Karatsuba multiplication algorithm. arXiv.org. http://arxiv.org/abs/1312.1529

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:11 Feb 2023

https://dare.uva.nl/personal/pure/en/publications/instruction-sequence-expressions-for-the-karatsuba-multiplication-algorithm(40e8e750-aab2-456b-9dd9-07f24a2cb868).html
http://arxiv.org/abs/1312.1529

ar
X

iv
:1

31
2.

15
29

v1
 [

cs
.P

L
]

 5
 D

ec
 2

01
3

Instruction Sequence Expressions for

the Karatsuba Multiplication Algorithm

J.A. Bergstra and C.A. Middelburg

Informatics Institute, Faculty of Science, University of Amsterdam,
Science Park 904, 1098 XH Amsterdam, the Netherlands

J.A.Bergstra@uva.nl,C.A.Middelburg@uva.nl

Abstract. The Karatsuba multiplication algorithm is an algorithm for
computing the product of two natural numbers represented in the bi-
nary number system. This means that the algorithm actually computes
a function on bit strings. The restriction of this function to bit strings
of any given length can be computed according to the Karatsuba mul-
tiplication algorithm by a finite instruction sequence that contains only
instructions to set and get the content of Boolean registers, forward jump
instructions, and a termination instruction. We describe the instruction
sequences concerned for the restrictions to bit strings of the different
lengths by uniform terms from an algebraic theory.

Keywords: single-pass instruction sequence, bit string, Karatsuba multi-
plication algorithm, long multiplication algorithm.

1998 ACM Computing Classification: F.1.1, F.2.1.

1 Introduction

The Karatsuba multiplication algorithm [12,13] was devised by Karatsuba in
1962 to disprove the conjecture made by Kolmogorov that any algorithm to
compute the product of two natural numbers represented in the binary number
system has time complexity Ω(n2). Shortly afterwards, this divide-and-conquer
algorithm was generalized by Toom and Cook [9,15]. Later, asymptotically faster
multiplication algorithms, based on fast Fourier transforms, were devised by
Schönhage and Strassen [14] and Fürer [10]. To our knowledge, except for the
Schönhage-Strassen algorithm, only informal (natural language or pseudo code)
descriptions of these multiplication algorithms are available. In this paper, we
provide a mathematically precise alternative to the informal descriptions of the
Karatsuba multiplication algorithm, using terms from an algebraic theory of
single-pass instruction sequences introduced in [1].

It is customary that computing practitioners phrase their explanations of is-
sues concerning programs from an empirical perspective such as the perspective
that a program is in essence an instruction sequence. An attempt to approach
the semantics of programming languages from this perspective is made in [1].
The groundwork for the approach is an algebraic theory of single-pass instruc-
tion sequences, called program algebra, and an algebraic theory of mathematical

http://arxiv.org/abs/1312.1529v1

objects that represent the behaviours produced by instruction sequences under
execution, called basic thread algebra.1 As a continuation of this work on an
approach to programming language semantics, (a) the notion of an instruction
sequence was subjected to systematic and precise analysis using the ground-
work laid earlier and (b) selected issues relating to well-known subjects from the
theory of computation and the area of computer architecture were rigorously
investigated thinking in terms of instruction sequences (see e.g. [2,3,5,8]).

The general aim of all the work referred to above is to bring instruction
sequences as a theme in computer science better into the picture. This is the
general aim of the work presented in the current paper as well. Different from
usual in the work referred to above, but as in the recent work presented in [7],
the accent is this time on a practical problem. The practical problem is to devise
instruction sequences that compute the product of two natural numbers repre-
sented in the binary number system according to the Karatsuba multiplication
algorithm. As in the work referred to above, the work presented in the current
paper is carried out in the setting of program algebra.

This paper is organized as follows. First, we survey program algebra and the
particular fragment and instantiation of it that is used in this paper (Section 2)
and sketch the Karatsuba multiplication algorithm (Section 3). Next, we de-
scribe how we deal with n-bit words by means of Boolean registers (Section 4)
and how we compute the basic and derived operations on n-bit words that are
used in the Karatsuba multiplication algorithm (Section 5). Then, we give the
description of instruction sequences that compute the product of two natural
numbers represented in the binary number system according to the Karatsuba
multiplication algorithm (Section 6). Finally, we make some concluding remarks
(Section 7).

The preliminaries to the work presented in this paper are the same as the
preliminaries to the work presented in [7], which are in turn a selection from
the preliminaries to the work presented in [6]. For this reason, there is some
text overlap with those papers. The preliminaries concern program algebra. We
only give a brief summary of program algebra. A comprehensive introduction,
including examples, can among other things be found in [4].

2 Program Algebra

In this section, we present a brief outline of PGA (ProGram Algebra) and the
particular fragment and instantiation of it that is used in the remainder of this
paper. A mathematically precise treatment can be found in [6].

The starting-point of PGA is the simple and appealing perception of a se-
quential program as a single-pass instruction sequence, i.e. a finite or infinite
sequence of instructions of which each instruction is executed at most once and
can be dropped after it has been executed or jumped over.

