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CONSTRUCTIVE 
APPROXIMATION 

�9 1995 Springer-Verlag New York, Inc. 

Orthogonal Polynomials and Laurent Polynomials 
Related to the Hahn-Exton q-Bessel Function 

H. T. Koelink and W. Van Assche 

Abstract. Laurent polynomials related to the Hahn-Exton q-Bessel function, which 
are q-analogues of the Lommel polynomials, have been introduced by Koelink and 
Swart:touw. The explicit strong moment functional with respect to which the Laurent q- 
Lommel polynomials are orthogonal is given. The strong moment functional gives rise 
to two positive definite moment functionals. For the corresponding sets of orthogonal 
polynomials, the orthogonality measure is determined using the three-term recurrence 
relation as a starting point. The relation between Chebyshev polynomials of the second 
kind and the Laurent q-Lommel polynomials and related functions is used to obtain 
estimates for the latter. 

1. Introduct ion and Motivat ion 

The Lommel  polynomials  are orthogonal polynomials  closely related to the Bessel 
function. Although the Lommel  polynomials  have a representation involving a hyper- 
geometric 2 F3-series,  they do not fit into Askey ' s  scheme o f  hypergeometric orthogonal 
polynomials.  The reason for this is that the orthogonali ty measure for the Lommel  poly-  
nomia l s  is supported on the set consisting o f  one over the zeros o f  a Bessel function, 
which  are not explicit ly known in general. So there is no Rodrigues formula or difference 
equation for the Lommel  polynomials.  

The Bessel function Jr(z) o f  order v and argument z is given by  the absolutely 
convergent series expansion 

(1.1) 
(_l)k(Z/2)v+2k 

Jr(z) = Y ~  k! F(v  q- k q- 1)" 
k=0 

The properties o f  this special function are well understood; see, e.g., the book on Bessel 
functions by Watson [24]. A simple recurrence relation for the Bessel functions i s  (el. 
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[24, w 

(1.2) 
2v 

J,+l(Z) = - - J , ( z )  - J , - l ( z ) .  

From iteration of(1.2) we see that we can express J~+m (z) in terms of J~ (z) and Jo_ l (z) 
and the coefficients of J~ (z) and J~_ 1 (z) are polynomials in z -  1 This was first observed 
by Lommel in 1871. Explicitly, we have [24, w 

(1.3) Jv+m(z)=hm,v(~)Ju(z)-hm-l,v+l(~)Jv-l(Z), 
where h,n,~ (z) are the Lommel polynomials, which are also known as associated Lommel 
polynomials. The Lommel polynomials satisfy the three-term recurrence relation 

(1.4) hm+1,~,(z) = 2 z (m  + v)hm.~,(z) - hm- l , v ( z ) ,  h- l ,o(Z)  = 0, h0,~(z) = 1. 

Favard's theorem [7, Ch. II, thm. 6.4] implies that the Lommel polynomials are or- 
thogonal polynomials with respect to a positive weight function for v > 0. The explicit 
orthogonatity relations are [7, Ch. VI, w [9], [10], [16], [21], 

( i  . 5 )  t t (j;-L)2hm  - -  h . .  - -  ' , 
, j ; - I  ' 2 ( v  

where j{, v > - 1 ,  are the positive zeros of the Bessel function J~(z)  numbered 
increasingly [24, Ch. 15]. The squared norm of(1.5) is not correct in [7] and [9]. 

Another relation between the Lommel polynomials and the Bessel function is given 
by Hurwitz's asymptotic formula [24, 9.65(1)]: 

(2z)  hm,v(Z) 
(1.6) F(v + m) ~ Jr-1 , m ~ oo. 

For the Bessel function (1.1) there exist several q-analogues. The oldest q-analogues 
for the Bessel function were introduced by Jackson in a series of papers in 1903-1905 
(see the references in [16]). For the Jackson q-Bessel function, Ismail [ 16] introduced the 
associated q-Lomrnel polynomials, which tumed out to satisfy an orthogonality relation 
similar to (1.5), but involving the zeros of the Jackson q-Bessel function. Ismail used 
these q-Lommel polynomials to prove that the zeros of  the Jackson q-Bessel functions 
behave like the zeros of the Bessel function. 

A more recent q-analogue of the Bessel function was introduced by Hahn in a special 
case and by Exton in full generality (see the references in [ 19]). The zeros of the Hahn- 
Exton q-Bessel function and several associated q-analogues of  the Lomrnel polynomial 
have been studied by Koelink and Swarttouw [ 18]. The zeros of the Hahn-Exton q-Bessel 
function behave like the zeros of the Bessel function. In that paper [18], a q-analogue 
of  the Lommel polynomials was introduced. However, this q-analogue of  the Lommel 
polynomial is no longer a polynomial, but a Laurent polynomial. One of the goals of this 
paper is to give an explicit orthogonality measure for these orthogonal Laurent q-Lommel 
polynomials. 
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The Laurent q -Lommel polynomials are defined by [ 18, prop. 4.3 with Rm ,v (Z - 1 ; q) = 
hm,v (Z ;  q)]  

( 1  -]- x ( 1 -  qV+m)) hm,v(x; q) - hm-l,v(x; q), (1.7) hm+l,v(x; q) : x 

with initial conditions h _ 1, ~ (x; q) = 0, h 0, ~ (x; q) = 1. A second independent solution of 
(1.7) is given by h,, _ 1, v+l (x; q). Note that taking the limit q 1" 1 in (1.7) after replacing x 
by 2z/(  1 - q) gives (1.4). The Laurent q-Lommel polynomials originate from a relation 
similar to (1.3); see Proposition 3.1. 

The explicit orthogonality relations for the Laurent q-Lommel polynomials h m,v ( x ;  q) 
defined in (1.7) is derived in Section 3. The method of  proof is based on the existence 
of asymptotically well-behaved solutions of(1.7) reminiscent of  J~+m (x), cf. (1.3). The 
method used by Dickinson [9] to prove (1.5) can then be adapted to our situation. The 
orthogonality measure gives rise to a strong moment functional 12; i.e., a functional on 
the space of Laurent polynomials so that all moments s n ~ Z, exist. From 12 
we obtain two moment functionals/~• as considered in, e.g., [7, Ch. 1], by putting 
s ~) = ,s n ~ Z+, and 12_(x n) --- -~_.(x-2-n), n ~ Z+. (The 2 has to do with 
the fact that all moment functionals are symmetric.) It turns out that both/~+ and/~_ are 
positive definite moment functionals. 

The orthogonal polynomials for/~+ are q-analogues of the Lommel polynomials and 
the support of the orthogonality measure consists of the origin and one over the zeros 
of a Hahn---Exton q-Bessel function, where the mass at zero is strictly positive. This is 
worked out in detail in Section 4, where we use Dickinson's method [9] once more. In 
Section 5, we study the orthogonal polynomials for 12_. We give explicit expressions 
for these polynomials in terms of A1-Salam-Chihara polynomials, which can be used 
to determine the asymptotic behavior as the degree tends to infinity. The asymptotic 
behavior is expressed in terms of a function j~ (x; q) closely related to the Hahn--Exton 
q-Bessel function. Since we can do this for the associated polynomials as well, we 
have the Stieltjes transform of the orthogonality measure from which the orthogonality 
follows. Using the results of Section 5, we can simplify the expression for the strong 
moment functional s using a Wronskian type formula. This is done in Section 6. 

For q = 0, or for V ~ cx~, we see that Um ((x + x - l ) / 2 ) ,  where U,, denotes the 
Chebyshev polynomial of the second kind, satisfies (1.7) with the same initial conditions. 
So we can view the Laurent q-Lommet polynomials hm, ~ (x; q) as a perturbation of  the 
Chebyshev polynomials. This point of view allows us to obtain estimates for the Laurent 
q-Lommel polynomials, the Hahn-Exton q-Bessel function, and the related function 
j,,(x; q). This is done in Section 7. 

Finally, in Section 2 we show that the general theory of orthogonal Laurent polynomi- 
als presents us with an existence theorem for the strong moment functional/~. We also 
state a result concerning the zeros of the Laurent q-Lommel polynomials. 

