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Abstract It has been known for a long time that mito-
chondria contain their own protein-degradation systems.
Only recently, however, have genes for mitochondrial pro-
teases been identified and the powerful techniques of mo-
lecular biology been applied to gain insight into the role
of protein degradation in mitochondrial biogenesis. It is
now clear that the mitochondrial proteases that are in-
volved in the initial stages of degradation are similar to
prokaryotic ATP-dependent proteases, and that a division
of labour exists between soluble and membrane-bound
systems. These systems are essential for the biogenesis of
fully functional mitochondria. Their natural targets are cur-
rently being identified, and their co-operation with chape-
rones and possible dual functions as chaperones/proteases
are being investigated.

Key words Mitochondrial proteases · Protein turnover ·
Proteolysis · Chaperones

Introduction

Biogenesis of mitochondria has been intensively studied
for more than two decades. In particular, the mitochondrial
system for gene expression, and the co-ordination of this
system with the nucleo-cytoplasmic one, have received
much attention (see Grivell 1995 for a review). While the
bulk of mitochondrial research has concentrated on the
synthesis of mitochondrial components, it has not gone un-
noticed that protein turnover and degradation are also an
important part of mitochondrial biogenesis (Luzikov 1985;
Desautels 1986). In general, protein degradation may serve

several distinct purposes: (1) protective, by removing poly-
peptides that are potentially harmful to the cell, (2) regu-
latory, by controlling the concentrations of enzymes or reg-
ulatory proteins, and (3) metabolic, by releasing amino ac-
ids to be used for other purposes. Like other supermolec-
ular structures, the degradation of mitochondrial fragments
is mediated by lysosomal or, in the case of yeast, vacuolar
proteases via the process of autophagocytosis (Takeshige
et al. 1992). This process falls into the third category. For
the first two functions, however, mitochondrial proteases
are responsible (Desautels 1986). This review summarizes
what is known to-date on protein degradation in mitochon-
dria, the proteases involved, and the significance of pro-
tein degradation for mitochondrial biogenesis.

Targets for turnover

It is well established that half-lives are widely divergent
among proteins of every mitochondrial compartment (De-
sautels 1986; Hare 1990). A major class of targets for pro-
teolysis are subunits of enzymes that carry out electron
transport and oxidative phosphorylation. These enzymes
constitute about 50% of the protein content of the mito-
chondrial inner membrane (Hatefi 1985) and, generally
speaking, each consists of a combination of subunits that
are encoded by either the mitochondrial or the nuclear ge-
nome. The regulation of the rate of subunit synthesis
through transcriptional, and perhaps translational, control
may assure the production of roughly comparable amounts
of subunits belonging to a particular complex; but it is clear
that this is not (and perhaps cannot be) achieved with high
precision, especially since two different genetic systems
are involved. Turnover of subunits is therefore necessary
to prevent accumulation of single subunits and sub-com-
plexes in the mitochondrial inner membrane, which may
disturb assembly processes or change the properties of the
inner membrane (Manoil and Traxler 1995). Indeed, many
subunits of mitochondrial inner membrane enzyme com-
plexes are quickly degraded when assembly into a com-
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Table 1 Sensitivity towards degradation of unassembled subunits
of mitochondrial inner membrane complexesa. Hs: Homo sapiens;
Nc: Neurospora crassa (all other data were obtained with Saccha-

romyces cerevisiae); FP: flavoprotein; IP: iron-sulfur protein; FeS:
Rieske iron-sulfur protein; Cob: cytochrome b; Cytc1: cyto-
chrome c1

Subunit Lower levels due to loss or mutation of: References

Complex I
All mitochondrially ND4 Hofhaus and Attardi 1993
encoded subunits (Hs)
21 and 21.3 of peripheral 12.3 and 29.9 of the peripheral arm Duarte et al. 1995
arm (Nc) 51 of the peripheral arm Fecke et al. 1994

Complex II
FP IP Saghbini et al. 1994

Complex III
Core I Cob Sen and Beattie 1985; Chevillotte-Brivet et al. 1987
Core II Cob Sen and Beattie 1985

Core I Gatti and Tzagoloff 1990
Cob* Core I, core II, Qcr7p, Qcr8p De Haan et al. 1984; Berden et al. 1988; 

Crivellone et al. 1988; Schoppink et al. 1989
Cbp3p**, Cbp4p** Wu and Tzagoloff 1989; Crivellone 1994

Cytc1 Qcr6p and Cob (simultaneously) Schoppink et al. 1988
FeS All complex III subunits except Qcr6p De Haan et al. 1984; Sen and Beattie 1985; 

and Qcr10p Berden et al. 1988; Crivellone et al. 1988; 
Schoppink et al. 1989

Bcs1p** Nobrega et al. 1992
Qcr7p Core I, core II, Qcr7p, Cob De Haan et al. 1984; Berden et al. 1988; 

Crivellone et al. 1988; Schoppink et al. 1989
Qcr6p Yang and Trumpower 1994
Cbp3p**, Cbp4p** Wu and Tzagoloff 1989; Crivellone 1994

Qcr8p Core I, core II, Qcr8p, Cob De Haan et al. 1984; Berden et al. 1988;
Crivellone et al. 1988; Schoppink et al. 1989

Cbp3p**, Cbp4p** Wu and Tzagoloff 1989; Crivellone 1994
Qcr9p Qcr6p Yang and Trumpower 1994

Complex IV
CoxI* CoxIV, CoxVa, CoxIX McEwen et al. 1986

CoxVII b Calder and McEwen 1991
Sco1p** Krummeck and Rödel 1990
Cytochrome c** Pearce and Sherman 1995a,b