1 In [1], basic thread algebra is introduced under the name basic polarized process
algebra.

2

It is assumed that a fixed but arbitrary set A of basic instructions has been
given. The intuition is that the execution of a basic instruction may modify a
state and produces a reply at its completion. The possible replies are 0 and 1.
The actual reply is generally state-dependent. Therefore, successive executions
of the same basic instruction may produce different replies. The set A is the basis
for the set of instructions that may occur in the instruction sequences considered
in PGA. The elements of the latter set are called primitive instructions. There
are five kinds of primitive instructions, which are listed below:

– for each a ∈ A, a plain basic instruction a;
– for each a ∈ A, a positive test instruction +a;
– for each a ∈ A, a negative test instruction −a;
– for each l ∈ N, a forward jump instruction #l;
– a termination instruction !.

We write I for the set of all primitive instructions.
On execution of an instruction sequence, these primitive instructions have

the following effects:

– the effect of a positive test instruction +a is that basic instruction a is
executed and execution proceeds with the next primitive instruction if 1
is produced and otherwise the next primitive instruction is skipped and
execution proceeds with the primitive instruction following the skipped one
— if there is no primitive instruction to proceed with, inaction occurs;

– the effect of a negative test instruction −a is the same as the effect of +a,
but with the role of the value produced reversed;

– the effect of a plain basic instruction a is the same as the effect of +a, but
execution always proceeds as if 1 is produced;

– the effect of a forward jump instruction #l is that execution proceeds with
the lth next primitive instruction of the instruction sequence concerned —
if l equals 0 or there is no primitive instruction to proceed with, inaction
occurs;

– the effect of the termination instruction ! is that execution terminates.

To build terms, PGA has a constant for each primitive instruction and two
operators. These operators are: the binary concatenation operator ; and the
unary repetition operator ω. We use the notation ;ni=0 Pi, where P0, . . . , Pn are
PGA terms, for the PGA term P0 ; . . . ; Pn.

The instruction sequences that concern us in the remainder of this paper
are the finite ones, i.e. the ones that can be denoted by closed PGA terms in
which the repetition operator does not occur. Moreover, the basic instructions
that concern us are instructions to set and get the content of Boolean registers.
More precisely, we take the set

{in:i.get | i ∈ N
+} ∪ {out:i.set:b | i ∈ N

+ ∧ b ∈ {0, 1}}

∪ {aux:i.get | i ∈ N
+} ∪ {aux:i.set:b | i ∈ N

+ ∧ b ∈ {0, 1}}

as the set A of basic instructions.
Each basic instruction consists of two parts separated by a dot. The part on

the left-hand side of the dot plays the role of the name of a Boolean register and

3

the part on the right-hand side of the dot plays the role of a command to be
carried out on the named Boolean register. For each i ∈ N

+:

– in:i serves as the name of the Boolean register that is used as ith input
register in instruction sequences;

– out:i serves as the name of the Boolean register that is used as ith output
register in instruction sequences;

– aux:i serves as the name of the Boolean register that is used as ith auxiliary
register in instruction sequences.

On execution of a basic instruction, the commands have the following effects:

– the effect of get is that nothing changes and the reply is the content of the
named Boolean register;

– the effect of set:0 is that the content of the named Boolean register becomes
0 and the reply is 0;

– the effect of set:1 is that the content of the named Boolean register becomes
1 and the reply is 1.

Let n,m ∈ N, let f : {0, 1}n → {0, 1}m, and let X be a finite instruction
sequence that can be denoted by a closed PGA term in the case that A is taken
as specified above. Then X computes f if there exists a k ∈ N such that for all
b1, . . . , bn ∈ {0, 1}: if X is executed in an environment with n input registers,
m output registers, and k auxiliary registers, the content of the input registers
with names in:1, . . . , in:n are b1, . . . , bn when execution starts, and the content of
the output registers with names out:1, . . . , out:m are b′1, . . . , b

′
m when execution

terminates, then f(b1, . . . , bn) = b′1, . . . , b
′
m.

3 Sketch of the Karatsuba Multiplication Algorithm

Suppose that x and y are two natural numbers with a binary representation of n
bits. As a first step toward multiplying x and y, split each of these representations
into a left part of length ⌊n/2⌋ and a right part of length ⌈n/2⌉. Let us say that
the left and right part of the representation of x represent natural numbers xL

and xR and the left and right part of the representation of y represent natural
numbers yL and yR. It is obvious that x = 2⌈n/2⌉ ·xL+xR and y = 2⌈n/2⌉ ·yL+yR.
From this it follows immediately that

x · y = 22·⌈n/2⌉ · (xL · yL) + 2⌈n/2⌉ · (xL · yR + xR · yL) + xR · yR .

In addition to this, it is known that

xL · yR + xR · yL = (xL + xR) · (yL + yR)− xL · yL − xR · yR .