To end this introduction we briefly recall the notation for basic (or q)-hypergeometric 
series. We follow the standard notation of  Gasper and Rahman [11, Ch. 1]. We take 
0 < q < 1 for the rest of the paper. A q-shifted factorial is a product defined by 

k-I 
( a ; q ) k = l - l ( 1 - - a q i ) ,  a E C ,  k E Z + ,  

i=0 



480 H.T. Koelink and W. Van Assche 

where the empty product equals 1 by definition. Since 0 < q < 1, we can take k ~ c~ 
to get l i m ~ ( a ;  q)k = (a; q)oo. A basic (or q-) hypergeometric series is 

( a l  . . . . .  a r )  
r~Os bl , , bs ; q' z = rq)s(al . . . . .  ar; bl . . . . .  bs; q, z) 

oc ( a l ; q ) ~ . . . ( a r ; q ) k (  ) 
(1.8) = Y~ (q;q')'k-(b-~l;q-)k-~s;q)k (--1)kq�89 l+S-rzk" 

k--0 

For generic values of  the parameters, the radius of  convergence of  the series in (1.8) is 
0, 1, o0, corresponding to r > s + 1, r = s + 1, r < s + 1. 

2. Orthogonal Laurent Polynomials 

In this section, we apply some of the theory of orthogonal Laurent polynomials to 
the Laurent polynomials hm, ~ (x; q) tO obtain the existence of a strong moment func- 
tional/2--i .e. ,  a linear functional on the space of Laurent polynomials for which the 
moments E(x m) exist for all m ~ Z - - fo r  which the Laurent q-Lommel polynomials are 
orthogonal. We use the paper by Hendriksen and van Rossum [15] as the main reference 
for this section." The recurrence relation, as in (2.1), has been generalised to a wider 
class of  recurrence relations by Ismail and Masson [17] by replacing x in front of the 
Vr~-~,~ (x) by (x - a,~), for which they prove a Favard-type theorem. Specialization to the 
case considered here yields the Favard-type theorem contained in Hendriksen and van 
Rossum [15]. For further information concerning this section, the reader may consult 
the introductory paper by Cochran and Cooper [8]. 

From the recurrence relation (1.7), it follows that hm,~(x; q) is an even function for 
even m and an odd function for odd m. Consequently, xmhm.~(x; q) is a polynomial in 
x 2, which we denote by Vm,~(x 2) = xmhm,~(x; q). For Vm, we obtain from (1.7) the 
recurrence relation 

(2.1) Vm+l,o(x) = (1 + x(1 - qV+m)) Vm~v(x) -- xVm-l,v(x), 

with initial conditions V-l,~(x) = 0, Vo,~(x) = 1 [15, (2.2)]. The Favard-type theorem 
[15, thm. 1.1] implies that for the Laurent polynomials Qn(x) defined by 

Q2.(x)  = X-nv2n,~(X) = h2.,~(V"s q),  

Q2~+1 (x) = x -n-I V2n+l,v(X) = X-�89 h2n+l,v(~/~; q), 

there exists a strong moment functional El such that El (Q~ Qm) = 0 for n 7e m. 
i f  we form the lacunary Laurent polynomials [15, (1.16)], we get the Laurent poly- 

nomials P2m(x) = hm,v(x;q), P2m+I(X) : x-lhm,v(x; q). The lacunary Laurent 
polynomials are orthogonal with respect to the strong moment functional Z; defined 
by E(x 2~) = s E(x 2~+1) = 0 for n ~ Z [15, prop. III]. So the orthogonality 
relations for the even lacunary Laurent polynomials gives" 

(2.2) s {=~ O, n=m.n~m' 
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But we also have the orthogonality for the odd lacunary Laurent polynomials, 

(2.3) 12(x-2hnv(X;q)hmv(x;q)) {=~ " O, n=nS~m'm. 

The space An of Laurent polynomials of  the form Y'~p=-n cp xp'' is (2n + 1)- 
dimensional, n ~ Z+. The Laurent polynomials hm,v(x; q), m = 0, 1 . . . .  , n, form 
an (n + 1)-dimensional subspace of An. Moreover, they form an orthogonal basis for 
this subspace with respect to 12. Equation (2.3) states that this orthogonal basis can be 
complemented with x-lhm,,(x; q), m --- 0, 1 . . . . .  n - 1, to give an orthogonal basis 
of  An with respect to 12. 12(x-lhm,~(x; q)hn,,(x; q)) = 0 follows immediately fronl 
12(X 2p§ = O. 

Remark 2.1. For orthonormal polynomials, the three-term recurrence relation can be 
used to prove that the zeros of  the orthonormal polynomials correspond precisely to the 
eigenvalues of  a truncated Jacobi matrix. A similar approach can be used here. Define 
coefficients by 

n+l 
(2.4) xVn,~(x) = E cn,k Vk,~(x); 

k=0 

then the matrix H,  = (c i , j )o<i , j<_n-  1 is a Hessenberg matrix, i.e., ci j = 0 for i + 1 < j .  
Using (2.4) in (2.1) gives recurrence relations for the matrix elements ci.j, which can be 
solved to give 

1 
i f k = n + l ,  

1 - q~+n ' 

(q~; q)k_lq ~+k-I 
(2.5) Cn,k= , i f 0 < k < n ,  

(qV; q)n+t 

- 1  
i fk  = 0. 

(q~; q)~+l ' 

Note that each row sum of H~, except the last, equals zero. 
Introduce the vector wn (x) = (V0, ~ (x), VI,~ (x) . . . . .  V~_ 1, ~ (x))t; then we see from 

(2.1) that Hnwn(x) = xw~(x) i f  V~,~(x) = 0. So a zero x of  Vn,~ implies that H, has 
an eigenvector for the eigenvalue x. It is also possible to prove that an eigenvalue x of  
Hn implies that Vn, v(x) = 0, which can be proved by showing that the characteristic 
polynomial of  Hn times the normalisation Constant (-1)n(q~; q)~ satisfies (2.1). So 
we conclude that the zeros of  Vn,~(x), and hence the zeros of the Laurent q-Lommel 
polynomials hn,  v (x; q), are completely determined by the spectrum of  the Hessenberg 
matrix Hn. 

3. M i n i m a l  So lu t ions  and  O r t h o g o n a l i t y  R e l a t i o n s  

In this section, we give an explicit formulation for the strong moment functional Z; 
introduced in the previous section. We describe 12 in terms o f  contour integrals, where 
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the integrands depend on the Hahn--Exton q-Bessel function and on a function closely 
related to the Hahn-Exton q-Bessel function. These functions give rise to two other 
solutions of the recurrence relation (1.7), but with prescribed behavior for m ~ c~. 
The proof of orthogonality of the Laurent q-Lommel polynomials for Z; uses a method 
already introduced by Dickinson [9] to prove the orthogonality relations (1.5) for the 
Lommel polynomials. 

Using a generating function argument, the following explicit expressions for the 
Laurent q-Lormnel polynomials have been derived in [18, (4.23)] from the recurrence 
relation (1.7) 

m ( ) 
(3.1) hm.v(x; q) = E Xm-2n (q,+i; q)~(qV; q)~ q n, qV+m-n 

n=0 (q; q)~(q~+ . . . .  ; q)~ 2q91 q~ ; q' q'+~ 

(3.2) ( q  ) m-Zn qn- qn+l 
~-- ~.,r  2q)l ; q, qV+m-n . 

n = 0  

The Hahn-Exton q-Bessel function is defined by 

(3.3) 
(0 ) 

(qV+l; q)~ x ~ lq)l , q, q x2 . J,(x; q) -- (q ;q)~  q~+l ' 

the following q-analogue of Hurwitz's formula (1.6) then holds: 

(3.4) lim x - m h , ~ ( x ; q ) -  (q;q)~ x~-lJv_l ( 1 ; q ) ,  I x [ > l .  
m--,~ ' (x-2; q)~ x 

Relation (3.4) has been proved formally in [18, (4.24)] from (3.1), but it follows from 
their proof that it is valid only for Ixl > 1. 