CoxII* CoxI, CoxIV, CoxVa, CoxIX Dowhan et al. 1985; McEwen et al. 1986; Nakai et al. 1994
Sco1p** Schulze und Rödel 1989; Krummeck and Rödel 1990
Cytochrome c** Pearce and Sherman 1995a

CoxIII* CoxIV Dowhan et al. 1985; Nakai et al. 1994
Sco1p** Krummeck and Rödel 1990
Cytochrome c** Pearce and Sherman 1995a

CoxIV CoxI, CoxII, Sco1p** Krummeck and Rödel 1990
CoxV CoxI McEwen et al. 1986; Krummeck and Rödel 1990

CoxII Krummeck and Rödel 1990
CoxIV Dowhan et al. 1985
Cytochrome c** Pearce and Sherman 1995a

CoxVI CoxI, CoxII Krummeck and Rödel 1990
CoxVII CoxIX McEwen et al. 1986

CoxI, CoxII Krummeck and Rödel 1990
CoxVIII CoxIX McEwen et al. 1986

Complex V
Atp3p (γ) Atp14p (δ) and Atp6,8,9p (simultaneously) Giraud and Velours 1994

Atp11p**, Atp12p** Weber et al. 1996
Atp6p* Atp4p (b) Paul et al. 1989

Atp7p (d) Norais et al. 1991
Atp8p, Atp9p Jean-Francois et al. 1986a

Atp7p (d) Atp4p (b) Norais et al. 1994

a In most cases, sensitivity to degradation is inferred from low steady state amounts (see text). Data on the degradation of mitochondrial
translation products caused by a general lack of cytoplasmically synthesized subunits (due to translation in organello or cycloheximide
treatment of cells) are not included in this table
b The low level of CoxI in a strain disrupted for COX7 could be due either to reduced synthesis or very fast (co-translational) turnover
* Mitochondrially encoded subunits
** Proteins not part of the complex 



plex is made impossible by the lack of (an)other subunit(s)
or of assembly-assisting proteins (Table 1, see also Hare
1990). Proteolytic systems responsible for the turnover of
subunits in such artificial situations are likely to be also
involved in maintaining the stoichiometry of subunits and
the removal of non-functional proteins under natural con-
ditions.

In addition to unassembled but otherwise normal mem-
brane proteins, other polypeptides may threaten the integ-
rity of the membrane. These include: (1) hydrophobic pre-
sequences, produced by proteolytic processing of cyto-
chrome b2, cytochrome c1 and cytochrome c peroxidase
(Kaput et al. 1982; Nunnari et al. 1993), (2) denatured ma-
trix proteins that partition to the membrane due to the ex-
posure of hydrophobic amino-acid sequences, as suggested
for bacteria (Voellmy and Goldberg 1981), and (3) mem-
brane proteins that have suffered oxygen damage. Substan-
tial research has shown that, in diverse cell types, proteins
damaged by oxygen radicals become sensitive to degrada-
tion (Davies et al. 1987; Pacifici and Davies 1990). Re-
cently, membrane-bound proteases were shown to prefe-
rentially degrade oxidatively damaged erythrocyte mem-
brane proteins. Inhibition studies point to the involvement
of both serine- and metallo-proteases (Beppu et al. 1994).
In rat liver mitochondria, conditions of enhanced radical
flux indeed increased proteolysis by 20% (Dean and Pol-
lak 1985). However, no such effect was seen in yeast mi-
tochondria (Yasuhara et al. 1994).

The turnover of matrix proteins has been studied mainly
in mammalian mitochondria. These studies have shown
that half-lives vary among proteins of this class (Nicoletti
et al. 1977; Hare and Hodges 1982b). Several studies in-
dicate that a high turnover rate of key enzymes in biosyn-
thesis pathways may facilitate the control of mitochondrial
function. Cholesterol side-chain desmolase and p450, two
enzymes involved in steroid biosynthesis in adrenal mito-
chondria and whose levels are regulated by ACTH (adre-
nocorticotropic hormone), have relatively short half-lives
(Kimura 1969; Purvis et al. 1973). In the case of p450,
ACTH may inhibit the rate of its degradation (Purvis et al.
1973). Other inducible mitochondrial enzymes that are
characterized by high turnover rates are δ-aminolevulinic
acid synthetase, a key enzyme for heme synthesis (Marver
et al. 1966), and alanine- and ornithine-aminotransferase
(Swick et al. 1968).

Degradation of mitochondrial translation products

Much of the information on mitochondrial protein degra-
dation has come from studies of the turnover of mitochon-
drial translation products. This section summarizes the
main results of these studies. It should be remembered,
however, that most of these proteins are highly hydropho-
bic. The mechanism(s) of turnover may therefore not be
applicable to mitochondrial proteins in general.

The degradation of mitochondrial proteins synthesized
within the organelle can be conveniently analysed either by

blocking cytoplasmic translation with cycloheximide or by
studying protein synthesis and turnover in isolated mito-
chondria. A high turnover of mitochondrial translation
products (half-life approximately 60 min) in isolated yeast
mitochondria was observed for the first time by Bakalkin
et al. (1978). In 1979, Kalnov et al. reported that one-third
to one-half of the proteins synthesized in isolated yeast mi-
tochondria were degraded with a half-life of about 35 min
(Kalnov et al. 1979b). This degradation occurred more ef-
ficiently in mitochondria isolated from cells growing in
logarithmic phase than in stationary phase (Kalnov et al.
1979a) and is inhibited by the addition of glucose to sta-
tionary cells (Luzikov et al. 1983). These differences in the
rate of proteolysis under different growth conditions were
suggested to be caused by changes in the fluidity of the in-
ner membrane (Luzikov et al. 1983, 1984, see also Luzi-
kov 1986). Black-Schaefer et al. (1991) also observed two
pools with different rates of turnover, one with a half-life
of minutes, the other with a half-life of hours. Instability
of (a subset of) mitochondrial translation products has also
been observed in rat liver mitochondria (Wheeldon et al.
1974; Desautels and Goldberg 1982b), as well as in HeLa
cells and rat hepatoma cells in the presence of cyclohexi-
mide (Constantino and Attardi 1977; Hall and Hare 1990).
As assembly of mitochondrially encoded subunits of inner
membrane complexes depends on the presence of imported
subunits, and these imported subunits will become limit-
ing at some point in isolated mitochondria or when cyto-
plasmic translation is inhibited, the rapidly degraded mit-
ochondrial translation products probably represent unas-
sembled subunits.

