
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Instruction sequence expressions for the secure hash algorithm SHA-256

Bergstra, J.A.; Middelburg, C.A.

Publication date
2013
Document Version
Submitted manuscript

Link to publication

Citation for published version (APA):
Bergstra, J. A., & Middelburg, C. A. (2013). Instruction sequence expressions for the secure
hash algorithm SHA-256. arXiv.org. http://arxiv.org/abs/1308.0219

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:11 Feb 2023

https://dare.uva.nl/personal/pure/en/publications/instruction-sequence-expressions-for-the-secure-hash-algorithm-sha256(29d2ecae-0c33-4343-b225-7162aa6d7cf7).html
http://arxiv.org/abs/1308.0219

ar
X

iv
:1

30
8.

02
19

v5
 [

cs
.P

L
]

 2
 N

ov
 2

01
3

Instruction Sequence Expressions for

the Secure Hash Algorithm SHA-256

J.A. Bergstra and C.A. Middelburg

Informatics Institute, Faculty of Science, University of Amsterdam,
Science Park 904, 1098 XH Amsterdam, the Netherlands

J.A.Bergstra@uva.nl,C.A.Middelburg@uva.nl

Abstract. The secure hash function SHA-256 is a function on bit
strings. This means that its restriction to the bit strings of any given
length can be computed by a finite instruction sequence that contains
only instructions to set and get the content of Boolean registers, for-
ward jump instructions, and a termination instruction. We describe such
instruction sequences for the restrictions to bit strings of the different
possible lengths by means of uniform terms from an algebraic theory.

Keywords: SHA-256, secure hash algorithm, secure hash function, single-
pass instruction sequence.

1998 ACM Computing Classification: E.3, F.1.1.

1 Introduction

SHA-256 is one of the hash functions defined in the Secure Hash Standard of
the U.S. National Institute of Standards and Technology [20]. To phrase it more
precisely, the standard describes an algorithm that computes the hash function
SHA-256 by means of pseudo-code. In this paper, unlike the standard, an al-
gorithm that computes a function is distinguished from the computed function.
SHA-256 is called a secure hash function because it is a hash function for which
it is expected to be computationally infeasible to find an input with a given hash
value and to find two different inputs with the same hash value. SHA-256 is im-
plemented in some widely used security applications and protocols, including
Bitcoin [15], S/MIME [17], TLS [8], SSH [19], and IPsec [11].

To our knowledge, the starting point of studies of the security of SHA-256
keeps being the above-mentioned pseudo-code description of an algorithm that
computes it (see e.g. [10,12,13,14,16,18]). SHA-256 restricted to the bit strings
of a given length can be computed by a finite single-pass instruction sequence
that contains only instructions to set and get the content of Boolean registers,
forward jump instructions, and a termination instruction (see [6]). In this paper,
we describe such instruction sequences for the restrictions to bit strings of the
different possible lengths by means of uniform terms from an algebraic theory
of single-pass instruction sequences. Thus, we provide a mathematically precise
alternative to the pseudo-code description from the standard.

http://arxiv.org/abs/1308.0219v5

In computer science, the meaning of programs usually plays a prominent part
in the explanation of many issues concerning programs. Moreover, what is taken
for the meaning of programs is mathematical by nature. Yet, it is customary
that practitioners do not fall back on the mathematical meaning of programs
in case explanation of issues concerning programs is needed. They phrase their
explanations from an empirical perspective. An attempt to approach the seman-
tics of programming languages from the emperical perspective that a program
is in essence an instruction sequence is made in [1]. The groundwork for the
approach is an algebraic theory of single-pass instruction sequences, called pro-
gram algebra, and an algebraic theory of mathematical objects that represent
the behaviours produced by instruction sequences under execution, called basic
thread algebra.

As a continuation of the work on the approach to programming language se-
mantics followed in [1], (a) the notion of an instruction sequence was subjected
to systematic and precise analysis using the groundwork laid earlier and (b) se-
lected issues relating to well-known subjects from the theory of computation
and the area of computer architecture were rigorously investigated thinking in
terms of instruction sequences. This led among other things to expressiveness
results about the instruction sequences considered, variations of the instruction
sequences considered, an analysis of the autosolvability requirement implicit in
Turing’s result regarding the undecidability of the halting problem, and an anal-
ysis of the effects of the presence of indirect jump instructions in the instruction
set of a computer on points such as instruction sequence size and instruction
sequence performance (see e.g. [2,3,5,7]).