Moreover, it is easy to see that multiplications by powers of 2 are merely bit shifts
on the binary representation of the natural numbers involved. All this means
that, on the binary representations of x and y, the multiplication x · y can be

4

replaced by three multiplications: xL ·yL, xR ·yR, and (xL+xR)·(yL+yR). These
three multiplications concern natural numbers with binary representations of
length ⌊n/2⌋, ⌈n/2⌉, and ⌈n/2⌉+1, respectively. For each of these multiplications
it holds that, if the binary representation length concerned is greater than 3, the
multiplication can be replaced by three multiplications of natural numbers with
binary representations of even shorter length.

The Karatsuba multiplication algorithm is the algorithm that computes the
product of two natural numbers represented in the binary number system by
dividing the computation into the computation of three products as indicated
above and doing so recursively until it not any more leads to products of natural
numbers with binary representations of further reduced length. The remaining
products are usually computed according to the standard multiplication algo-
rithm, which is known as the long multiplication algorithm.

Both the Karatsuba multiplication algorithm and the long multiplication al-
gorithm can actually be applied to natural numbers represented in the binary
number system as well as natural numbers represented in the decimal number
system. The long multiplication algorithm is the multiplication algorithm that is
taught in schools for computing the product of natural numbers represented in
the decimal number system. It is known that the long multiplication algorithm
has uniform time complexity Θ(n2) and the the Karatsuba multiplication algo-
rithm has uniform time complexity Θ(nlog2(3)) = Θ(n1,5849...), so the Karatsuba
multiplication algorithm is asymptotically faster than the long multiplication
algorithm.

4 Dealing with n-Bit Words

This section is concerned with dealing with bit strings of length n by means
of Boolean registers. It contains definitions which facilitate the description of
instruction sequences that compute the product of two natural numbers repre-
sented in the binary number system according to the Karatsuba multiplication
algorithm. In the sequel, bit strings of length n will mostly be called n-bit words.
The prefix “n-bit” is left out if n is irrelevant or clear from the context.

It is assumed that a fixed but arbitrary positive natural number N has been
given. The Karatsuba multiplication algorithm actually computes a function on
bit strings. In Section 6, we will give a description of an instruction sequence
that computes the restriction of the function concerned to bit strings of a fixed
but arbitrary length according to this algorithm. N is taken as this fixed but
arbitrary length.

Let κ:i (κ ∈ {in, out, aux}, i ∈ N
+) be the name of a Boolean register. Then κ

and i are called the kind and number of the Boolean register. Successive Boolean
registers are Boolean registers of the same kind with successive numbers. Words
are stored by means of Boolean registers such that the successive bits of a stored
word are the content of successive Boolean registers.

Henceforth, the name of a Boolean register will mostly be used to refer to
the Boolean register in which the least significant bit of a word is stored. Let κ:i

5

and κ′:i′ be the names of Boolean registers and let n ∈ N
+. Then we say that

κ:i and κ′:i′ lead to partially coinciding n-bit words if k = k′ and |i− i′| < n.
The words that represent the two natural numbers whose product is to be

computed are stored in advance of the whole computation in input registers,
starting with the input register with number 1. It is convenient to have available
the names I1 and I2 for the input registers in which the least significant bit of
these words are stored. The word that represents the product is stored before
the end of the whole computation in output registers, starting with the output
register with number 1. It is convenient to have available the name O for the
output register in which the least significant bit of this word is stored. The words
that represent the intermediate values that are computed are temporarily stored
during the whole computation in auxiliary registers, starting with the auxiliary
register with number 1.

Because the product of two natural numbers will be computed by recur-
sively computing products of smaller natural numbers, it is convenient to have
available, for sufficiently many natural numbers i, the names Ii1, I

i
2 and Oi for

the auxiliary registers in which the least significant bit of the representations of
smaller natural numbers and their product are stored. Because at each level of
recursion, except the last level, the computation of a product involves the com-
putation of three products at the next level, it is convenient to have available, for
sufficiently many natural numbers i, the names P i

1 , P
i
2 and P i

3 for the auxiliary
registers in which the least significant bit of the representation of these products
are stored.

It is also convenient to have available the names t1, t2, T1, T2 for the auxiliary
registers in which the least significant bit of words that represent the interme-
diate values that are computed, other than the ones mentioned in the previous
paragraph, are stored.2 Moreover, it is convenient to have available the name
c for the auxiliary register that contains the carry bit that is repeatedly stored
when computing the addition operation.

Therefore, we define:

I1 , in:1,

I2 , in:k where k = N + 1,

O , out:1,

c , aux:1,

t1 , aux:2,

t2 , aux:k where k = 2 ·N + 2,

T1 , aux:k where k = 4 ·N + 2,

T2 , aux:k where k = 6 ·N + 2,

2 The auxiliary registers with names t1 and t2 are reserved for the least significant bit
of intermediate values that arise when computing one of the derived operations on
bit strings introduced in Section 5.