Incomplete translation products

Incomplete mitochondrial translation products produced
by carrying out translation in the presence of puromycin
are rapidly degraded in yeast (Kalnov et al. 1979b; Pajic
et al. 1994) and rat liver mitochondria (Desautels and Gold-
berg 1982b). In rat heart mitochondria, degradation of
50–60% of newly made polypeptides was observed in the
absence of the membrane potential. Most of the proteins
subject to the observed degradation were of abnormal size,
and were presumed to result from premature chain-termi-
nation (Cote et al. 1990). C-terminal truncation as a result
of nonsense mutations can also result in instability. This
has been reported for cytochrome b (di Rago et al. 1993)
and implied for CoxII and CoxIII by the observation that
mutations in the COX2 and COX3 genes (of which most
are nonsense mutations) in the majority of cases result in
the complete absence of the corresponding translation
product (Weiss-Brummer et al. 1979; Baranowska et al.
1983). In several cases, however, truncated translation
products of variable lengths were detected. Apparently, the
recognition of truncated CoxII and CoxIII proteins by a
proteolytic system depends on the exact C-terminus, which
may influence the degree of folding and/or the accessibil-
ity of ‘sensitive’ sequences.
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Characterization of the proteolytic system

In all systems investigated thus far, degradation of mito-
chondrial translation products is dependent on ATP. Re-
cently, several groups have reported that this process is also
dependent on divalent metal-ions (Nakai et al. 1994; Pajic
et al. 1994; Yasuhara et al. 1994). These reports differ, how-
ever, as to the ability of Zn2+ to restore proteolysis after
treatment with the divalent metal-ion chelator o-phenan-
troline. Whereas Yasuhara et al. (1994) found inhibition
by Zn2+, Nakai et al. (1994) reported stimulation by the
same ion. Both groups found reversal of inhibition by Mn2+

and Co2+. Looking at the degradation of incomplete mito-
chondrial translation products induced by puromycin,
Pajic et al. (1994) also report stimulation by Zn2+, although
Co2+, Fe2+ and Mn2+ yield higher activities. Interestingly,
only Co2+, Fe2+ and Mn2+ can replace Zn2+ in the metal-
loprotease thermolysin to yield an active enzyme (Mn2+

restores only 10% of the activity), while a high amount of
Zn2+ inhibits thermolysin activity (Holland et al. 1995).
High concentrations of Zn2+ also inhibit mitochondrial-
processing peptidases (Kalousek et al. 1992). A similar in-
hibitory effect of Zn2+ on other mitochondrial metallopro-
teases may explain the ambiguity concerning the effect of
Zn2+ on mitochondrial protein degradation.

In addition to metal chelators, vanadate (an inhibitor of
various ATPases) inhibits the degradation of mitochondrial
translation products (Desautels and Goldberg 1982b). The
same holds for chloramphenicol, an inhibitor of mitochon-
drial translation (Wheeldon et al. 1974; Kalnov et al.
1979b; Black-Schaefer et al. 1991), and hemin (Yasuhara
et al. 1994). It is unclear at present why chloramphenicol
should inhibit degradation, as other inhibitors of transla-
tion do not have this effect (Langer et al. 1995). Inhibition
by hemin may reflect a positive regulation of heme on the
production of respiratory chain components. However,
such an interpretation is weakened by the fact that hemin
also inhibits proteases from other sources (Tanaka et al.
1983; Waxman et al. 1985).

The inhibition by the protease inhibitors phenylmethyl-
sulphonyl fluoride (PMSF), leupeptin, antipain and chy-
mostatin as shown by Kalnov et al. (1979b) could not be
reproduced in later studies, and may be related to the ex-
perimental set-up these authors used (discussed in Yasu-
hara et al. 1994).

Degradation of nuclear-encoded subunits 
of membrane complexes

In addition to mitochondrial translation products, many nu-
clear-encoded subunits of mitochondrial inner membrane
complexes in yeast are known to be degraded rapidly when
not assembled (Table 1). Increased turnover of imported
subunits of complex IV was also observed in human and
mouse cell lines in the absence of mitochondrial protein
synthesis (Hayashi et al. 1990; Chrzanowska-Lightowlers
et al. 1993; Nijtmans et al. 1995). It should be noted, how-

ever, that in most cases only steady state amounts of sub-
units were measured, high turnover being inferred from the
assumption that synthesis and import were not affected. In
only a few cases has subunit turnover actually been shown
by pulse-chase experiments (De Haan et al. 1984; Nijtmans
et al. 1995).

For some subunits, reports differ as to their stability in
the absence of complex assembly in yeast. For example,
in some studies core I and II were found to be stable in
strains disrupted for other subunits of complex III (Berden
et al. 1988; Crivellone et al. 1988), while other investiga-
tors have reported the instability of core I in cob mutants
(Sen and Beattie 1985; Chevillotte-Brivet et al. 1987) and
of core II in a core-I mutant (Gatti and Tzagoloff 1990).
Nuclear-encoded subunits of complex IV accumulate in the
absence of mitochondrially encoded subunits in yeast and
N. crassa, even though they do not form stable sub-com-
plexes (Sebald et al. 1972; Bertrand and Werner 1977; Ca-
bral and Schatz 1978). However, strongly reduced levels
of some of these subunits have been found in cox1, cox4,
cox9 and cytochrome c mutants (Dowhan et al. 1985;
McEwen et al. 1986; Pearce and Sherman 1995a, see 
Table 1). The observed differences are possibly due to 
variations in experimental conditions and/or strain differ-
ences.