The general aim of the above-mentioned continuation of the work on the ap-
proach to programming language semantics followed in [1] is to bring instruction
sequences as a theme in computer science better into the picture. This is the gen-
eral aim of the work presented in the current paper as well. Different from usual
in the work referred to above, the accent is this time on a practical problem,
viz. devising instruction sequences that compute the restrictions of SHA-256 to
the bit strings of the different possible lengths. As in the work referred to above,
this work is carried out in the setting of program algebra.

This paper is organized as follows. First, we survey program algebra and the
particular fragment and instantiation of it that is used in this paper (Section 2).
Next, we describe how we deal with 32-bit words by means of Boolean registers
(Section 3) and how we compute the basic and derived operations on 32-bit
words that are used in the standard to define SHA-256 (Section 4). Then, we
give the description of instruction sequences that define SHA-256 (Section 5).
Finally, we make some concluding remarks (Section 6).

2 Program Algebra

In this section, we present a brief outline of PGA (ProGram Algebra) and the
particular fragment and instantiation of it that is used in the remainder of this
paper. A mathematically precise treatment can be found in [6].

2

The starting-point of PGA is the simple and appealing perception of a se-
quential program as a single-pass instruction sequence, i.e. a finite or infinite
sequence of instructions of which each instruction is executed at most once and
can be dropped after it has been executed or jumped over.

It is assumed that a fixed but arbitrary set A of basic instructions has been
given. The intuition is that the execution of a basic instruction may modify a
state and produces a reply at its completion. The possible replies are 0 and 1.
The actual reply is generally state-dependent. Therefore, successive executions
of the same basic instruction may produce different replies. The set A is the basis
for the set of instructions that may occur in the instruction sequences considered
in PGA. The elements of the latter set are called primitive instructions. There
are five kinds of primitive instructions, which are listed below:

– for each a ∈ A, a plain basic instruction a;
– for each a ∈ A, a positive test instruction +a;
– for each a ∈ A, a negative test instruction −a;
– for each l ∈ N, a forward jump instruction #l;
– a termination instruction !.

We write I for the set of all primitive instructions.
On execution of an instruction sequence, these primitive instructions have

the following effects:

– the effect of a positive test instruction +a is that basic instruction a is
executed and execution proceeds with the next primitive instruction if 1
is produced and otherwise the next primitive instruction is skipped and
execution proceeds with the primitive instruction following the skipped one
— if there is no primitive instruction to proceed with, inaction occurs;

– the effect of a negative test instruction −a is the same as the effect of +a,
but with the role of the value produced reversed;

– the effect of a plain basic instruction a is the same as the effect of +a, but
execution always proceeds as if 1 is produced;

– the effect of a forward jump instruction #l is that execution proceeds with
the lth next primitive instruction of the instruction sequence concerned —
if l equals 0 or there is no primitive instruction to proceed with, inaction
occurs;

– the effect of the termination instruction ! is that execution terminates.

To build terms, PGA has a constant for each primitive instruction and two
operators. These operators are: the binary concatenation operator ; and the
unary repetition operator ω. We use the notation ;ni=0 Pi, where P0, . . . , Pn are
PGA terms, for the PGA term P0 ; . . . ; Pn.

The instruction sequences that concern us in the remainder of this paper
are the finite ones, i.e. the ones that can be denoted by closed PGA terms in
which the repetition operator does not occur. Moreover, the basic instructions
that concern us are instructions to set and get the content of Boolean registers.

3

More precisely, we take the set

{in:i.get | i ∈ N
+} ∪ {out:i.set:b | i ∈ N

+ ∧ b ∈ {0, 1}}

∪ {aux:i.get | i ∈ N
+} ∪ {aux:i.set:b | i ∈ N

+ ∧ b ∈ {0, 1}}

as the set A of basic instructions.
Each basic instruction consists of two parts separated by a dot. The part on

the left-hand side of the dot plays the role of the name of a Boolean register and
the part on the right-hand side of the dot plays the role of a command to be
carried out on the named Boolean register. For each i ∈ N

+:

– in:i serves as the name of the Boolean register that is used as ith input
register in instruction sequences;

– out:i serves as the name of the Boolean register that is used as ith output
register in instruction sequences;

– aux:i serves as the name of the Boolean register that is used as ith auxiliary
register in instruction sequences.