In order to state the asymptotic behavior of the Laurent q-Lommel polynomials inside 
the circle we introduce the ftmction 

(3.5) 
jr(x; q) =xV (qx2; q)~ 1~01 (0; qx2; q, q v+l x2) 

=x~ (q ~+l X2; q)oo t~pt (0; q~+ ~ X2; q, qx2), 

where we use (x; q)~ 1~o1(0; x; q, y) = (y; q)~ lqgl(0; y; q, x) [19, (2.3)]. This 
function is related to the Hatm--Exton q-Bessel function in the following way 

X-~Ju( x; q) = (q; q)~(x-U Ju (x; q)) [#=v+21nx/lnq " 

Now we can use (3.2) to obtain 

( q  ) xmhm,v( X; q) Z x2m-2n2qgl qn m qn+l : ; q, qV+ra-n 

n=O 

m ( ) 
2~i ; q, qU+n -~ ~ [ ] X  2(0t q-n, qm-n+l 

n=0 q 
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and by dominated convergence we obtain 

~--, x2 n q ,0 lim xmhm,v(x; q) = 2q91 ; q, qV+n 
m---~ oo n=0 

o o  

qVt y~(q-n;  q)lqnlxZn, 
= Y~ (q; q)t(q; q)l 

l=0 n=I 

where the last equality follows from interchanging the summations, which is allowed 
for Ix[ < 1. The inner sum can be written as 

y~(q-p - l  ; q )lX2(p+l) ql(p+l) = x2l (_ 1)lq �89 ~ (qp+l; q-1)lxZP 
p=0 p=0 

o o  

= x2t(_l) lq �89 q)l ~ (ql+l; q)p x 2p 
p=O (q; q)P 

= xEl(_l)lq �89 (q ;  q)l 
(X2; q)l+l ' 

by the q-binomial theorem [1 1, (1.3.2)].  This leads to the result 

lim xmhm,v(x;q)-- 1 ( 0 �9 
m---~oo 1 - -  X 2 lqgl qx 2 ' q' qvx2 

(3.6) x 1-v 

- -  ( X 2 ;  q)~ ju-I(X; q), Ixl < 1. 

Proposition 3.1. The functions Jv+m(X-1;q) and jv+m(X;q) satisfy the recurrence 
relation (1.7). Moreover, 

Jv+m ( x - l ;  q) = hm,v(x; q)Jv(x-1; q) - hrn-l,v+l (x;  q)Jv-I ( x - l ;  q), 

j~+m(X; q) = hm,v(x; q)jv(x; q) - hm-l,v+l(X; q)j~-l(X; q). 

Proofi Since hm,v(x; q) and hm-l,v+l(x; q) are linearly independent solutions of the 
recurrence relation (1.7), the last statement of the proposition implies the first. Also, if 
Jv+m(x-l;q) and jr+re(x; q) satisfy (1.7), then they must be a linear combination of  
hm,v(x; q) and hm-l,v+l (x ;  q ) ,  from which the second statement follows by considering 
the cases m = 0 and rn = - 1. 

The last Statement for J~+m has already been proved in [18, (4.12)], so it remains to 
consider jv+m. The second order q-difference equation for the 1 ~ol -series---or by taking 
a suitable limit in [ ! 8, (4.14)] in combination with (3.6)---reveals that 

( 1  + x ( 1 - q ~ ) )  ju(x;q) - j~-l(x;q). jv+l(X; q) = x 

Replacing v by v + m proves the statement. �9 
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Remark. (a) The solutions Jr+re(x-I; q) and j~+m(x; q) of(1.7) have the following 
asymptotic behavior for m ~ oo valid for x 6 C: 

l im xm+VJv+m(X-1; q) (qx -2 ;  q)~  , 
(3.7) m-+~ (q; q)cr 

lim x-m-uju+m(X; q) = ( q x 2 ;  q)~.  
m ---~ o o  

Note that x • are solutions of (1.7) for m -+ co (or for q = 0). So the solutions 
J~+m(X-~; q) and jo+m(x; q) behave as x :Fro up to a factor independent of m as 
m ----~ oo. 

(b) The functions J~+m (x-  1 ; q) and jv+m (X ; q) are related to a minimal solution Xm (x) 
of (2.1); i.e., Xm(x) is a solution such that l imm-~ Xm(x)/Vm,~(X) = 0, where 
Vm, v(x) is the polynomial solution of (2.1). Using the limit transitions (3.4) and 
(3.6) and the relations in Proposition 3.1, we obtain 

j ~ ( ~ ;  q)Vm.~(x) - x ~ J~-I (~"x; q)Vm-l,~+l(x) 
1 

=x~mj~+m(~/-x;q), [xl < 1, 
Xm (x) = 4 ~  

[ J~(1/ ;q)Vm,v(x)-xV-Ju-l(1/~'~;q)Vm-lv+l(X) 

= x �89 q), Ix1 > 1. 

With the functions Jo (x; q) and j~ (x; q) and their relation with the Laurent q-Lommel 
polynomials described in Proposition 3.1 at hand, we can give an explicit expression for 
the strong moment functional L. The proof we give is an adaption to the Laurent case of  
Dickinson's proof of  the orthogonality (1.5) of  the Lommel polynomials [9]. 

First we investigate the quotient of two Hahn--Exton q-Bessel functions. 

Lemma 3.2. For v > O, the following expansion holds around O for n c Z+: 

Jv+n(X; q) _ xn+1 i ~-"~C X 2k, 
Jv-l(x;q)  - (q~;q).+l ~ k 

where the coefficients ck are recursively defined by co = 1 and 

k-1 (_l )k-pq �89 (k-p)(k--p+l) 
(__l)kq �89 k(k+l) -- y ~  Cp (qV; q)k(q; q)k-p (3.8) Ck = (qU+n_~l ; q)k(q ; q)k p=O 

Proof. From (3.3) we immediately get 

Ju+n(X; q) x n+l lq)l (0; qV+n+l; q, qx2) 
J.- l(x;  q) (qV; q)n+l 1~o1(0; qV; q, qx z) ' 

so we have to solve for the coefficients ck by comparing powers o fx  on both sides of 

oo ~ (_l)Pq�89 p ~ (_l)mq�89 
ckx2k = (qV+n+l ; 

k=0 p=0 (q u; q)p(q; q)P m=0 q)m(q; q)rn ' 

from which the recurrence relation (3.8) for the coefficients ck is obtained. 
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A rough estimate gives 

(_  1)kq �89 kCk+l~ 

(q"+n+l;q)r (q; q)r 
< A =  

(q~; q)oo(q; q)o~ 

for v > 0. The same estimate applies to the factor in front of cn on the fight-hand side 
of (3.8); thus, we obtain 

k-1 

Ickl 5 A + ~ AIcn]. 
n=0 

A discrete version of Gronwall's inequality [23, p. 440], 

(3.9) 
k-1 k-1 

t, 
yields I ckl ~ AekA; thus, the series on the right-hand side of  the statement of the lemma 
is absolutely convergent for Ix l < e -a/2. �9 

Choose 0 < R < j~- l ,  where j~-i  denotes the smallest positive zero of J~-i (x; q), 
v > 0, cs [18, sect. 3]. Using Lemma 3.2, we obtain for v > 0, m ~ Z, and n ~ Z+ 

flz [ O, m - n odd or m < n, 1 z m Jv+n(Z-1; q) dz = 
(3.10) 2zri I=~/R Jv-1(Z-1; q) /(q~; -1 q)n+l '  m : n. 

Note that the coefficients ck of Lemma 3.2 for n = 0 are in fact the moments of the linear 
functional 12+ defined by 

(3.11) E+(xm) = 1 Z m Ju(z-1;q) dz 
2zri i=1/ J v - l ( Z - l ;  q) Cm/2, m E Z+ even. 

We will return to this moment functional in Section 4 and calculate the corresponding 
orthogonal polynomials, which turn out to be q-analogues of the Lommel polynomials. 

The following lemma is the analogue of Lemma 3.2 for the functions jv (x; q) instead . 
of  the Hahn-Exton q-Bessel function. 