Although cytochrome c is not part of any complex (it
shuttles between complex III and IV transferring electrons
down the respiratory chain), in terms of stability it does,
under certain circumstances, behave like a subunit of these
complexes. Certain variants are rapidly degraded when cy-
tochromes aa3 or c1, its physiological partners, are absent
(Pearce and Sherman 1995b). Conversely, cytochrome aa3
is absent in cyc1/cyc7 double mutants, lacking both iso-
forms of cytochrome c (Pearce and Sherman 1995a). In
fact, these mutants had diminished amounts of both nu-
clear- and mitochondrially encoded subunits of complex
IV, with the latter group being virtually undetectable by
Western analysis.

Can fully assembled complexes also be targets 
for degradation?

Generally, intact enzyme complexes of the mitochondrial
inner membrane are found to be quite stable in mammals
(Hare 1990) and yeast (represented by the ’stable’ fraction
of mitochondrial translation products, see above). How-
ever, several reports mention either turnover of subunits
that are already in a complex, or turnover of whole com-
plexes. In rat hepatoma cells, all subunits of complex IV
and V turn over very slowly (half-life >100 h). For com-
plex III, however, four of eight subunits (core II, cyto-
chrome b and two smaller subunits) turned over more rap-
idly (half-life 35–42 h) (Hare and Hodges 1982a). Presum-
ably, the subunits with short half-lives are replaced by
newly synthesized subunits after the complex has fallen
apart. The question remains whether disassembly of the
complex simply represents a random process or whether
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(damaged?) complexes are actively disassembled by
“quality control” factors.

Active turnover of complete complexes has received ex-
perimental support. Part of the cytochromes b, c, c1 and
aa3 that accumulate in yeast cells during exponential
growth on galactose disappears in the course of further cul-
ture growth without loss of respiratory rate (Galkin et al.
1975). This loss of cytochromes is inhibited by the pro-
tease inhibitors PMSF and pepstatin (Luzikov et al. 1976).
Administration of these inhibitors also increases the accu-
mulation of cytochromes in glucose-grown cells (Galkin
et al. 1980). These changes in cytochrome content are not
accompanied by changes in the activity of the respiratory
chain complexes, indicating that the ‘surplus’ cytochromes
accumulated during exponential growth are not functional
(Galkin et al. 1979a, b, 1980). The nature of these non-
functional cytochromes is unclear. One possibility is that
they represent incomplete complexes, and are “edited out”
by specific recognition/protease systems, as occurs with
plasma-membrane complexes (Klausner 1989). This is not
likely, however, since solubilization of mitochondria led
to the apparent activation of the extra cytochromes (Gal-
kin et al. 1979a,b, 1980). Moreover, surplus cytochrome c
is made and degraded in a similar way as the complex-
bound cytochromes. This suggests the presence of whole
mitochondrial compartments which for some reason are
non-functional and so may be degraded by autophagocy-
tosis (discussed in Luzikov 1986).

Co-ordinated loss of all cytochromes is also observed
when yeast cells are transferred from aerobic to anaerobic
growth conditions. In this case, however, the loss is com-
plete and appears not to be due to lysosomal degradation,
as mutations that alter the stability of iso-1-cytochrome c
in vitro and its steady state level in vivo also alter its half-
life after the shift to anaerobic conditions (Pearce and Sher-
man 1995c). Another indication that complete complexes
may be actively and selectively degraded in mitochondria
is the loss of cytochrome c oxidase in cytochrome c-less
yeast (Pearce and Sherman 1995a) and N. crassa (Bottorff
et al. 1994). If cytochrome c has no role in the assembly
of cytochrome c oxidase, one has to conclude that cyto-
chrome c protects the complex from proteolytic break-
down. The initial attack by the responsible protease may
then be on the ‘unprotected’ subunit 2, the cytochrome 
c-binding subunit (Hatefi 1985). If this is true, interpreta-
tions of gene disruption experiments designed to uncover
the role of many ‘accessory’ subunits of mitochondrial res-
piratory chain complexes (see Table 1 for references) need
to take into account the possibility that these subunits are
not involved in complex assembly, but protect an already
assembled complex from proteolytic attack (in addition to
having possible functional roles).

Mitochondrial proteases

Early attempts to characterize mitochondrial proteases in
mammalian cells led to the identification of soluble (Al-

berti and Bartley 1969; Subramanian et al. 1975) and mem-
brane-bound (Aoki 1978; Haas and Heinrich 1978; Hare
1978) proteases. However, it has been difficult to exclude
the contamination of mitochondrial preparations with pro-
teases from lysosomes or mast cell granules (see, for in-
stance, Rubio and Grisolia 1977; Duque-Magalhães 1979;
Haas et al. 1979). A major breakthrough was the demon-
stration of an ATP-dependent protease with a similarity to
E. coli Lon (or La) in the matrix of mitochondria from rat
liver (Desautels and Goldberg 1982a, 1985), counterparts
of which were later found in bovine adrenal cortex (Wa-
tabe and Kimura 1985a,b) and yeast (Kutejová et al. 1993).
In addition, non-ATP-dependent metalloproteases in-
volved in the processing of precursor proteins were iden-
tified in mitochondria from rat liver (Conboy et al. 1982;
Miura et al. 1982), bovine adrenal cortex (Kumamoto et
al. 1986), yeast (McAda and Douglas 1982; Böhni et al.
1983), and N. crassa (Hawlitchek et al. 1988). Only in the
last few years have genes that encode these and other (pu-
tative) mitochondrial proteases been isolated from S. ce-
revisiae and other organisms (Table 2).