On execution of a basic instruction, the commands have the following effects:

– the effect of get is that nothing changes and the reply is the content of the
named Boolean register;

– the effect of set:0 is that the content of the named Boolean register becomes
0 and the reply is 0;

– the effect of set:1 is that the content of the named Boolean register becomes
1 and the reply is 1.

Let n,m ∈ N, let f : {0, 1}
n
→ {0, 1}

m
, and let X be a finite instruction

sequence that can be denoted by a closed PGA term in the case that A is taken
as specified above. Then X computes f if there exists a k ∈ N such that for all
b1, . . . , bn ∈ {0, 1}: if X is executed in an environment with n input registers,
m output registers, and k auxiliary registers, the content of the input registers
with names in:1, . . . , in:n are b1, . . . , bn when execution starts, and the content of
the output registers with names out:1, . . . , out:m are b′1, . . . , b

′

m when execution
terminates, then f(b1, . . . , bn) = b′1, . . . , b

′

m.

3 Dealing with 32-Bit Words

This section is concerned with dealing with bit strings of length 32 by means
of Boolean registers. It contains definitions which facilitate the description of
instruction sequences that define SHA-256 in Section 5. In the sequel, bit strings
of length 32 will mostly be called 32-bit words or shortly words.

Let κ ∈ {in, out, aux}, let i ∈ N
+, and let κ:i be the name of a Boolean

register. Then κ and i are called the kind and number of the Boolean register.
Successive Boolean registers are Boolean registers of the same kind with suc-
cessive numbers. Words are stored by means of Boolean registers such that the
successive bits of a stored word are the content of successive Boolean registers
and the first bit of the word is the content of a Boolean register whose number
is in the set {n ∈ N | n mod 32 = 1}.

4

The words that form a part of the message to which SHA-256 is to be applied
are stored in advance of the computation in input registers, starting with the
input register with number 1, the words that form a part of the message digest
that results from applying SHA-256 are stored during the computation in output
registers, starting with the output register with number 1, and the words that
form a part of intermediate results that arise during the computation, such
as message schedules, hash values, and working values, are stored in auxiliary
registers.

It is convenient to have available the names used in the standard for the
words of the message blocks, the message schedule, the hash value, the working
values, and the temporary values in the current setting for the Boolean registers
that contain the least significant bit of these words. It is also convenient to have
available the names D0, . . . , D7 for the Boolean registers that contain the least
significant bit of the words of the message digest, the names t1, . . . , t6, t

′

1, . . . , t
′

4

for the Boolean registers that contain the least significant bit of the words of
additional intermediate values that are temporarily stored,1 and the name cb for
the Boolean register that contains the carry bit that is repeatedly stored when
computing the addition operation. Therefore, we define:

M
(i)
j , in:k where k = 512 · (i− 1) + 32 · j + 1 (1 ≤ i ≤ 255, 0 ≤ j ≤ 15),

Wj , aux:k where k = 32 · j + 1 (0 ≤ j ≤ 63),

Hj , aux:k where k = 32 · j + 2049 (0 ≤ j ≤ 7),

a , aux:2305, b , aux:2337, c , aux:2369, d , aux:2401, e , aux:2433,

f , aux:2465, g , aux:2497, h , aux:2529, T1 , aux:2561, T2 , aux:2593,

t1 , aux:2625, t2 , aux:2657, t3 , aux:2689, t4 , aux:2721, t5 , aux:2753,

t6 , aux:2785, t′1 , aux:2817, t′2 , aux:2849, t′3 , aux:2881, t′4 , aux:2913,

cb , aux:2945,

Dj , out:k where k = 32 · j + 1 (0 ≤ j ≤ 7).

It is also convenient to have available the names used in the standard for the
words of the initial hash value:

H
(0)
0 , 01101010000010011110011001100111 ,

H
(0)
1 , 10111011011001111010111010000101 ,

H
(0)
2 , 00111100011011101111001101110010 ,

H
(0)
3 , 10100101010011111111010100111010 ,

H
(0)
4 , 01010001000011100101001001111111 ,

H
(0)
5 , 10011011000001010110100010001100 ,

H
(0)
6 , 00011111100000111101100110101011 ,

H
(0)
7 , 01011011111000001100110100011001 ;

1 The Boolean registers with names t′1, . . . , t
′

4 are reserved for the least significant bit
of intermediate values that arise when computing one of the derived operations on
bit strings introduced in Section 4.