6

Ii1 , aux:k where k = 10 ·N · i+ 8 ·N + 2 (0 ≤ i ≤ ⌈log2(N − 2)⌉),

Ii2 , aux:k where k = 10 ·N · i+ 9 ·N + 2 (0 ≤ i ≤ ⌈log2(N − 2)⌉),

Oi , aux:k where k = 10 ·N · i+ 10 ·N + 2 (0 ≤ i ≤ ⌈log2(N − 2)⌉),

P i
1 , aux:k where k = 10 ·N · i+ 12 ·N + 2 (0 ≤ i ≤ ⌈log2(N − 2)⌉),

P i
2 , aux:k where k = 10 ·N · i+ 14 ·N + 2 (0 ≤ i ≤ ⌈log2(N − 2)⌉),

P i
3 , aux:k where k = 10 ·N · i+ 16 ·N + 2 (0 ≤ i ≤ ⌈log2(N − 2)⌉).

Here i ranges over natural numbers in the interval with lower endpoint 0 and
upper endpoint ⌈log2(N − 2)⌉. This needs some explanation.

Proposition. The recursion depth of the Karatsuba multiplication algorithm

applied to bit strings of length N is ⌈log2(N − 2)⌉.

Proof. Let n ≤ N . In the Karatsuba multiplication algorithm, the computation
of the product of two natural numbers with binary representations of length n is
divided into the computation of a product of two natural numbers with binary
representations of length ⌊n/2⌋, a product of two natural numbers with binary
representations of length ⌈n/2⌉, and a product of two natural numbers with
binary representations of length ⌈n/2⌉ + 1. The function f defined by f(n) ,

⌈n/2⌉+1 has the following properties: (a) f(n) < n iff n > 3; and (b) for n > 3,
the least m such that fm(n) = 3 is ⌈log2(n− 2)⌉. This implies that the recursion
depth is ⌈log2(N − 2)⌉. ⊓⊔

The proposition above tells us that the maximum level of recursion that can
be reached is ⌈log2(N − 2)⌉. So there are ⌈log2(N − 2)⌉ + 1 possible levels of
recursion (viz. 0, . . . , ⌈log2(N − 2)⌉). This means that there are sufficiently
many natural numbers i for which the names Ii1, I

i
2, O

i, P i
1, P

i
2, and P i

3 have
been introduced above. In Section 6, we will use the names Ii1, I

i
2, O

i, P i
1, P

i
2 ,

and P i
3 at the level of recursion ⌈log2(N − 2)⌉ − i.

5 Computing Operations on n-Bit Words

This section is concerned with computing operations on bit strings of length n.
It contains definitions which facilitate the description of instruction sequences
that that compute the product of two natural numbers represented in the binary
number system according to the Karatsuba multiplication algorithm.

In this section, we will write ββ′, where β and β′ are bit strings, for the
concatenation of β and β′. In other words, we will use juxtaposition for con-
catenation. Moreover, we will use the bit string notation bn. For n > 0, the bit
string bn, where b ∈ {0, 1}, is defined by induction on n as follows: b1 = b and
bn+1 = b bn.

The basic operations on words that are relevant to the Karatsuba multipli-
cation algorithm are bitwise negation, shift left m positions (0 < m < n) and
addition on n-bit words (0 < n ≤ N). For these operations, we define parameter-
ized instruction sequences computing them in case the parameters are properly

7

instantiated (see below):

NOTn(s:k, d:l) ,

;n−1
i=0 (+s:k+i.get ; #2 ;−d:l+i.set:1 ; d:l+i.set:0) ,

SHLm
n (s:k, d:l) ,

;n−1−m
i=0 (+s:k+n−1−m−i.get ; #2 ; +d:l+n−1−i.set:0 ; d:l+n−1−i.set:1) ;

;m−1
i=0 (d:l+m−1−i.set:0) ,

ADDn(s1:k1, s2:k2, d:l) ,

c.set:0 ;

;n−1
i=0 (+s1:k1+i.get ; #4 ; +s2:k2+i.get ; #7 ; #9 ; +s2:k2+i.get ; #10 ;

+c.get ; #10 ; #16 ; +c.get ; #7 ; #13 ; +c.get ; #11 ; #9 ; +c.get ; #4 ;

d:l+i.set:0 ; c.set:1 ; #6 ; d:l+i.set:1 ; c.set:1 ; #3 ;

+d:l+i.set:0 ; d:l+i.set:1) ,

where s, s1, s2 range over {in, aux}, d ranges over {aux, out}, and k, k1, k2, l range
over N+. For each of these parameterized instruction sequences, all but the last
parameter correspond to the operands of the operation concerned and the last
parameter corresponds to the result of the operation concerned. The intended
operations are computed provided that the instantiation of the last parameter
and the instantiation of none of the other parameters lead to partially coinciding
n-bit words. In this paper, this condition will always be satisfied.