As shown in Table 2, mitochondrial proteases can be di-
vided into two groups: proteases involved in processing
precursor proteins and proteases involved in degradation.
The first group falls outside the scope of this review and
will not be considered further. To the second group belong
Pim1p(Lon), a matrix-localized protease of which the hu-
man gene has also been cloned (Wang et al. 1993; Amerik
et al. 1994), and the related proteins Yme1p(Yta11p),
Rca1p(Yta12p) and Afg3p(Yta10p) that belong to a sub-
group of the AAA family of ATPases (Confalonieri and
Duguet 1995) and are associated with the inner membrane
(see Table 2 for references). Pim1p is related to E. coli
Lon/La (Charette et al. 1981; Chung and Goldberg 1981),
while Afg3p, Rca1p and Yme1p are all related to E. coli
FtsH (Tomoyasu et al. 1993a,b).

The members of this group are (putative) ATP-depen-
dent proteases. Such proteases are involved in catalyzing
the first step of degradation: cleaving the substrate into
peptides that are subsequently degraded by non-ATP-de-
pendent proteases. As ATP hydrolysis is only required for
the degradation of large proteins, the energy from ATP hy-
drolysis probably allows the protease to function in a pro-
cessive manner (Goldberg 1992; Gottesman and Maurizi
1992) and/or to unfold proteins so as to allow entry of the
polypeptide chain into the proteolytic ‘core’ of the pro-
tease (see below).

Are all mitochondrial ATP-dependent proteases 
multimers?

The formation of multimers is common among ATP-de-
pendent proteases (Rechsteiner et al. 1993). Bacterial Lon
is a homotetramer (Chung and Goldberg 1981), while its
homologues in mammalian and yeast mitochondria appear
to be hexamers (Watabe and Kimura 1985a; Kutejová et
al. 1993). Homo-multimerization of FtsH has been shown
by Akiyama et al. (1995). There have been several indica-
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tions that mitochondrial membrane-bound proteases are
also present as homo- or hetero-multimers. Over-expres-
sion of YME1 does not increase the amount of Yme1p pro-
tein, presumably because Yme1p which is not associated
with other proteins in a complex is unstable (Thorsness et
al. 1993). Candidates for Yme1p-associated proteins from
genetic screens are the products of YME2 (Thorsness and
Fox 1993), OSD2 and OSD3 (Nakai et al. 1995). In addi-
tion, homo-multimerization of Yme1p was suggested by
intragenic complementation between two yme1 alleles
(Thorsness and Fox 1993). Recently, a high-molecular-
weight complex containing Yme1p has been identified, as
well as a complex involving both Afg3p and Rca1p (Arlt
et al. 1996; Thomas Langer, personal communication).
Formation of homo-multimers is also seen with other mem-
bers of the AAA family (Peters et al. 1990, 1993; White-
heart et al. 1994; Fröhlich et al. 1995) and may be a com-
mon feature of these proteins.

Figure 1 shows the location and (putative) quaternary
structure of the mitochondrial proteases the yeast genes of
which have been cloned. In this picture, non-ATP-depen-
dent proteases responsible for breaking down oligopep-
tides to amino acids are strikingly absent. Such proteases
may be among proteases reported for the mitochondrial
matrix (Beer et al. 1982; Yasuhara and Ohashi 1987; Yasu-
hara et al. 1994) and inner membrane (Novikova et al.
1981; Zubatov et al. 1984). However, their physiological
functions remain to be established. Identification of the
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Table 2 Mitochondrial proteases of S. cerevisiae for which the genes have been cloned

Item Type E. coli Location Composition/structure Proteolytic function Referencesa

homologue

Processing peptidases
MPP Metallo Matrix Heterodimer of protease Cleavage of mitochondrial Jensen and Yaffe 

and protease enhancer targeting sequence 1988;
Pollock et al. 1988

MIP Metallo Matrix Monomer Cleavage of octapeptide Isaya et al. 1994
of bipartite presequence

IMP Serine Lep Inner membrane, Dimer of two homologous Cleavage of N-terminal Behrens et al. 1991;
facing IMS subunits with different (sorting) sequence of some Nunnari et al. 1993

substrate specificities inner membrane and IMS
proteins

ATP-dependent proteases
Pim1p/Lon Serine Lon(La) Matrix Homohexamer Degrades (unfolded) Van Dyck et al. 1994;

matrix proteins Suzuki et al. 1994

Afg3p/Yta10p Metallo FtsH Inner membrane, In a complex with Degrades incomplete and Schnall et al. 1994;
facing matrix Rca1p/Yta12p mature mitochondrial Guélin et al. 1994;

translation products Tauer et al. 1994

Rca1p/Yta12p Metallo FtsH Inner membrane, In a complex with Degrades incomplete and Schnall et al. 1994;
facing matrix Afg3p/Yta10p mature mitochondrial Tzagoloff et al. 1994

translation products
Yme1p/Yta11p Metallo FtsH Inner membrane In a complex Degrades CoxII Thorsness et al. 1993;

Nakai et al. 1995

a Reference is made to the cloning of S. cerevisiae genes; see text for references on biochemical characterization of the proteases from
yeast and other organisms.
MPP: mitochondrial processing peptidase; MIP: mitochondrial intermediate peptidase; IMP: inner membrane protease; IMS: intermem-
brane space

Fig. 1 Schematic picture of proteases identified in yeast mitochon-
dria. Drawn approximately to scale, ATP-dependent proteases in-
volved in protein degradation are in white and processing peptidas-
es required for maturation of imported proteins and/or proteins trans-
located into the intermembrane space are in grey. The bipartite struc-
ture of the (extra-membrane part of) ATP-dependent proteases re-
flects the presence in the primary sequence of ATPase and protease
domains. The hexameric nature of the Afg3p/Rca1p and Yme1p pro-
teases in the picture is solely to indicate their oligomeric structure;
the exact number of subunits present in the complexes is not known.
The orientation of the Yme1p complex is controversial. The picture
shows an orientation towards the inter-membrane space (Thomas
Langer, personal communication). Weber et al. (1996), however, re-
ported an orientation towards the matrix side. See Table 2 and text
for details on the different proteases



corresponding genes will be an important step towards that
end.