5

and the names used in the standard for the “SHA-256 constants”:

K0 , 01000010100010100010111110011000 ,

K1 , 01110001001101110100010010010001 ,
...

K63 , 11000110011100010111100011110010 .2

4 Computing Operations on 32-Bit Words

This section is concerned with computing operations on bit strings of length 32.
It contains definitions which facilitate the description of instruction sequences
that define SHA-256 in Section 5.

The basic operations on bit strings that are relevant to SHA-256 are bit-
wise negation, bitwise conjunction, bitwise exclusive disjunction, shift right n

positions, rotate right n positions (0 < n < 32), and addition. For these oper-
ations, we define parameterized instruction sequences computing them in case
the parameters are properly instantiated (see below):

NOT (s:k, d:l) ,

;31i=0(d:l+i.set:0 ;−s:k+i.get ; d:l+i.set:1) ,

AND(s1:k1, s2:k2, d:l) ,

;31i=0(d:l+i.set:0 ;−s1:k1+i.get ; #4 ;−s2:k2+i.get ; #2 ; d:l+i.set:1) ,

XOR(s1:k1, s2:k2, d:l) ,

;31i=0(d:l+i.set:0 ;−s1:k1+i.get ; #4 ;−s2:k2+i.get ; #5 ; #3 ;

+s2:k2+i.get ; #2 ; d:l+i.set:1) ,

SHRn(s:k, d:l) ,

;31−n

i=0 (d:l+i.set:0 ; +s:k+i+n.get ; d:l+i.set:1) ;

;n−1
i=0 (d:l+i+32−n.set:0) ,

ROTRn(s:k, d:l) ,

;31−n

i=0 (d:l+i.set:0 ; +s:k+i+n.get ; d:l+i.set:1) ;

;n−1
i=0 (d:l+i+32−n.set:0 ; +s:k+i.get ; d:l+i+32−n.set:1) ,

ADD(s1:k1, s2:k2, d:l) ,

cb.set:0 ;

;31i=0(d:l+i.set:0 ;−s1:k1+i.get ; #7 ;−s2:k2+i.get ; #10 ;−cb.get ; #10 ;

d:l+i.set:1 ; #8 ;−s2:k2+i.get ; #8 ;−cb.get ; #8 ; #3 ;−cb.get ; #5 ;

cb.set:1 ; #5 ;−cb.get ; #2 ; d:l+i.set:1 ; cb.set:0) ,

2 All 64 definitions have been put into an appendix.

6

where s, s1, s2 range over {in, aux}, d ranges over {aux, out}, and k, k1, k2, l range
over {n ∈ N | n mod 32 = 1}. For each of these parameterized instruction se-
quences, all but the last parameter correspond to the operands of the operation
concerned and the last parameter corresponds to the result of the operation
concerned.

The intended operations are computed provided that the instantiation of the
last parameter differs from the instantiation of each of the other parameters. We
could have prevented this condition at the cost of longer instruction sequences.
In this paper, the condition will always be satisfied.

In the standard, for SHA-256, six derived operations on bit strings are defined
in terms of the above-mentioned basic operations.3 For these operations, we
define parameterized instruction sequences computing them:

CH (s1:k1, s2:k2, s3:k3, d:l) ,

NOT (s1:k1, t
′

1) ;AND(s1:k1, s2:k2, t
′

2) ;AND(t′1, s3:k3, t
′

3) ;

XOR(t′2, t
′

3, d:l) ,

MAJ (s1:k1, s2:k2, s3:k3, d:l) ,

AND(s1:k1, s2:k2, t
′

1) ;AND(s1:k1, s3:k3, t
′

2) ; AND(s2:k2, s3:k3, t
′

3) ;

XOR(t′1, t
′

2, t
′

4) ;XOR(t′3, t
′

4, d:l) ,

Σ0(s:k, d:l) ,

ROTR2(s:k, t′1) ;ROTR13(s:k, t′2) ;ROTR22(s:k, t′3) ;