Transferring n-bit words (0 < n ≤ N) is also relevant to the Karatsuba
multiplication algorithm. For this, we define parameterized instruction sequences
as well. By one the successive bits in a constant n-bit word become the content
of n successive Boolean registers and by the other the successive bits in a n-bit
word that are the content of n successive Boolean registers become the content
of n other successive Boolean registers:

SETn(b0 . . . bn−1, d:l) , ;n−1
i=0 (d:l+i.set:bi) ,

MOV n(s:k, d:l) , ;n−1
i=0 (+s:k+i.get ; #2 ; +d:l+i.set:0 ; d:l+i.set:1) ,

where b0, . . . , bn−1 range over {0, 1}, s ranges over {in, aux}, d ranges over
{aux, out}, and k, l range over N+. In the case of MOV n, the intended transfer
is performed provided that the instantiation of the last parameter and the in-
stantiation of the first parameter do not lead to partially coinciding n-bit words.
In this paper, this condition will always be satisfied.

For convenience’s sake, we define some special cases of the parameterized
instruction sequences for transferring n-bit words (0 < m < n):

ZPADm
n (d:l) , SETn−m(0n−m, d:l+m) ,

MVHm
n (s:k, d:l) , MOVm(s:k+(n−m), d:l) ,

MVLm
n (s:k, d:l) , MOVm(s:k, d:l) ,

8

where s ranges over {in, aux}, d ranges over {aux, out}, and k, l range over N+.
ZPADm

n is meant for turning a stored m-bit word into a stored n-bit word by
zero padding. MVHm

n and MVLm
n are meant for transferring only the m most

significant bits and the m least significant bits, respectively, of a stored n-bit
word.

The Karatsuba multiplication algorithm as usually described involves sub-
traction and multiplication on n-bit words (0 < n ≤ N for subtraction and
0 < n ≤ 3 for multiplication). For these operations, which can be defined in
terms of the above-mentioned basic operations, we also define parameterized
instruction sequences computing them:

SUBn(s1:k1, s2:k2, d:l) ,

SETn(1 0
n−1, t1) ; NOTn(s2:k2, t2) ;ADDn(t1, t2, t2) ;ADDn(s1:k1, t2, d:l) ,

MULn(s1:k1, s2:k2, d:l) ,

MOV n(s1:k1, t1) ; ZPAD
n
2n(t1) ; SET 2n(0

2n, t2) ;

;n−1
i=0 (−s2:k2+i.get ; #li ; ADDn+i+1(t1, t2, t2) ; SHL

1
n+i+1(t1, t1)) ;

MOV 2n(t2, d:l) ,

where li = len(ADDn+i+1(t1, t2, t2)) + 1 ,

where s1, s2 range over {in, aux}, d ranges over {aux, out}, and k1, k2, l range
over N+. In the case of MULn, the product is computed according to the long
multiplication algorithm. The additions are done on the fly and the shifts are
restricted to one position by shifting the result of all preceding shifts.

The calculation of the lengths of the parameterized instruction sequences
defined above is a matter of simple additions and multiplications. The lengths
of these instruction sequences are as follows:

len(NOTn(s:k, d:l)) = 4 · n ,

len(SHLm
n (s:k, d:l)) = 4 · n− 3 ·m ,

len(ADDn(s1:k1, s2:k2, d:l)) = 26 · n+ 1 ,

len(SETn(b0 . . . bn−1, d:l)) = n ,

len(MOV n(s:k, d:l)) = 4 · n ,

len(SUBn(s1:k1, s2:k2, d:l)) = 57 · n+ 2 ,

len(MULn(s1:k1, s2:k2, d:l)) = 45 · n2 + 30 · n ,

len(ZPADm
n (d:l)) = n−m ,

len(MVHm
n (s:k, d:l)) = 4 ·m ,

len(MVLm
n (s:k, d:l)) = 4 ·m .

Note that the instruction sequences defined in this section do compute the
intended operations in case of fully coinciding n-bit words. Slightly shorter in-
struction sequences are defined for bitwise negation, addition, and transfer of a
stored word in [7], but those instruction sequences do not compute the intended
operations in case of fully coinciding n-bit words.

9

Table 1. Definition of KMAn (1 ≤ n ≤ N)

if n ≤ 3 then:

KMAn = MULn(I
ℓ(n)
1 , I

ℓ(n)
2 , O

ℓ(n)
) ,

if n > 3 then:

KMAn =

MVH ⌊n/2⌋
n (I

ℓ(n)
1 , I

ℓ(⌊n/2⌋)
1) ;MVH ⌊n/2⌋

n (I
ℓ(n)
2 , I

ℓ(⌊n/2⌋)
2) ;

KMA⌊n/2⌋ ;MOV 2⌊n/2⌋(O
ℓ(⌊n/2⌋)

, P
ℓ(n)
1) ;

MVL⌈n/2⌉
n (I

ℓ(n)
1 , I

ℓ(⌈n/2⌉)
1) ;MVL⌈n/2⌉

n (I
ℓ(n)
2 , I

ℓ(⌈n/2⌉)
2) ;

KMA⌈n/2⌉ ;MOV 2⌈n/2⌉(O
ℓ(⌈n/2⌉)