Division of labour

The division in the group of ATP-dependent proteases into
matrix-localized (Pim1p) and membrane-localized
(Afg3p, Rca1p, Yme1p) members parallels a division in
substrate proteins. Until now, Pim1p has been implicated
in (1) the degradation of imported proteins that fail to fold
into a native structure (Wagner et al. 1994) and (2) the turn-
over of MPPβ and F1β, two matrix-localized proteins (Su-
zuki et al. 1994). Furthermore, the PIM1 gene is induced
four-fold by heat-shock (Van Dyck et al. 1994) and elec-
tron-dense material, presumably consisting of protein-ag-
gregates, accumulates in the mitochondrial matrix of lon–

(pim1) mutants (Suzuki et al. 1994). Targets of the Pim1p
counterpart in bovine adrenal cortex include SP-22, a ma-
trix-localized oxygen-radical scavenger (Watabe et al.
1994, 1995).

That degradation of matrix proteins is essential for mit-
ochondrial biogenesis in yeast is apparent from the pheno-
type lacking the matrix protease. Such strains are respira-
tory deficient and quickly accumulate deletions in mtDNA
(“rho– induction”) (Suzuki et al. 1994; Van Dyck et al.
1994). In pim1 cells, rho– induction may be related to over-
accumulation of a particular protein(s) or perhaps to a dis-
turbing effect of aggregated mitochondrial proteins. In
contrast to Pim1p, Afg3p(Yta10p) is not involved in the
degradation of misfolded proteins in the matrix but is nec-
essary for the degradation of incomplete, membrane-bound
mitochondrial translation products (Pajic et al. 1994). Re-
cently, it has been shown that Afg3p is also involved in the
degradation of most mature mitochondrial translation
products destined for the inner membrane, with the not-
able exception of CoxII (Guélin et al. 1996). The latter ap-
pears to be degraded by Yme1p. Mutation of YME1 has
been found to attenuate degradation of CoxII in the ab-
sence of CoxIV (Nakai et al. 1995; Weber et al. 1996), and
a stabilizing effect of YME1-inactivation on both CoxII and
CoxIII has been observed in a strain lacking cytochrome c
(Pearce and Sherman 1995a). The presence of ATP- and
zinc-binding motifs typical of metalloproteases in Yme1p,
Rca1p and Afg3p supports the notion that these three pro-
teins are indeed responsible for the degradation of mito-
chondrial translation products destined for the inner mem-
brane, which, as described above, is both ATP- and diva-
lent metal ion-dependent.

The division of labour between soluble and membrane-
bound proteases does not completely coincide with the di-
vision between soluble and membrane-bound polypep-
tides. Bovine p450scc and adrenodoxin reductase, both
present on the matrix side of the inner membrane, can be
degraded by the matrix ATP-dependent protease (Watabe
et al. 1993). Possibly, the mitochondrial membrane-bound
system is specific for integral membrane proteins. How-
ever, although no soluble targets for Afg3p, Rca1p or

Yme1p have yet been identified, their existence should not
be excluded at this point. The homologue of these proteins
in E. coli, FtsH, governs the degradation of the soluble pro-
teins λ-cII (Herman et al. 1993), λ-cIII and σ 32 (Herman
et al. 1995; Tomoyasu et al. 1995) in addition to being in-
volved in degrading the integral membrane protein SecY
(Kihara et al. 1995). Significantly, in vitro degradation of
σ 32 by purified FtsH is the first direct proof of ATP- and
divalent metal-dependent protease activity of a member of
the FtsH-subfamily (Tomoyasu et al. 1995).

Yet another protease seems to be responsible for the deg-
radation of the intermembrane space (IMS)-proteins, as
neither of the above mentioned ATP-dependent proteases
is responsible for degradation of cytochrome c (Pearce and
Sherman 1995b). Putative candidates are cytochrome c hy-
drolyzing proteases associated with sub-mitochondrial
particles (Novikova et al. 1981; Zubatov et al. 1984), an
ATP-dependent proteolytic activity in the inter-membrane
space (Sitte et al. 1995) and, in mammalian cells, an ATP-
dependent protease activity that requires ATP outside the
inner membrane (Rapoport et al. 1982). Furthermore, the
presence of an additional protease associated with the in-
ner membrane is suggested by the fact that degradation of
CoxV in a cytochrome c-less mutant is not suppressed by
disrupting any of the genes for the currently known ATP-
dependent proteases (Pearce and Sherman 1995a). In fact,
it is not known at present which protease(s) is(are) respon-
sible for the turnover of nuclear-encoded subunits of mit-
ochondrial inner membrane complexes (except for F1β, see
above).

Dual roles of ATP-dependent proteases 
in mitochondrial biogenesis?