XOR(t′1, t
′

2, t
′

4) ;XOR(t′3, t
′

4, d:l) ,

Σ1(s:k, d:l) ,

ROTR6(s:k, t′1) ;ROTR11(s:k, t′2) ;ROTR25(s:k, t′3) ;

XOR(t′1, t
′

2, t
′

4) ;XOR(t′3, t
′

4, d:l) ,

σ0(s:k, d:l) ,

ROTR7(s:k, t′1) ;ROTR18(s:k, t′2) ; SHR
3(s:k, t′3) ;

XOR(t′1, t
′

2, t
′

4) ;XOR(t′3, t
′

4, d:l) ,

σ1(s:k, d:l) ,

ROTR17(s:k, t′1) ;ROTR19(s:k, t′2) ; SHR
10(s:k, t′3) ;

XOR(t′1, t
′

2, t
′

4) ;XOR(t′3, t
′

4, d:l) ,

where s, s1, s2, s3 range over {in, aux}, d ranges over {aux, out}, k, k1, k2, k3, l
range over {n ∈ N | n mod 32 = 1}.

We also define a parameterized instruction sequence by which the successive
bits in a constant 32-bit word become the content of 32 successive Boolean
registers and a parameterized instruction sequence by which the successive bits

3 In the standard, basic operations and derived operations are called operations and
functions, respectively.

7

in a 32-bit word that are the content of 32 successive Boolean registers become
the content of 32 other successive Boolean registers:

SET (b0 . . . b31, d:l) , ;31i=0(d:l+i.set:bi) ,

MOV (s:k, d:l) , ;31i=0(d:l+i.set:0 ; +s:k+i.get ; d:l+i.set:1) ,

where b0, . . . , b31 range over {0, 1}, s ranges over {in, aux}, d ranges over
{aux, out}, and k, l range over {n ∈ N | n mod 32 = 1}.

Moreover, we use the abbreviation

CONC FOR i = l TO l′ : {Pi} for Pl ; . . . ; Pl′ ,

where l, l′ ∈ N are such that l < l′, and Pl, . . . , Pl′ are instruction sequences.
We write CONC FOR instead of FOR to emphasize that we have to do here with
an abbreviation for the concatenation of two or more instruction sequences.

The calculation of the lengths of the parameterized instruction sequences
defined above is a matter of simple additions and multiplications. The lengths
of the instruction sequences corresponding to the basic operations on bit strings
relevant to SHA-256 are as follows:

len(NOT (s:k, d:l)) = 96 ,

len(AND(s1:k1, s2:k2, d:l)) = 192 ,

len(XOR(s1:k1, s2:k2, d:l)) = 288 ,

len(SHRn(s:k, d:l)) = 96− 2 · n ,

len(ROTRn(s:k, d:l)) = 96 ,

len(ADD(s1:k1, s2:k2, d:l)) = 705 ;

the lengths of the instruction sequences corresponding to the derived operations
on bit strings defined in the standard are as follows:

len(CH (s1:k1, s2:k2, s3:k3, d:l)) = 768 ,

len(MAJ (s1:k1, s2:k2, s3:k3, d:l)) = 1152 ,

len(Σ0(s:k, d:l)) = 864 ,

len(Σ1(s:k, d:l)) = 864 ,

len(σ0(s:k, d:l)) = 858 ,

len(σ1(s:k, d:l)) = 844 ;

and the lengths of the SET and MOV instruction sequences are as follows:

len(SET (b0 . . . b31, d:l)) = 32 ,

len(MOV (s:k, d:l)) = 96 .

8

5 SHA-256 Hash Computation

In this section, we give the description of instruction sequences that define SHA-
256 using the definitions given in Sections 3 and 4.

The padding of messages to a bit length that is a multiple of 512 is left
out. It is assumed that messages are already padded. Thus, the bit length of
a message is always a multiple of 512. Suppose that N is the bit length of a
message divided by 512. Because the maximum bit length of a message is 264,
we have that 1 ≤ N ≤ 255.

We write MN , where 1 ≤ N ≤ 255, for {0, 1}
512·N

, and we write M for
⋃
{

MN | 1 ≤ N ≤ 255
}

. Moreover, we write D for {0, 1}
256

. SHA-256 is a func-
tion from M to D. We write SHA-256N for the restriction of SHA-256 to MN .
Clearly, SHA-256 is the unique function from M to D such that, for each N

with 1 ≤ N ≤ 255, for each w ∈ MN , SHA-256(w) = SHA-256N (w).
In Table 1, an instruction sequence ISSHA-256N is uniformly described for all

N with 1 ≤ N ≤ 255.