, P
ℓ(n)
2) ;

MVH ⌊n/2⌋
n (I

ℓ(n)
1 ,T1) ; ZPAD

⌊n/2⌋
⌈n/2⌉+1(T1) ;

MVL⌈n/2⌉
n (I

ℓ(n)
1 ,T2) ; ZPAD

⌈n/2⌉
⌈n/2⌉+1(T2) ; ADD⌈n/2⌉+1(T1,T2, I

ℓ(⌈n/2⌉+1)
1) ;

MVH ⌊n/2⌋
n (I

ℓ(n)
2 ,T1) ; ZPAD

⌊n/2⌋
⌈n/2⌉+1(T1) ;

MVL⌈n/2⌉
n (I

ℓ(n)
2 ,T2) ; ZPAD

⌈n/2⌉
⌈n/2⌉+1(T2) ; ADD⌈n/2⌉+1(T1,T2, I

ℓ(⌈n/2⌉+1)
2) ;

KMA⌈n/2⌉+1 ;MOV 2(⌈n/2⌉+1)(O
ℓ(⌈n/2⌉+1)

, P
ℓ(n)
3) ;

ZPAD
2⌊n/2⌋
2(⌈n/2⌉+1)(P

ℓ(n)
1) ; ZPAD

2⌈n/2⌉
2(⌈n/2⌉+1)(P

ℓ(n)
2) ;

SUB2(⌈n/2⌉+1)(P
ℓ(n)
3 , P

ℓ(n)
1 ,T1) ; SUB2(⌈n/2⌉+1)(T1, P

ℓ(n)
2 ,T1) ;

ZPAD
2(⌈n/2⌉+1)
2n (P

ℓ(n)
1) ; ZPAD

2(⌈n/2⌉+1)
2n (P

ℓ(n)
2) ; ZPAD

2(⌈n/2⌉+1)
2n (T1) ;

SHL
2⌈n/2⌉
2n (P

ℓ(n)
1 ,T2) ; SHL

⌈n/2⌉
2n (T1,T1) ;

ADD2n(T2,T1,T1) ; ADD2n(T1, P
ℓ(n)
2 , O

ℓ(n)
) ,

where ℓ(m) = ⌈log2(m− 2)⌉.

6 The Karatsuba Multiplication Algorithm

In this section, we give the description of instruction sequences that compute
the product of two natural numbers represented in the binary number system
according to the Karatsuba multiplication algorithm using the definitions given
in Sections 4 and 5.

For N ≥ 3, an instruction sequence KMULN is uniformly described by

MOVN (I1, I
⌈log2(N−2)⌉
1) ;MOVN (I2, I

⌈log2(N−2)⌉
2) ;

KMAN ;MOV 2N (O⌈log2(N−2)⌉, O) ; ! ,

where KMAn is inductively defined in Table 1.

10

In order to compute the binary representation of the product of two natural
numbers with binary representations of length n by dividing the computation
into the computations of the binary representations of three products as required
by the Karatsuba multiplication algorithm, the instruction sequence KMAn con-
tains the instruction sequences KMA⌊n/2⌋, KMA⌈n/2⌉, and KMA⌈n/2⌉+1. Each
of these three instruction sequences is immediately preceded by an instruction
sequence that transfers the binary representations of the two natural numbers
of which it has to compute the binary representation of their product into the
appropriate Boolean registers for the instruction sequence concerned. Moreover,
each of these three instruction sequences is immediately followed by an instruc-
tion sequence that transfers the binary representation of the product that it
has computed into the appropriate Boolean registers for KMAn. The tail end
of KMAn completes the computation by performing some operations on the
three binary representations of products computed before as required by the
Karatsuba multiplication algorithm. For the rest, instruction sequences for zero
padding are scattered over KMAn where necessary to obtain the locally right
length of binary representations of natural numbers.

Claim. Assume that N ≥ 3. Then the instruction sequence KMULN computes

the function on bit strings of length N that models the multiplication of two nat-

ural numbers less than 2N on their representations in the binary number system.

We do not formally prove this claim. If we assume that all parameterized instruc-
tion sequences defined in Section 5 compute their intended operations correctly,
it is straightforward to prove the claim because the Karatsuba multiplication al-
gorithm is followed precisely in the description of KMULN . Making occasionally
use of elementary knowledge about the modelling of arithmetic operations on the
representations of natural numbers in the binary number system, it is straightfor-
ward, but tedious, to prove that all parameterized instruction sequences defined
in Section 5 compute their intended operations correctly.

Fact. Assume that N ≥ 3. Then:

len(KMULN) ≥ 1790 · 3⌊log2(N)⌋−1 − 1146 · 2⌊log2(N)⌋−1 + 16 ·N − 148 ,

len(KMULN) < 1504 · 3⌈log2(N−2)⌉ − 573 · 2⌈log2(N−2)⌉ + 16 ·N − 434 .