Lemma 3.3. For v ~ R, the following expansion holds around O for n ~ Z+: 

o o  

jv+n(x; q) _ xn+l Z dkx2k, 
jr-1 (X; q)  k=0 

where the coefficients dk are recursively defined by do = 1 and 

(3.12) 
k-1 

dt = 2~01 (q-k, 0; q; q, q~+,+l+k) _ E dp 2~o, (qp-k, 0; q; q, q~+k-p). 
p=0 
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Proof. The proof is completely analogous to the proofofLemma 3.2 and we only give 
the differences. Here use the expansion 

1 q v+lx2) ~ (_  1)kq �89 k(k-1) 1~01(0; qx2; q, = Z q(~+l~kx2k 2 (1 x 2 ) ~=0 (q; q)k(X2; q)k+~ 

= ~ (_l)kq �89 k(k-1) q (u+l)kx2k (qk+l; q)l X2l 

k=o t=o (q; q)k (q; q)t 

= Z X2p 2~1 (q-P, O; q; q, qV+l+p), 
p=O 

which is valid for Ix[ < 1 by the q-binomial theorem, and rearrange the absolutely 
convergent sum using I = p - k. From this we obtain the recurrence relation (3,12). The 
general estimate 

( - q ,  - Ix l ;  q)o~ 
12q91 (q -p, 0; q; q, xqP)l 

(q; q)oo 

and Gronwall's inequality (3.9) prove that the sum is absolutely convergent around 
0. �9 

Choose r > 0 so that j~-1 (x; q) has no nonzero zeros in the ball with radius r and 
the origin as center, which is possible since t~0i (0; qx 2', q, q~x 2) equals 1 at x = 0 and 
defines an analytic function for Ix[ < q-~/2. Using Lemma 3.3, we obtain, for m ~ Z 
and n ~ Z+, 

1 flz j~+n(z;q) {0, m - n ~ 1 7 6  
(3.13) z m dz = 

27ri I=r j~-t (z; q) 1, m = - n  - 2. 

The coefficients dk of Lermna 3.3 for n = 0 can be interpreted as the moments of the 
moment functional/2_ defined by 

flz {0, m E Z + o d d ,  1 z m Jv(z- l ;q)  dz = 
(3.14) /2-(xm) = ~ I=~ J~-l(Z-~;q ) dm/2, m c Z + e v e n .  

In Section 5 we consider the orthogonal polynomials for 12_ from which some properties 
for jo(x; q) can be derived. 

Define the strong moment functional 12 for v > 0 on the space of Laurent polynomials 
by 

1 flz p(z) J~(z-l; q) dz' 1 flz p(z) j~(z;q) 
(3.15) / 2 ( p ) =  ~ /  I:I/R Jv_l(Z-1; q) ~ i  I=r j~--~ziq) dz 

m p _ for any Laurent polynomial p(z) = ~p=~ cpz , n < m, n, m 6 Z. Note that/2 is inde- 
pendent of the choice of R (respectively r) as long as J~_ ~ (x; q) (respectively j~_ l (x; q)) 
has no nonzero zeros in the ball with radius R (respectively r). All moments of/2, both 
positive and negative, are well defined due to Lemmas 3.2 and 3.3. 
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The moments of  the strong moment functional/2 and the moments of  the moment 
functionals/2~: defined in (3.11) and (3.14) are related by s  n) =/2 (x" ) ,  n ~ Z+, 
andby/2_(x ") = - /2(x-2-") ,  n 6 Z+. 

Theorem 3.4. Let v > O. The Laurent q-Lommel polynomials hn,v(x;q) defined by 
(1.7) are orthogonal Laurent polynomials with respect to the strong moment functional 
/2; see (3.15). Moreover, the Laurent polynomials x -  l h~,~ (x ; q) are also orthogonal with 
respect to s Explicitly, 

~n,m 
/2(hn,~(x; q)hm,~(x; q)) -- 1 - q~+~ ' 

/2(x-l hn,v(x; q)x-l hm,v(x; q) ) =--~n,m. 

Remark. (a) This result corresponds nicely with the fact that the Laurent q-Lommel 
polynomials correspond to a sequence of lacunary orthogonal Laurent polyomials; 
see (2.2) and (2.3). 

(b) Since s  = _ I we see that s is not a positive definite strong moment functional. 

Proof. The asymptotically well-behaved solutions J,+, (X-l; q) and j~+~ (x; q) of  the 
recurrence relation (1.7) are expressible in terms of the Laurent polynomials h,, ~ (x; q) 
and the associated Laurent polynomials h,-l,~+l (x; q); Proposition 3.1. From this we 
obtain, for any m c Z, the expressions 

(3.16) x m Jv+n(x-l; q) -- x m Jr(x- l ;  q) 
Jv_l(X-1;q) Jv_l(X-1;q) 

and 

(3.17) xm jv+n(X; q) _ x m jr(x; q) 
jv- l (X;  q) jv-l(X; q) 

Since we obviously have 

h~,~(x; q) - xmhn_l,~+1 (x; q), 

hn,v(x; q) -- xmhn-l,v+l(X; q). 

zm hn-l,v+l (z; q) dz = zmhn-l,v+l (z; q) dz, 
2zri 1=�89 ~ /  I=r 

we get, from the combination of (3.16), (3.17), (3.10), and (3.13), the relations 

s q)) = I O, - n  <_ m < n, 

l( qV;q)n_~l, m = n, 

/2(xmx-lhn,v(x; q)) = [0, - n  < m < n, 

[ - 1 ,  m = - n - - 1 .  

This proves the orthogonality. 
It remains to calculate the norm. From (3.1) and (3.2), we see that the coefficient 

o fx"  in hn,~(x; q) equals (q~; q),  and that the coefficient o f x  -n-1 in x-lh,, .~(x; q) 
equals 1. �9 
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4. Orthogonal q-Lommel Polynomials Associated with the Positive Moments 

In this section, we consider the orthogonal polynomials for the moment functional 
s (3.11), which corresponds to the positive moments of the strong moment functional 
~. These polynomials are q-analogues of the Lommel polynomials hn,~ (z), (1.4). 

We consider the following three-term recurrence relation: 

(4.1) pn+l(x) = x(1 -qV+n)pn(X) -Lnp , , - l ( x ) ,  ~.2~ = q", ~-2n+] = q~+3,+l, 

with initial conditions p_l(x)  = 0 and po(x) = 1. Note that we can write the recur- 
rence coefficient Ln in closed form as q(V+n)(L(,,+l)/2i-[n/ZJ)+[,,/2J, where LaJ denotes the 
greatest integer less than or equal to a ~ R. So the recurrence relation (4.1) depends on 
whether n is odd or even. Favard's theorem implies that these polynomials are orthog- 
onal with respect to a positive definite moment functional for v > 0. Taking q 1" 1 in 
(4.1) after replacing x by 2z / ( 1 - q), we get the three-term recurrence relation (1.4) for 
the Lommel polynomials; thus, we have q-analogues of the Lommel polynomials. The 
recurrence relation (4.1) was found by guessing using the explicit form for the positive 
moments of  E--i.e.,  the moments of  C+, obtainabIe from Lemma 3.2--and calculating 
the first few terms of the recurrence relation (4.1) using Mathematica. 

The monic orthogonal polynomials satisfy a recurrence relation of the type 

r ,+t(x) = xr,,(x) - Iz,,r,-l(x), r_l(X) = 0, ro(x) = 1, 

~.=1  t~. < type with/zn > 0 for all n ~ N and ~ c~. This of orthogonal polynomials 
has been studied by Dickinson, Pollak and Wannier [10]; by Goldberg [14], who cor- 
rected some oftlie results of [10]; and, from the point of  view of continued fractions, by 
Schwartz [21]. See also Chihara [7, Ch. IV, thin. 3.5]. The support of  the corresponding 
orthogonality measure, which is uniquely determined, is a purely discrete denumerable 
bounded set with only one accumulation point at zero. This result can also be obtained 
by remarking that the Jacobi matrix J for the corresponding orthonormal polynomials 
defines a self-adjoint operator J: e2(Z+) --~ gZ(z+), which is an operator of trace class. 
Since the spectral measure of J is the orthogonality measure for the orthogonal polyno- 
mials r~, the result follows from standard facts on the spectral measure of a self-adjoint 
trace-class operator. Moreover, for the orthogonal polynomials in this class we have the 
asymptotic behavior of the form lim,__,~ x-nrn(x) = f ( x )  for an analytic function f in 
C\{0} [10], [14], [21]. 