Claim. For each N with 1 ≤ N ≤ 255, the instruction sequence ISSHA-256N
computes the function SHA-256N .

Because SHA-256 is not formally defined in the standard, we cannot formally
prove this claim. However, we follow the standard so precisely in the description
of ISSHA-256N

that the claim is unlikely to be wrong unless the pseudo code from
the standard should not be interpreted as to be expected.

An easy calculation leads to the following result.

Fact. For each N with 1 ≤ N ≤ 255, the length of the instruction sequence

ISSHA-256N is 780152 ·N + 1025.

The calculation is a matter of simple additions and multiplications, using the
lengths of the parameterized instruction sequences defined in Section 4:

8 · 32 +

N · (16 · 96 +

48 · (844 + 858 + 3 · 705) +

8 · 96 +

64 · (864 + 768 + 32 + 4 · 705 +

864 + 1152 + 705 +

3 · 96 + 705 + 3 · 96 + 705) +

8 · (96 + 705)) +

8 · 96 +

1

=

780152 ·N + 1025 .

9

Table 1. The instruction sequence ISSHA-256N

CONC FOR j = 0 TO 7 :

{

SET (H
(0)
i , Hi)

} ;

CONC FOR i = 1 TO N :

{

CONC FOR j = 0 TO 15 :

{

MOV (M
(i)
j ,Wj)

} ;

CONC FOR j = 16 TO 63 :

{

σ1(Wj−2, t1) ; σ0(Wj−15, t2) ;

ADD(t1,Wj−7, t3) ;ADD(t2,Wj−16, t4) ;ADD(t3, t4,Wj)

} ;

MOV (H0, a) ;MOV (H1, b) ;MOV (H2, c) ;MOV (H3, d) ;

MOV (H4, e) ;MOV (H5, f) ;MOV (H6, g) ;MOV (H7, h) ;

CONC FOR j = 0 TO 63 :

{

Σ1(e, t1) ; CH (e, f, g, t2) ; SET (Kj , t3) ;

ADD(t1, h, t4) ; ADD(t2, t3, t5) ; ADD(t5,Wj , t6) ; ADD(t4, t6, T1) ;

Σ0(a, t1) ;MAJ (a, b, c, t2) ;ADD(t1, t2, T2) ;

MOV (g, h) ;MOV (f, g) ;MOV (e, f) ; ADD(d, T1, e) ;

MOV (c, d) ;MOV (b, c) ;MOV (a, b) ; ADD(T1, T2, a)

} ;

MOV (H0, t1) ; ADD(a, t1, H0) ;MOV (H1, t1) ; ADD(b, t1, H1) ;

MOV (H2, t1) ; ADD(c, t1, H2) ;MOV (H3, t1) ; ADD(d, t1, H3) ;

MOV (H4, t1) ; ADD(e, t1, H4) ;MOV (H5, t1) ; ADD(f, t1, H5) ;

MOV (H6, t1) ; ADD(g, t1, H6) ;MOV (H7, t1) ; ADD(h, t1, H7)

} ;

CONC FOR j = 0 TO 7 :

{

MOV (Hj , Dj)

} ;

!

10

The left-hand side of this equation is laid out in such a way that the structure
of the description in Table 1 is clearly reflected.

Recall that the instruction sequence ISSHA-256N
(1 ≤ N ≤ 255) contains only

instructions to set and get the content of Boolean registers, forward jump in-
structions, and a termination instruction. It is shown in [6] that, in the case of
instruction sequences of this kind, instruction sequence length is a computational
complexity measure closely related to non-uniform time complexity. Notice that,
if the message has the maximum bit length (±1.8 · 1019), the length of the
instruction sequence is ±2.8 · 1022.

The maximum number of input registers needed is 264 and the number of
output registers needed is 256. The number of auxiliary registers used is 2945.
We expect that number of auxiliary registers used by instruction sequence is
a computational complexity measure closely related to non-uniform space com-
plexity. Notice that the number of auxiliary registers used here does not depend
on the length of the message.