As described in the introductory sections, an important
function of membrane-bound ATP-dependent proteases is
the removal of polypeptides that may adversely influence
the structure or function of the membrane. However, the
defects arising in mitochondria or bacteria as a result of
loss of an ATP-dependent protease may not (only) be
caused by the loss of protease activity. Indeed, as will be
discussed below, phenotypes associated with mutations of
membrane-bound ATP-dependent proteases are sometimes
more readily explained by assuming a dual function for
these proteins. Independent of the protease activity, the 
ATPase domain of these proteins may have a chaperone-
like activity.

Afg3p and Rca1p

Afg3p/Yta10p and Rca1p/Yta12p were both found to be
essential for respiratory growth (Tauer et al. 1994; Tzag-
oloff et al. 1994) and the assembly of inner membrane com-
plexes (Tzagoloff et al. 1994; Paul and Tzagoloff 1995).
As argued above, these phenotypes may simply be ex-
plained by the accumulation of polypeptides that are det-
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rimental to the integrity of the inner membrane. However,
inactivation of the proteolytic activity of Afg3p by a point
mutation in the protease active site does not affect respir-
atory growth (Guélin et al. 1996). Complex assembly ap-
parently proceeds normally in this mutant, although deg-
radation of mitochondrial translation products was reduced
to a similar extent as in an AFG3-deletion mutant. These
observations raise the intriguing possibility that at least
some ATP-dependent proteases are dual-function proteins,
with both chaperone and degradation activities. In one
model (Fig. 2), the ATPase domains of Afg3p and Rca1p
interact with substrate (membrane proteins) either for deg-
radation by the C-terminal protease domain, or for fold-
ing/assembly/integration purposes. Through such a dual
function, these ATP-dependent proteases could be part of
a quality control system for mitochondrial translation prod-
ucts (Grivell 1995; Nakai et al. 1995).

A similar model may hold for the E. coli homologue
FtsH, although the question is still unresolved whether this
protein is directly involved in the maturation of membrane
proteins. Mutations in FtsH affect the membrane translo-
cation of secretory proteins and the topology of membrane
proteins in E. coli (Tomoyasu et al. 1993b; Akiyama et al.
1994a,b) and cause a different pattern of membrane-asso-
ciated proteins in L. lactis (Nilsson et al. 1994). One pos-
sibility is that all these phenotypes result from the stabil-
ization of various host proteins, like the heat-shock tran-
scription factor σ 32 (Herman et al. 1995). However, some
observations are still difficult to explain by such a model.
For example, although FtsH is involved in the degradation
of unassembled SecY, and the accumulation of SecY in-

hibits protein translocation (Kihara et al. 1995), the nega-
tive effects of ftsH – mutations on the translocation and
stop-transfer of trans-membrane segments of the SecY-
PhoA fusion proteins are not caused by SecY or SecY-
PhoA accumulation (Kihara et al. 1995). Kihara et al. pro-
posed that FtsH is involved in both the degradation of un-
assembled SecY and its assembly/integration into the
membrane. One explanation offered for the effect of FtsH
on stop-transfer is that FtsH is necessary for opening of the
Sec-channel to allow lateral diffusion of trans-membrane
segments (Akiyama et al. 1994a,b). Alternatively, FtsH
may bind to the PhoA moiety of the SecY-PhoA fusion pro-
tein, a function that could be shared with HtpG, a Hsp90-
type chaperone (Shirai et al. 1996).

Yme1p

A combination of chaperone and protease function has also
been proposed for Yme1p/Osd1p (Nakai et al. 1995). Mu-
tation of YME1 yields cells that are respiratory deficient at
high temperature (Thorsness et al. 1993) and have reduced
activity levels of respiratory chain complexes (Nakai et al.
1995). Moreover, such mutants show additional defects
such as intolerance of deletions in mitochondrial DNA 
(mtDNA) (leading to the absence of mitochondrial trans-
lation products), leakiness of mitochondria resulting in
mtDNA escaping to the nucleus, and cold-sensitive growth
on rich glucose medium. All these phenotypes are thought
to result from a morphologically altered inner membrane
(Thorsness et al. 1993). Whether this can be fully attrib-
uted to the accumulation of membrane proteins that are de-
graded by Yme1p or indeed involves another function of
Yme1p, is still a matter of speculation (Nakai et al. 1995;
Weber et al. 1996).

A very interesting but puzzling finding is that an altered
form of Ynt1p (Yta2p), a probable regulatory subunit of
the 26s protease and like Yme1p a member of the AAA
family (Confalonieri and Duguet 1995), can suppress all
yme1-associated phenotypes (Campbell et al. 1994). As it
seems unlikely that the 26s proteasome, a 1500–2000-kDa
protein complex (Fischer et al. 1994), can pass the mito-
chondrial outer membrane, the altered form of Ynt1p prob-
ably acts independently from the proteasome. At least some
other AAA-type subunits of the 26s proteasome can be part
of different subcomplexes and can bind certain proteins as
free subunits both in vivo and in vitro (Demartino et al.
1996; Rubin et al. 1996; vom Baur et al. 1996). Signifi-
cantly, Ynt1p does not have a C-terminal protease domain
like Yme1p, suggesting that the Ynt1 mutant protein re-
places a non-protease function of Yme1p. However, it can
be argued that Ynt1p binds Yme1p substrates and subse-
quently presents them to the proteasome, or another pro-
tease, for degradation.