Proof. Because len(KMULN) = len(KMAN) + 16 ·N +1, we have to prove that

len(KMAN) ≥ 1790 · 3⌊log2(N)⌋−1 − 1146 · 2⌊log2(N)⌋−1 − 149 ,

len(KMAN) < 1504 · 3⌈log2(N−2)⌉ − 573 · 2⌈log2(N−2)⌉ − 435 .

Let c1 = len(MUL1), c2 = len(MUL2), c3 = len(MUL3), and for each n > 3,
cn = len(KMAn)− len(KMA⌊n/2⌋)− len(KMA⌈n/2⌉)− len(KMA⌈n/2⌉+1). Using
the already calculated lengths of the parameterized instruction sequences defined
in Section 5, we obtain by simple calculations that c1 = 75, c2 = 240, c3 = 495,
and for each n > 3, cn = 281 · ⌈n/2⌉+146 ·n+298. Let c′0 = c3, c

′′
0 = c3, and for

each m > 0, c′m = c2m+2 and c′′m = c2m+1 . In other words, c′0 = 495, c′′0 = 495,

11

and for each m > 0, c′m = 573 · 2m−1 + 871 and c′′m = 573 · 2m + 298. Because
⌊x⌋ = k iff k ≤ x < k + 1, ⌈x⌉ = k iff k − 1 < x ≤ k, and log2(x) = y iff x = 2y,
it is clear that cn ≤ c′m if m = ⌈log2(n− 2)⌉ and cn ≥ c′′m if m = ⌊log2(n)⌋ − 1.

Let M = ⌈log2(N − 2)⌉, and let m ≤ M . It follows directly from the proof of
the proposition at the end of Section 4 that, for all n such thatm = ⌈log2(n− 2)⌉,
the deepest level of recursion at which KMAn occurs is M − m. Moreover, it
follows directly from the definition of KMAn that, for all n > 0, KMAn oc-
curs at this level only if n is less than or equal to the greatest n′ such that
m = ⌈log2(n

′ − 2)⌉. We also have that cn ≤ cn′ if n ≤ n′, and cn′ ≤ c′m if

m = ⌈log2(n
′ − 2)⌉. All this means that len(KMAN) ≤

∑M
i=0(c

′
i ·3

M−i). In other

words, len(KMAN) ≤ 495 · 3M +
∑M

i=1((573 · 2
i−1 +871) · 3M−i). Using elemen-

tary properties of sums and the property that
∑k

i=0 x
i = (1− xk+1)/(1− x), we

obtain 495 ·3M +
∑M

i=1((573 · 2
i−1+871) · 3M−i) = 495 ·3M +573 · (3M − 2M)+

871 · ((3M − 1)/2) < 1504 · 3M − 573 · 2M − 435. Hence, because M =
⌈log2(N − 2)⌉, len(KMAN) < 1504 · 3⌈log2(N−2)⌉ − 573 · 2⌈log2(N−2)⌉ − 435.

Let M ′ = ⌊log2(N)⌋ − 1, and let m ≤ M ′. We can show similarly to above
that, for all n such that m = ⌊log2(n)⌋ − 1, the least deep level of recursion
at which KMAn occurs is M ′ − m. Moreover, it follows directly from the def-
inition of KMAn that, for all n > 0, KMAn occurs at this level only if n is
greater than or equal to the least n′ such that m = ⌊log2(n

′)⌋ − 1. We also
have that cn ≥ cn′ if n ≥ n′, and cn′ ≥ c′′m if m = ⌊log2(n

′)⌋ − 1. All this

means that len(KMAN) ≥
∑M ′

i=0(c
′′
i · 3M

′−i). In other words, len(KMAN) ≥

495 · 3M
′

+
∑M ′

i=1((573 · 2i + 298) · 3M
′−i). Using the same properties of sums

as before, we obtain 495 · 3M
′

+
∑M ′

i=1((573 · 2i + 298) · 3M
′−i) = 495 · 3M

′

+

573 · (2 · (3M
′

− 2M
′

)) + 298 · ((3M
′

− 1)/2) = 1790 · 3M
′

− 1146 · 2M
′

− 149.
Hence, because M ′ = ⌊log2(N)⌋ − 1, len(KMAN) ≥ 1790 · 3⌊log2(N)⌋−1 −
1146 · 2⌊log2(N)⌋−1 − 149. ⊓⊔

For N ≥ 1, the instruction sequence LMULN described by MULN (I1, I2, O) ; !
computes according to the long multiplication algorithm the function on bit
strings of length N that models the multiplication of two natural numbers less
than 2N on their representations in the binary number system. We have that
len(LMULN) = 45 ·N2+30 ·N+1. Using the lower estimate and upper estimate
for the length of KMULN given above, it is easy to check that KMULN becomes
more efficient than LMULN for some N between 28 and 213. More accurate
bounds are 290 and 7293. However, the latter bounds are not very useful, because
it is very possible that the length of both LMULN and KMULN can be reduced
somewhat.3

It is obvious that KMULN and LMULN need the same number of input
registers and the same number of output registers. However, the number of
auxiliary registers used by KMULN is 10 ·N · ⌈log2(N − 2)⌉+18 ·N +1 and the

3 A statement from [16], which is cited on many other webpages, is the following:
“Karatsuba is usually faster when the multiplicands are longer than 320-640 bits”.
To our knowledge, this statement is not justified anywhere.