We denote by p~l) the associated orthogonal polynomials--i.e., the polynomials 
satisfying 

v+n (1), (4.2) p~D(x) = x ( 1 - q  )Pn-,(x)-)~,,P(,,~z(x), )t2, = qn, )~2,+! = qV+3n+l 

with initial conditions p ~ ( x )  = 0, p(01)(x) = 1. 
The following proposition is a q-analogue of the identity (I .3) relating the Bessel 

functions and Lommel polynomials. 

Proposition 4.1. For n ~ Z+, the polynomials defined by (4.1) and (4.2) satisfy 

Pn Jr(x; q) - Pn-t Jv-I (x; q) = qL(n+l)12j(n+v)/2 J~,+,,(xqt("+l)/aJ/2; q), 
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where Jv ( x ; q) denotes the Hahn-Exton q -Bessel function (3.3). 

Proof.  The left-hand side is a solution of  the three-term recurrence relation, 

1 - qV+n 
(4.3) an+l -- - -  an -- )~nan-1. 

x 

The right-hand side satisfies the same recurrence relation (4.3). To see this, we use, for 
even n, the relation 

(4.4) 1 - q~ - -  J~(x; q) - Jo-l(X; q) = q~V+1~/2 Jo+l(xq1/2; q) 
x 

and, for odd n, we use the relation 

1 - q ~  
(4.5) - -  J~(x; q) - qC~-l~/2J~_l(xq-1/2; q) = Jv+l (x; q). 

x 

These identities can be checked straightforwardly by comparing the coefficients o f  the 
powers o f x  on both sides of  (4.4) and (4.5). 

Since Pn ( x - l )  and pn~l (x - I )  are linearly independent solutions of  (4.3), we obtain 
the proposition after checking the equality for n = 0, which is trivial, and for n = 1, 
which is (4.4). �9 

The polynomials defined by (4.1) turn out to be orthogonal polynomials with respect 
to the moment functional/~+. For more information concerning the zeros o f  the Hahn-- 
Exton q-Bessel function, which play a role in the following theorem, the reader is referred 
to [18, sect. 3]. 

Theo rem 4.2. We have the following orthogonality relations for v > 0 for the 
polynomials defined by (4.1): 

~ ( . ~ - 1 1  ( + l )  .v--1 --J~(Jk ;q )  
Y~ Pn Pm + pn(O)pm(O) k=l \ / . . v - 1 . 2 - ,  . . . .  1. 

tJk ) J~-ltJk , q )  

~- •n,m q(n+v)l(n+l)/2j 
1 - q n +~  

Here j[-1 are the positive simple zeros of  the Hahn-Extort q-Bessel function Jr-1 (x;q)  
numbered increasingly. All weights are positive. 

Proof.  We start, as in the previous section, by establishing a complex orthogonality, 
following Dickinson's method [9]. For this we need the expansion 

Jv+n(Xqt(n+l)/2J/2; q) xn+l ~'~ C X 2k 
(4.6) ql(n+l)/2J(n+v)/2 Jv-l(X; q) = ql(n+l)/2j(n+v) (qV; q)n+l  k=0 Z . . , k  , 

which is absolutely convergent for small x. Moreover, co --- 1. This is proved as in 
Lemmas 3.2 and 3.3. 
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Let R > 0 be smaller than the smallesl positive zero j~-i  of J,,-l(x; q); we then 
obtain from Proposition 4.1 and (4.6), for 0 _< m < n, 

f Zmpn(Z) dz 
Jv(z-l; q) 

Izl=I/R Jv-l(Z-1; q) 

= ~ zmq L(n+l)/2j(n+v)/2 Jv+n(z-lq[(n+l)/2]/2; q) dz 
,]lzl=l/g Jr-l( z-l; q) 

= { 0 ,  O < m  <n,  

2;'riq('~'+"~-~'~:+i)/ZJ(q ~; q)~+~l, ra = n, 

',;/ Oo2;';;  :;L  Tetl~ 
f z  J')(z-1; q) ' q(n+v)L(n+l)/2J 

1 p,~(z)p,~(Z) . . . . .  az = 3n m (4.7) L+(p,~pm) ---- ~ i  I=~/R J,.,-1(Z-1; q) ' (t - q~+~) 

The considerations given at the beginning of  this section show that we can rewrite (4.7) 
as a sum over the zeros of the Hahn-Extort q-Bessel function J~-i (z; q) and possibly 
zero. The residues at the pole ( . ~ - l ) - j  of the left-hand side of(4.7) equal 

Pn Pm .'.,-1 2 ,' .v-1 " 
\ Jk ] (Jk ) J~-l(Jk ;q) 

To see this we note that J~_l (j /-1;  q) • 0 since the zeros of  J~_l(X; q) are simple [ 18, 
Lemma 3.3] and that j , ,( j:-l;  q) :.fi 0 by the interlacing property of the zeros of  the 
Hahn-Extort q-Bessel function [ 18, thm. 3.7]. The positivity of  the corresponding mass 
follows from the fact that j~(j[-1; q) and J~,_l(ff,-l; q) have opposite signs, which 
follows from the Fourier-Bessel orthogonality relations for the Hahn-Extort q-Bessel 
function [18, prop. 3.6] or from the fact that the zeros of the Hahn-Exton q-Bessel 
functions J~ (x; q) and Jv+l (x; q) are interlaced as described in [ 18, thm. 3.7]. The mass 
at -t7~ ) yields the same weight. 

The set of  mass points ( j~-1) -1  k 6 N, has zero as the only point ofaccumula6on, so 
that zero may occur as a mass poinl as well. This happens i f ~ _  0 I/3t(0) l e < cx~, where 
/5, are the corresponding orthonormal polynomials [5, thrn. 2.8]. Now the orthonormal 
polynomials/5~ are given by 

(4.8) /3~ ( x ) ( 1 - q ~ + ~ )  V2 = q-L(n+I)/21(n+v)/2pn (X). 
1 _qV 

Moreover, 3A (/3,/Sin) = 3~,m, where .A4 is the moment functional given by 

1 _qt,  f~ J~'(z-~;q) dz = (1 -q" ) s  
j~A(p) - 2zri .-I=t/n p(z) L,_~t(z-1; q~------) 

From (4. t) with x = 0 we see that p~  + ~ (0) = 0 and that P2,+ (0) sati~fie~ a simple two- 
termrecurrence relation fromwhichwe get p-z,, (0) = ( -  1)"q ~(~+1)+3"('~- J~/z Combining 
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this with (4.8) shows that/~2n-I-1 (0) : 0 and 

/~2n (0) (--1)n ( l --qV+2n ) 1/2 = qnV/2+n(n-1)/2. 
1 - q ~  

Hence, 

o o  

~ 2 p = ~ l p k ( 0 ) ]  - 
k=0 

11 o o  2 (  1 _ q~+2,)q,~+,(,-1) 
1 - - q  ,=0 

and this sum is an absolutely convergent telescoping series; thus, p = (1 - qO)-l. 
Consequently, .Ad has a mass point at zero with weight p -  1 and/2+ has a mass point at 
zero with weight 1. �9 

From the explicit orthogonality relations of Theorem 4.2, we see that the orthogonality 
measure for p ,  (x) is supported in [ -  1/j ~ - 1,1/j [ - 1 ]. On the other hand, from the explicit 
values of the recurrence coefficients for the orthonormal polynomials/5,, which are 
easily obtained from (4.1) and (4.8), and the bound on the spectrum from [23, (1.3) 
with n -+ o~], which is Gershgorin's theorem for the Jacobi matrix, we see that the 
orthogonality measure is supported in I - N ,  N] with N _< 2/(1 - q~). So we obtain the 
following corollary after shifting v by 1. 

Corollary 4.3. For v > - 1 ,  the first positive zero j~ of J~(x;q) satisfies j~ > (1 - 
q~+I)/2. 

For more information on bounds for the first zero of the Jackson and Hahn--Exton 
q-Bessel functions we refer to Kvitsinsky [20, sect. 4] and references therein. 