A chaperone-activity of mitochondrial ATP-dependent
proteases is perhaps not so surprising in view of the close
functional link between ATP-dependent proteases and
chaperones (Squires and Squires 1992; Craig et al. 1994;
Horwich 1995). Two E. coli proteins, ClpA and ClpX, that
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Fig. 2 Quality control of mitochondrial translation products. A
complex of Afg3p and Rca1p may function both as a protease and a
chaperone (see text). Newly synthesized mitochondrial translation
products are either assembled into a complex of the inner membrane
(A) or broken down (B). It is not known if these processes occur co-
translationally, as shown in the picture, or only post-translationally,
or both. If assembly occurs co-translationally, the Afg3p/Rca1p com-
plex may assist in the attainment of the correct membrane topology
by multiple membrane-spanning proteins, as has been suggested for
FtsH, the E. coli homologue of Afg3p and Rca1p (see text). Degra-
dation of complete mitochondrial translation products in an Afg3p-
dependent manner indicates that proteolysis can occur post-transla-
tionally (Guélin et al. 1996). Thus, Afg3p/Rca1p may also have a
role in the removal of denatured or otherwise damaged proteins from
the membrane



can combine with ClpP subunits to form an ATP-depen-
dent protease (Gottesman and Maurizi 1992; Gottesman et
al. 1993), can function independently as chaperones
(Wickner et al. 1994; Levchenko et al. 1995; Wawrzynow
et al. 1995). Yeast mitochondrial Hsp78p, another mem-
ber of the Clp-family, can partly substitute for mt-Hsp70
(Schmitt et al. 1995) and/or stabilize mutant forms of the
latter (Moczko et al. 1995). Comparison with Clp proteins
is significant for two reasons: (1) there is significant ho-
mology between members of the Clp-family and the con-
served domain of the AAA-family, to which the FtsH sub-
family belongs (Dubiel et al. 1992; Gottesman et al. 1993),
and (2) there are functional similarities between the E. coli
Clp system and the eukaryotic 26s proteasome, where
members of the AAA-family may function like ClpA and
ClpX proteases, namely: selection of substrate and pres-
entation to a protease ‘core’ for degradation (Rechsteiner
et al. 1993; Kessel et al. 1995) and/or unfolding of the sub-
strate to allow entry into the interior of the protease 
(through a ‘reverse chaperone’ activity) (Peters 1994;
Goldberg 1995; Wenzel and Baumeister 1995). A chape-
rone-like function for two other mitochondrial members of
the AAA-family has also been proposed: Bcs1p, involved
in the biogenesis of complex III (Nobrega et al. 1992) and
Msp1p, an outer-membrane protein whose over-produc-
tion results in the mislocalization of an outer-membrane
reporter protein to the inner membrane (Nakai et al. 1993).
Finally, chaperone activity has been proposed for NSF, a
AAA-protein involved in vesicle fusion (Morgan and Bur-
goyne 1995).

In spite of a potential chaperone activity of ATP-depen-
dent proteases, conventional chaperones like Hsp70 or
DnaK appear to be necessary for these proteases to degrade
at least some of their substrates (Wagner et al. 1994 and
references therein). These chaperones may retain the ac-
cessibility of denatured proteins by preventing their aggre-
gation. Alternatively, prior binding of a chaperone to a sub-
strate protein may be necessary for recognition by the pro-
tease, thus providing an additional layer of control on pro-
teolysis. In yeast mitochondria, proteolysis by Pim1p re-
quires prior binding of the substrate to chaperones Hsp70
and Mdjp (Wagner et al. 1994). Accordingly, degradation
of the only mitochondrially encoded non-membrane pro-
tein, the small ribosomal subunit protein Var1p, depends
on functional Hsp70. This is not true, however, for the
membrane protein Atp6p (Herrmann et al. 1994), which is
a target of Afg3p (Guélin et al. 1996). In the latter case, ei-
ther another chaperone is involved or the protease is by it-
self capable of recognizing its substrate.

The quality control model of mitochondrial translation
products (Fig. 2) raises several questions that demand
imaginative experimental approaches. One of the main
questions is by what mechanism the ‘choice’ between as-
sembly and degradation is made. Another is what the pro-
posed chaperone function of the FtsH-subfamily proteins
is in molecular terms. It must be noted in this respect that
while ‘assembly’ or ‘folding’ are commonly used when re-
ferring to the proposed (second) function of these proteins,
ClpA and ClpX promote disaggregation or monomeriza-

tion (Wickner et al. 1994; Levchenko et al. 1995; Wawr-
zynow et al. 1995).

Concluding remarks

Our knowledge concerning the turnover of mitochondrial
proteins has benefited immensely from the power of the
molecular genetics of S. cerevisiae. Indeed, the isolation
of genes for proteases and the manipulation of individual
components is essential to unravel the complicated, entan-
gled processes of assembly, turnover, enzymic activity and
membrane physiology. We now know that mitochondria
have inherited their ATP-dependent proteases from their
endosymbiotic predecessors, as is the case for many other
basic components of gene expression. Especially exciting
is the recent characterization of a family of ATP-depen-
dent proteases that specifically act on membrane constitu-
ents, and the possibility that these are also involved in the
building of membrane complexes. Of equal interest is the
characterization of the major ATP-dependent protease of
the mitochondrial matrix.

The mechanisms of quality control of the inner mem-
brane and its constituents remain to a large extent to be un-
covered. One level which is still difficult to access is the
higher-order organization of the inner membrane. Are there
superstructures of different complexes? Are there sub-re-
gions of the membrane specialized in assembly and/or turn-
over? With the different factors identified, multiple ap-
proaches can be used to resolve these questions.

Looking forward, we can anticipate the gradual uncov-
ering of the division of substrates among the different pro-
teases, and the identification of new proteases and of com-
plexes with protease and/or chaperone activities. With the
current acceleration of yeast research due to the recent re-
lease of the sequence of the complete yeast genome, new
strides forward are expected in the near future. Our under-
standing of the underlying causes of clinically important
phenomena, like the apparent high turnover rates of mito-
chondrial protein in tumor cells (Luciaková and Kuzela
1992) and the intra-mitochondrial degradation failure of
subunit c of F1F0-ATPase in Batten disease (Ezaki et al.
1995), should increase concomitantly.
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