6 Concluding Remarks

We have described instruction sequences that compute the restrictions of the
secure hash function SHA-256 to the bit strings of the different possible lengths
by means of uniform terms from the algebraic theory of single-pass instruction
sequences known as PGA. Thus, we have provided a mathematically precise
alternative to the pseudo-code description of an algorithm that computes SHA-
256 found in the standard.

In previous work that is carried out in the setting of PGA, the work always
concerns rigorous investigation of theoretical issues thinking in terms of instruc-
tion sequences (see e.g. [4]). This may give the impression that PGA is only
suitable for such work. The use of PGA in the work presented in this paper
shows that it is more versatile. However, this work has also shown that scalabil-
ity calls for extension of PGA to an instruction sequence calculus that includes
among other things a variable binding generalized concatenation operator and a
suitable definition mechanism.

It is shown in [6] that, in the case of instruction sequences of the kind that
we have dealt with in this paper, instruction sequence length is a computational
complexity measure closely related to non-uniform time complexity. An option
for future work is investigating the possible role of this complexity measure in
issues concerning the complexity of the different kinds of attack on secure hash
functions like SHA-256.

Acknowledgements

We thank Bob Diertens from the University of Amsterdam for carefully reading
an earlier version of this paper, pointing out annoying errors in it, and developing
programs by which the description of ISSHA-256N

given in this paper can be
transformed into an instruction sequence that can be executed by means of the
PGA toolset [9].

11

References

1. Bergstra, J.A., Loots, M.E.: Program algebra for sequential code. Journal of Logic
and Algebraic Programming 51(2), 125–156 (2002)

2. Bergstra, J.A., Middelburg, C.A.: Indirect jumps improve instruction sequence
performance. Scientific Annals of Computer Science 22(2), 253–265 (2012)

3. Bergstra, J.A., Middelburg, C.A.: Instruction sequence processing operators. Acta
Informatica 49(3), 139–172 (2012)

4. Bergstra, J.A., Middelburg, C.A.: Instruction Sequences for Computer Science,
Atlantis Studies in Computing, vol. 2. Atlantis Press, Amsterdam (2012)

5. Bergstra, J.A., Middelburg, C.A.: On the expressiveness of single-pass instruction
sequences. Theory of Computing Systems 50(2), 313–328 (2012)

6. Bergstra, J.A., Middelburg, C.A.: Instruction sequence based non-uniform com-
plexity classes. arXiv:1301.3297v2 [cs.CC] (January 2013)

7. Bergstra, J.A., Ponse, A.: An instruction sequence semigroup with involutive anti-
automorphisms. Scientific Annals of Computer Science 19, 57–92 (2009)

8. Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.2.
The Internet Society, IETF RFC 5246 (August 2008)

9. Diertens, B.: A toolset for PGA. Electronic Report PRG0302, Programming
Research Group, University of Amsterdam (October 2003), available at http:

//www.science.uva.nl/research/prog/publications.html#prg-ereports
10. Gilbert, H., Handschuh, H.: Security analysis of SHA-256 and sisters. In: Matsui,

M., Zuccherato, R. (eds.) SAC 2003. Lecture Notes in Computer Science, vol. 3006,
pp. 175–193. Springer-Verlag (2004)

11. Kent, S., Seo, K.: Security Architecture for the Internet Protocol. The Internet
Society, IETF RFC 4301 (December 2005)

12. Mendel, F., Nad, T., Schläffer, M.: Finding SHA-2 characteristics: Searching
through a minefield of contradictions. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. Lecture Notes in Computer Science, vol. 7073, pp. 288–307. Springer-Verlag
(2011)

13. Mendel, F., Nad, T., Schläffer, M.: Improving local collisions: New attacks on re-
duced SHA-256. In: Johansson, T., Nguyen, P. (eds.) EUROCRYPT 2013. Lecture
Notes in Computer Science, vol. 7881, pp. 262–278. Springer-Verlag (2013)

14. Mendel, F., Pramstaller, N., Rechberger, C., Rijmen, V.: Analysis of step-reduced
SHA-256. In: Robshaw, M.J.B. (ed.) FSE 2006. Lecture Notes in Computer Science,
vol. 4047, pp. 126–143. Springer-Verlag (2006)

15. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. http://bitcoin.
org/bitcoin.pdf (2008)