12

number of auxiliary registers used by LMULN is only 4 ·N + 1. In the instance
that N = 213, these numbers are 1212417 (which corresponds to ±148K bytes)
and 32769 (which corresponds to ±4K bytes), respectively.

7 Concluding Remarks

By means of terms from the algebraic theory of single-pass instruction sequences
known as PGA, we have uniformly described, for N ≥ 3, an instruction sequence
KMULN that computes according to the Karatsuba multiplication algorithm the
product of two natural numbers less than 2N represented in the binary number
system. Thus, we have provided a mathematically precise alternative to the nat-
ural language and pseudo code descriptions of the Karatsuba multiplication al-
gorithm found in mathematics and computer science literature on multiplication
algorithms.

We have given a lower estimate and an upper estimate for the length of
KMULN . From this it follows that, for all N ≥ 3, len(KMULN) = Θ(3log2(N)) =
Θ(N log2(3)). This can be paraphrased as “the non-uniform time complexity of
the Karatsuba multiplication algorithm is of the same order as its uniform time
complexity”, because it is shown in [6] that, in the case of instruction sequences
of the kind that we have dealt with in this paper, instruction sequence length is a
computational complexity measure that coincides with the classical non-uniform
time complexity measure based on Turing machines that take advice.

We expect that the number of auxiliary registers used by instruction se-
quence is a computational complexity measure closely related to non-uniform
space complexity. An option for future work is investigating the possible role of
this complexity measure in devising new multiplication algorithms. The quar-
ter square multiplication algorithm has been devised to reduce the non-uniform
space complexity of multiplication algorithms based on table look-up for obtain-
ing the product of two natural numbers represented in the binary number system
(see e.g. [11]). However, to our knowledge, no multiplication algorithm has been
devised to reduce the space complexity of multiplication algorithms other than
those based on table look-up.

Acknowledgements

We thank Dimitri Hendriks from the VU University Amsterdam for carefully
reading a draft of this paper and for pointing out an error in it.

References

1. Bergstra, J.A., Loots, M.E.: Program algebra for sequential code. Journal of Logic
and Algebraic Programming 51(2), 125–156 (2002)

2. Bergstra, J.A., Middelburg, C.A.: Indirect jumps improve instruction sequence
performance. Scientific Annals of Computer Science 22(2), 253–265 (2012)

13

3. Bergstra, J.A., Middelburg, C.A.: Instruction sequence processing operators. Acta
Informatica 49(3), 139–172 (2012)

4. Bergstra, J.A., Middelburg, C.A.: Instruction Sequences for Computer Science,
Atlantis Studies in Computing, vol. 2. Atlantis Press, Amsterdam (2012)

5. Bergstra, J.A., Middelburg, C.A.: On the expressiveness of single-pass instruction
sequences. Theory of Computing Systems 50(2), 313–328 (2012)

6. Bergstra, J.A., Middelburg, C.A.: Instruction sequence based non-uniform com-
plexity classes. arXiv:1301.3297v2 [cs.CC] (January 2013)

7. Bergstra, J.A., Middelburg, C.A.: Instruction sequence expressions for the secure
hash algorithm SHA-256. arXiv:1308.0219v5 [cs.PL] (August 2013)

8. Bergstra, J.A., Ponse, A.: An instruction sequence semigroup with involutive anti-
automorphisms. Scientific Annals of Computer Science 19, 57–92 (2009)

9. Cook, S.A.: On the Minimum Computation Time of Functions. Ph.D. thesis, Har-
vard University, Cambridge, MA (1966)

10. Fürer, M.: Faster integer multiplication. SIAM Journal of Computing 39(3), 979–
1005 (2009)

11. Johnson, E.L.: A digital quarter square multiplier. IEEE Transactions on Comput-
ers C-29(3), 258–261 (1980)

12. Karatsuba, A.A.: The complexity of computations. Proceedings of the Steklov
Institute of Mathematics 211, 169–183 (1995)

13. Karatsuba, A.A., Ofman, Y.P.: Multiplication of multidigit numbers on automata.
Doklady Akademii Nauk SSSR 145(2), 293–294 (1962), in Russian

14. Schönhage, A., Strassen, V.: Schnelle Multiplikation großer Zahlen. Computing
7(3–4), 281–292 (1971)

15. Toom, A.A.: The complexity of a scheme of functional elements simulating the
multiplication of integers. Doklady Akademii Nauk SSSR 150(2), 496–498 (1963),
in Russian

16. Karatsuba algorithm. In Wikipedia (2013), retrieved on November 11, 2013, from
http://en.wikipedia.org/wiki/Karatsuba algorithm

14

	Instruction Sequence Expressions for the Karatsuba Multiplication Algorithm