5. Orthogonal Polynomials Associated with the Negative Moments 

In this section we consider the orthogonal polynomials for the moment functional/S_ 
related to the negative moments of the strong moment functional s introduced in (3.14). 
In subsection 5.1, we introduce the three-term recurrence relation for the polynomials we 
study. The three-term recurrence relation has been obtained by calculating the first few 
recurrence coefficients using Lemma 3.3 with n = 0 using Mathematica and then guess- 
ing the general result. In subsection 5.1, we give explicit expressions for these orthogonal 
polynomials and the associated orthogonal polynomials in terms of A1-Salam-Chihara 
polynomials. From the explicit expressions we can determine the asymptotic behavior 
of  the (associated) polynomials as the degree tends to infinity in terms of the function 
jr(x; q). In particular, we obtain the Stieltjes transform of the orthogonality measure. 
In subsection 5.2, we use the Stieltjes transform to obtain information on the zeros of  
j , (x ;  q) in a similar way as in [16, sect. 4] (see also [2, sect. 4]) and to give explicit 
orthogonality relations. In subsection 5.3, we give a different derivation of some of these 
results in the special case v = 1/2, which turns out to be related to known orthogonal 
polynomials [2], [22]. Comparison of these two approaches yields a summation formula 
for a one-parameter terminating 3q)z-series. 
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5.1. Explicit expressions f o r  orthogonal polynomials 

We investigate the monic orthogonal polynomials satisfying the three-term recurrence 
relation 

(5.1) Pn+I (x) ~- xP~(x)  - )~nPn-I (X), )~2n = q~, ~ '2n+ l  = qn+~, 

with initial conditions P-1 (x) = 0 and Po(x) = 1. By Favard's theorem, the polynomials 
P. are orthogonal with respect to a positive definite moment  functional for v 6 R. 
Moreover, the polynomials P. fit into the same class of  [ 10], [ 14], and [21] described at 
the beginning o f  the previous section. 

The polynomials P.  are even functions o fx  for even n and odd functions o f x  for odd 
n. Introduce 

P2n(x) = Rn(x 2) and P2n+l(x) = xS . (x2) ,  

so that the monic polynomials R~ and S. satisfy the three-term recurrence relations (see 
[7. p. 45]) 

Rn+l (x) = (x -- Z2n -- ~2n+l)Rn(x) - L2,,-l~.2nRn-I (x) 

and 

S.+1 (x) = (x - X2.+l - ;~2.+2)S. (x) - X2~X2.+l S.-1 (x), 

with initial conditions Ro(x) = 1, R~ (x) = x - q~ and S-1 (x) = 0, So(x) = 1. A simple 
computation from (5.1) gives the recurrence coefficients for the polynomials Rn: 

+ q  q i fn  > 0, , )~2~-2~-L = q2~-l+~, n > 0. 
~-2n + )~2n+l -= i fn  = 0. 

For the recurrence coefficients o f  Sn, we find similarly 

k2n+t -[- ~-2a+2 = (q + q~)q~, X2n~-2n+t = q2n+u, n > O. 

The recurrence coefficients o f  R~ and Sn decrease exponentially. 
Consider the monic polynomials un (x; a, b; q) satisfying the recurrence relation 

(5.2) Un+l (x; a, b; q) = (x - aq~)un(x; a, b; q) - b2q2~-2u~-i (x; a ,  b; q), 

u-1(x )  = 0, u0(x) = 1, which are studied in [22]; then, Sn(x) = Un(x;q + 
q. ,  q(~+2)/2; q). For Rn we have to be a little bit more careful, since for n = 0 one 
of  the recurrence coefficients behaves differently. However, R.  is still a solution of  the 
recurrence relation (5.2) with a = 1 + q ~ and b 2 = q o+J, but it satisfies the different ini- 
tial condition Rt (x) = x - q~ = u 1 (x) + 1. Such polynomials are known as eo-recursive 
polynomials [6] and can be expressed as 

R . ( x )  u,,(x; 1 + q~, q(V+l~/Z; q) + u O )  (x; 1 + q~, q(~+l)/Z; q). n--I 

The associated polynomials corresponding to the recurrence relation (5.2) are given by 
U(nl)(X; a, b; q) = u,,(x; aq, bq; q) = q~u~(x /q; a, b; q); thus, 

R . ( x )  = u . (x;  1 + q~, q(~+1)/2; q) + qn-lun_l (x /q; 1 q- qU, q(V+l)/2; q), 
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An explicit expression o f  the polynomials Un (x; a, b; q) in terms of  AI-Salam--Chihara 
polynomials is given by Van Assche [22, thin. 2]: 

~ xn-kq k(k-l)/2 aqn_k+ 1 b2q2(n-k)+1 b2/q). 
un(x; a, b; q) = Pk(-a; q; - , , 

k=o (q; q)k 

Here Pn(x; q; a, b, c) are A1-Salam-Chihara polynomials [1, (6.1)] which satisfy the 
recurrence relation 

Pn+l (X; q; a, b, c) --(x - aqn) pn(X; q; a, b, c) 

(5.3) - (c - bqn-1)(1 - q")P,,-t (x; q; a, b, c). 

More information, including the orthogonality relations, concerning the Al-Salam- 
Chihara polynomials can be found in [5, sect. 3]. 

Thus, we obtain the explicit expressions 
(5.4) 

~ xn-kqk(k-1)/2 
Sn(x) = Pk(--(q + q~); q; --(1 + q~-l)q~-k+2, q2(n-k)+v+3 qV+l) 

k=0 (q; q)k 

and 

--~ xn-kqk(k-1)/2 
R.(x)  = Pk( - (1  + q~); q; - ( 1  + qV)qn-k+l q2(n-k)+v+2, qV) 

k=0 (q; q)k 

n-I xn-l-kqk(k+l)/2 
+ E (q; q)k Pk(--(1 + qV); q; --(1 + q~)q,,-k, q2(n-l-k)+v+2, q~) 

k=O 

n 

= x"+ff'~ x"-kqk(k-1)/2 [Pk(--(1 + q~'); q; --(1 + qV)q.-k+t, qZ(n-k)+v+2, qV) 
k=t (q; q)k 

+ (1 - qk) Pk-t(--(1 + qV); q; --(1 + q~)qn-~+t, q2Cn-k)+v+2 qV)]. 

A generating function for the A1-Salam-Chihara polynomials is [ 1, p. 23] 

oQ z" _ (~z; q)oo(/3z; q)oo 
qb(X, Z) = ~ Pn(x; q; a, b, c) - -  

n=0 (q; q ) ,  (yZ; q)oo(3Z; q)oo ' 

where 1 - az + bz 2 = (1 - ~z)(1 - / 3 z )  and 1 - xz + cz z = (1 - yz)(1 - 8z). 
T a k e x  = - ( 1  + q ~ )  a n d c =  q~ so that y = - 1  a n d 8  = -q~ .  Consequently, 
(1 + z)'~(z, - ( 1  + qV)) is the generating function for x = - ( q  + q~) and c = q~+l. 
Hence, 

Pn ( - (1  + qV); q; a, b, qV) + (1 - qn )pn_ l ( - (1  + qV); q; a, b, qV) 

= Pn(-(q + qV); q; a, b, qV+t) 

and thus 
(5.5) 

-~ xn-kqk(k-1)/2 
en(x) Pk(--(q + qV); q; --(1 + qV)qn-k+l q2(n-k)+v+2 qV+l). 

k=0 (q; q)k ' ' 
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Now that we have the explicit expression for the polynomials P~ defined in (5. I) at 
hand, we can determine the asymptotic behavior, which is related to the function j~ (x; q) 
introduced in (3.5). 