16. Nikolić, I., Biryukov, A.: Collisions for step-reduced SHA-256. In: Nyberg, K. (ed.)
FSE 2008. Lecture Notes in Computer Science, vol. 5086, pp. 1–15. Springer-Verlag
(2008)

17. Ramsdell, B., Turner, S.: Secure/Multipurpose Internet Mail Extensions
(S/MIME) Version 3.2 Message Specification. The Internet Society, IETF RFC
5751 (January 2010)

18. Sanadhya, S.K., Sarkar, P.: New collision attacks against up to 24-step SHA-256.
In: Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. Lecture Notes
in Computer Science, vol. 5365, pp. 91–103. Springer-Verlag (2008)

19. Ylonen, T., Lonvick, C.: The Secure Shell (SSH) Transport Layer Protocol. The
Internet Society, IETF RFC 4253 (January 2006)

20. Secure Hash Standard. National Institute of Standards and Technology, FIPS PUB
180-4 (March 2012)

12

A Definitions of the SHA-256 constants

K0 , 01000010100010100010111110011000 ,

K1 , 01110001001101110100010010010001 ,

K2 , 10110101110000001111101111001111 ,

K3 , 11101001101101011101101110100101 ,

K4 , 00111001010101101100001001011011 ,

K5 , 01011001111100010001000111110001 ,

K6 , 10010010001111111000001010100100 ,

K7 , 10101011000111000101111011010101 ,

K8 , 11011000000001111010101010011000 ,

K9 , 00010010100000110101101100000001 ,

K10 , 00100100001100011000010110111110 ,

K11 , 01010101000011000111110111000011 ,

K12 , 01110010101111100101110101110100 ,

K13 , 10000000110111101011000111111110 ,

K14 , 10011011110111000000011010100111 ,

K15 , 11000001100110111111000101110100 ,

K16 , 11100100100110110110100111000001 ,

K17 , 11101111101111100100011110000110 ,

K18 , 00001111110000011001110111000110 ,

K19 , 00100100000011001010000111001100 ,

K20 , 00101101111010010010110001101111 ,

K21 , 01001010011101001000010010101010 ,

K22 , 01011100101100001010100111011100 ,

K23 , 01110110111110011000100011011010 ,

K24 , 10011000001111100101000101010010 ,

K25 , 10101000001100011100011001101101 ,

K26 , 10110000000000110010011111001000 ,

K27 , 10111111010110010111111111000111 ,

K28 , 11000110111000000000101111110011 ,

K29 , 11010101101001111001000101000111 ,

K30 , 00000110110010100110001101010001 ,

K31 , 00010100001010010010100101100111 ,

K32 , 00100111101101110000101010000101 ,

K33 , 00101110000110110010000100111000 ,

K34 , 01001101001011000110110111111100 ,

13

K35 , 01010011001110000000110100010011 ,

K36 , 01100101000010100111001101010100 ,

K37 , 01110110011010100000101010111011 ,

K38 , 10000001110000101100100100101110 ,

K39 , 10010010011100100010110010000101 ,

K40 , 10100010101111111110100010100001 ,

K41 , 10101000000110100110011001001011 ,

K42 , 11000010010010111000101101110000 ,

K43 , 11000111011011000101000110100011 ,

K44 , 11010001100100101110100000011001 ,

K45 , 11010110100110010000011000100100 ,

K46 , 11110100000011100011010110000101 ,

K47 , 00010000011010101010000001110000 ,

K48 , 00011001101001001100000100010110 ,

K49 , 00011110001101110110110000001000 ,

K50 , 00100111010010000111011101001100 ,

K51 , 00110100101100001011110010110101 ,

K52 , 00111001000111000000110010110011 ,

K53 , 01001110110110001010101001001010 ,

K54 , 01011011100111001100101001001111 ,

K55 , 01101000001011100110111111110011 ,

K56 , 01110100100011111000001011101110 ,

K57 , 01111000101001010110001101101111 ,

K58 , 10000100110010000111100000010100 ,

K59 , 10001100110001110000001000001000 ,

K60 , 10010000101111101111111111111010 ,

K61 , 10100100010100000110110011101011 ,

K62 , 10111110111110011010001111110111 ,

K63 , 11000110011100010111100011110010 .

14

	Instruction Sequence Expressions for the Secure Hash Algorithm SHA-256