Proposition 5.1. 
every x E C, 

For the orthogonal polynomials P, (x ) defined by (5.1), we have,for 

lim x'~ Pn(1/x) = xI-Oj~_l(x; q). 
~1-'> 0 0  

Proof. We follow the proof of Theorem 2 of [22]. For this we need the continuous q- 
Hermite polynomials H,, (x I q) introduced by Rogers in 1894. The three-term recurrence 
relation is 

(5.6) Hn+l(X [q) = 2xn,(x  [q) - (1 - q n ) n , - l ( x  I q), 

with initial conditions H-t(x I q) -- 0 and Ho(x I q) = 1 [4, sect. 6]. From (5.3) and 
(5.6) we obtain [22, thm. 2] 
(5.7) 

( aql/2 ) 
lirn Pk(-a; q; -aq  '~-k+~, bZq 2~"-k)+t, b2/q) = (--1)kb/'q-k/2Hk \ - - ~  I q �9 

Using this limit relation and dominated convergence, we obtain 

lira x"Rn(1/x) = lirn x"Sn(1/x) 
n----> OO n ---~ (X~ 

k=0 (q; q)k xkq ~ O'+l)Hk 2 (q(1-u)/Z + q(V-l)/2) I q ; 

hence, 
(5.8) 

lim xn Pn(1/x) = ~ (--1)kqk~k-t)/2x:kqk~+t)/2 Hk (1  ) ~ o o  k=0 (q; q)k "2 (q(t-v)/2 + q(V-l)/2) I q " 

To see that the right-hand side of (5.8) equals x 1-~j~_1 (x; q), we insert the explicit 
expression [4, (6.1), (3.1)] 

( i  ) l~0 (q; q)k xk_2, Hk ( x +  x- l )  lq ---- = (q;q)t(q;q)k-t 

for x = q~-l)/2 in (5.8). Interchanging summations and introducing m = k - l shows 
that (5.8) equals 

(--1)lq �89 ~ (--1)mq �89 x2mqm(l+u) 

t=0 (q; q)t ,~=0 (q; q)" 
x-~ ( - l ) t q  �89 
2-,1=0 (q; q)l (x2ql+v; q)~ = (x2qV; q)o~ 1~Ol (0; xZqV; q, qx 2) 

= xl-Ujv_t(x; q) 

byuse o f [ l  1, (1.3.16)]. �9 
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Observe that the continuous q-Hermite polynomials are orthogonal on the interval 
[ -1 ,  1]; thus, the inequality 2 < q(1-v)/2 + q(~-1)/2 shows that the variable of the 
continuous q-Hermite polynomial in (5.8) lies outside the support of the orthogonality 
measure for the continuous q-Hermite polynomials---except when v = 1, in which case 
it is an endpoint of the interval. 

The Stieltjes transform of the orthogonality measure # for the orthogonal polynomials 
Pn can be obtained from 

fRdlZ(t)  Pn(21 (Z) 
(5.9) Z---; -- l i r n  Pn(z) ' 

where P~) are the associated polynomials; see [5, thm. 2.4] and further references 
therein. 

So let us now consider the associated monic polynomials p(l) satisfying 
(1) ( : : ( 5 . 1 0 )  p~+l,x ) = x p ( 1 ) ( x )  (1) -- yn Pj_I (x), P(I? (x) O, P(1) (x) 1, 

- \  

where y. -- ;%+1 is defined in (5.1). These polynomials can be determined as before. 
Because of the parity of these polynomials, we again set 

pO) O) 2. (x) = Tn(x2), P2n+t (X) = xUn(x2);  

the monic polynomials T. and U. then satisfy the recurrence relations 

Tnwl (X ) = (x - ~'2n -- Y2n+l) Tn(x) -- Y2n-l ~2nTn-l (x ), 

and 

Un+l (Y) = (x -- Y2n+i - -  Y2n+2)Un (x) - Y2nY2n+l Un-I (x) ,  

To(x) = 1, Tl(x) = x -- q and U_l(X) = 0, Uo(x) = 1, where 

{ ~q + qV)qn i fn > 0,  qZn+v, 
Y2~ + Y2,+l = i fn = 0. ' Y2nY2,-1 = 

and 

VZn+l + YZn+2 = (1 + q~)qn+l, 

Hence 

Un(x) = un(x; q(1 + q~), q(~+3)/z; q) 

},2n}/2n+l ~ q2n+v+l, n ~ O. 

n>_0, 

= ~ xn-kqk(k-l) /2 
k=o (q; q)k Pk(-q(1 + q~); q; - (1  + q~)qn-k+2, qZ(~-k)+~+4, q~+2). 

The polynomials T~ are again co-recursive polynomials for the recurrence relation (5.2) 
with a = q + qV and b -- q(V+2)/z, with Tt (x) = ul (x) + qV; thus, 

Tn(x) = un(x; q + q~, q(~+2)/2; q) + q~+n-lUn_l(x/q ; q + qO, q(~+2)/2; q). 

From the generating function of the A1-Salam-Chihara polynomials, we find 

Pn (-q(1 + q~); q; a, b, q~+2) 

= Pn(-(q + qO); q; a, b, q~+l) + q~(1 - qn)Pn_l(-(q + q~); q; a, b, q~+l), 
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so that 

-~ xn-kqk(k-1)/2 
Tn(x) = Pk( -q (1  + q~); q; - ( q  + q~)qn-k+l, q2(n-k)+r+3 qV+2). 

k=0 (q; q)k 

The proof  of  the following proposition is analogous to the proof  o f  Proposition 5.1. 

Proposition 5.2. For every x ~ C, we have 

lim Xn p(nl)(1/X) : x-V jr(x; q). 
n----r00 

5.2. Zeros of j~(x; q) and orthogonality relations 

Combining Propositions 5.1 and 5.2 and (5.9) shows that the Stieltjes transform of  the 
orthogonality measure/z for the polynomials is 

fa  dlz(t) _ jr(1/z; q) 
(5.11) z ~ t  j r - l (1 /z ;q)  

for all z r  [5, thm. 2.4]. From the Stieltjes transform, we can derive the 
orthogonality relations for the orthogonal polynomials Pn defined in (5.1). We start with 
an investigation o f  the zeros ofj~ (x; q). It turns out that the zeros of  the function j r  (x; q) 
behave like the zeros o f  the (Hahn--Exton q-)Bessel function for v > - 1. The method 
of  proof  largely follows Ismail's investigation [16] of  the roots o f  the Jackson q-Bessel 
function; see also [2, sect. 4]. 

Theorem 5.3. Let v ~ R and let the function jr(x;q) be defined by (3.5). 

(a) The functions j~ (x ; q ) and j~+l (x ; q) have no common zeros, except possibly x = O. 
(b) The zeros of x-Ojr(x;q) are real, simple, and symmetric with respect to x = O. 

There are infinitely many of them and their only point of  accumulation is 0o. 
(c) The zeros of x-~j~(x;q) and x-~-ljo+l(x;q) interlace. Moreover, the small- 

est positive zero of x-~jr(x;q) is smaller than the smallest positive zero of 
x-~-lj~+l(x;q). 

Proofi First we prove (a) by use of  an equality for the 1 ~ol-series. The relation 

--Z 
- -  - -  1~01(0; cq; q, qz) (5.12) l~ol(O;c;q,z)-l~Ol(O;c;q, qz ) - -  1 - c  

can be proved directly or can be obtained from one of  Heine's contiguous relations for 
the 2 r 1 - series [ 11, ex. 1.9(iv)]. Take c = q x 2 and z = q ~ + ix 2 in (5.12) to get, from (3.5), 

(5.13) jr(x; q) - x -1 j~+l (x; q) = --ql+V/2x2jv(x~rq; q). 

Substituting c = qr+2x2 and z = qx 2 in (5.12) and using (3.5) gives 

(5.14) j~+l (x; q) - q-~/2xj.(x.v'~; q) = -q(1-u)/ZxZ jv+l (x~g/-q; q). 
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I f0  ~ a is a zero of j~(x; q) and j~+t (x; q), then (5.13) implies that a ~  is a zero of 
j~ (x; q). Next, (5.14) implies that a ~ is a zero of jv+l (x; q) as well. So aq k/2 k ~ Z+, 
are zeros of the analytic function x-~j~(x; q), which implies that this function is zero. 
This contradiction proves (a). 

To prove (b) we recall that the orthogonality measure d/z is supported on a bounded 
denumerable discrete set with zero as the only point of accumulation. So let d/~ have 

t ~ " mass Ak at the points { k}k=l, then, (5.11) is 

Ak j~(1/Z; q) 
(5.15) k=l Z S tk  -- j~-I(1/Z; q) ' Z ~ tk. 

The zeros ofxl-~j~_l  ( l /x ;  q) correspond precisely to the nonzero poles tk of the left- 
hand side. So the zeros are real and simple. Since {tk}~=l has zero as the only point of 
accumulation, the only point of accumulation of the zeros of  j~-i (x; q) is infinity. 

To prove (c) we consider the (positive) mass of d/z at a nonzero tk, 

2 j~(1/t~;q) 
0 < Ak = --t~ Ju-l(1/tk, q) �9 ! . " 

So j~(a; q) and j~_l(a; q) have opposite signs for 0 5~ a, a zero of j~-l(x; q). If  
0 < a < b are two consecutive zeros of j~_l(x; q), then j'~_l(a; q)j~_l(b; q) < O. 
Hence also j~(a; q)j~(b; q) < 0 and j~(x; q) has at least one zero in (a, b). In the 
interval (1/b, 1/a) both sides of (5.15) are differentiable, and the derivative of  the left- 
hand side is strictly negative. I f j~( l / z ;  q) has more than one zero in (I /b,  1/a), then 
the derivative has a zero in that interval. Thus, j~(x; q) has precisely one zero in (a, b). 
This proves the interlacing property. 

Denote by x~ the positive zeros of j~ (x; q) numbered increasingly; 

IJ I)  1) 1) 
0 < X 1 < X 2 < . . .  < Xj  < X j+  I < , . . .  

Then it remains to prove that x[ -1 < x~. Since x-~j~(x; q) equals 1 for x = 0 we get 
that j~_l(x[-1; q) < 0 and, thus, j~(x[-1; q) > 0. So j~(x; q) has an even number of 
zeros in (0; x~-l),  and the same argument as in the previous paragraph shows that this 
number is zero. �9 

The following proposition is the analogue of Proposition 4.1 for the orthogonal 
polynomials Pn and the functions j~(x; q). 

Proposition 5.4. For n c Z+, the polynomials Pn and P(n 1) defined by (5.1) and (5.10) 
satisfy 

Pn j~(x;q) - "n-I j~- l (x;q)  

J qm(m+v/2)X2m jv  ( x q  m/2 ; q ) ,  

! 
[ qm(m§ j~_ 1 (xqm/2; q), 

where j~(x;q) is defined in (3.5). 

n ~- 2m~ 

n = 2 m - 1 ,  
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Proof.  It suffices to show that the right-hand side satisfies (5.1) with x replaced by x -  I, 
since the left-hand side satisfies this equation and the cases n = 0 (trivial) and n = 1 
(from (5.13)) are easily proved. This follows from (5.13) for n = 2m with x, v replaced 
by xq m/2, V - -  1, and from (5.14) for n = 2m - 1 with x, v replaced by xq (m-l)~2, 
v - 1 .  �9 

In the proof  o f  Theorem 5.3 we obtained information on the orthogonality measure for 
the polynomials P, defined in (5.1). In the next theorem we describe the full orthogonality 
relations. This theorem can also be proved from Proposition 5.4 by analogy with the proof  
of  Theorem 4.2 from Proposition 4.1. 

T h e o r e m  5.5. Let v c R and denote by x~ -1, k E N, the positive zeros of  the function 
j~-l(x;q)  defined in (3.5). Then for the polynomials P~ defined by (5.1), we havethe 
orthogonality relations 

I -4-1 - j v ( x  k ;q) 
P.  4-1 I'm --57r ~-i  2 . ,  ~-I + (1 - q"-l)en(O)Pm(O) 

k=l  Xk (Xk ) Jv-l(Xk ; q) 

/qt(l+v)/2, n = 2l, 

~n,m / 
I q (l+l)(l+v)/2, n = 2t + 1, 

where the mass at x = 0 only occurs for v > 1. All weights are positive. 

Proofi The only statements to be proved concem the norm and the weight at x = 0. 
Denote the squared norm of  Pn by Ilenll2; then (5.1) implies [10, (7)] 

Ilenll 2 = Xnlle~_tll 2 ===~ IlP~ll 2 = ~.~.. .XIlIll l  2. 

Together with the explicit value for )~n in (5.1), the statement on the norm follows if we 
prove 111 II 2 = 1. The value of  II 1 II 2 canbe  seen from the Stieltjes transform (5.11) as the 
coefficient o f z  -1 on the right-hand side and Lemma 3.3 for n = 0 and x = z -1 shows 
that it equals 1. 

The weight at x = 0 equals p, where p - I  = Y~n=0/Sn(0) 2 and L denote the or- 
thonormal polynomials [5, thm. 2.8]. From (5.1) we compute P2~+I (0) = 0, P2~(0) = 
( -  1)nqnU+n(n-- 1)/2; t h u s ;  for the orthonormal polynomials, we have 

/~2n(O) = " P2n(O) 
~/XIX2.. .  ~-2n "": (--1)nqn(v-l)/2' 

and hence 

s i, <1 
~ ( o )  = q . ~ - l )  = 

~=o n=O (1 - q o - l ) - I  i f v  > 1. 

Therefore there is a mass 1 - q , - i  at the origin whenever v > 1. 

Again, as in the proof  of  corollary 4.3, using [23, (1.3) with n --~ e~] shows that the 
orthogonality measure for the Pn is contained in [ - N ,  N] with N < 1 + q~/2. Shifting 
v to v + 1, we get the following corollary. 
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Coro l l a ry  5.6. The first positive zero x~ of  jv(x;q) satisfies x~ > (1 + q(v+l)/2)-I 

5.3. The case v --- 1/2 

In the simple case v = 1/2, we have Zn = qn/2. For simplicity, we take p = ql/2 so 
that the recurrence relation (5. l) can be rewritten as 

(5.16) Pn+l(x) = xPn(x) - pnpn-l(X). 

We consider the generating function G(z, x) = ~ = o  P, (x) zn- Multiply (5.16) by z n+l 
and add all the terms from n = 0 to infinity; we then get 

G(z, x) - 1 = xzG(z,  x) - zEpG(pz, x) ~ G(z, x) - 1 __z2P G(zp, x). 
1 - x z  1 - xz 

Solving the p-difference equation with respect to the condition G(0,  x) = 1 gives, by 
iteration, 

~ (--1)kzEkp k2 
(5.17) G(z, x) = 

k=0 (zx; P)k+l 

We use the p-binomial  theorem, 

1 _ ~ (pk+l; P)n 
(zx) ~, 

(zx; P)k+] /-''~=o (P; P)~ 

in (5.17). Changing the summation index n to j - 2k gives 

G(z, x) = E (--1)kzJx'i-2kp k2 (p~+l; P)j-Ek 
k=o j=2k (P; P)j-2k 

cx~ Lj /ZJ  (pk+l; 
= j~__oZ j Z (_ l ) kxJ_2kpk2  P)j-Zk 

k=0 (P; P)j-2k 

Next identify the coefficient o fz"  and use (pk+J; P)j-2k = (P, P)j-k/(p;  P)k to find 

Ln/2J 
(5.18) Pn(x) = Z (--1)kxn-2kp k2 (P; P)n-k . 

k=0 (p; P)k(P; P),-2k 

These polynomials are a special case of  orthogonal polynomials associated with the 
Rogers-Ramanujan continued fraction; they correspond to the case a = 0, b = p,  and 
q = p in [2]; (5.18) corresponds to [2, (3.7)]. These polynomials are also the special 
case u~ (x) in [22] with a = 0, b = q, and q2 ___ p; (5.18) corresponds to [22, (2.7)] after 
observing that, for the A1-Salam-Chihara polynomials in (5.3), we have 

P2n+l(O;q;O,b,c)=O, P z n ( O ; q ; O , b , c ) = ( - 1 ) n c n ( ~ ; q  2) (q;q2)n. 
n 

The associated polynomials Pn (1) satisfy the recurrence relation 

(5.19) P(nl+)](x) xP(nl)(x) - -n+ln(l) " " = 1 ~ rn_ltX), 



500 H.T. Koelink and W. Van Assche 
L 

with P_(11) = 0 and P~ol)(x) = I. Replace x by x/q'-fi in (5.19); then the monic 
(1) X) polynomials p"/aPn(x/~/-fi) satisfy the recurrence relation (5.19) so that Pn ~ ( 

pn/Z Pn (x /x/'-fi). 
For the case v = 1/2, we have two different expressions for the same polynomials. 

From (5.4) and (5.18), we obtain the following summation formula for the A1-Salam- 
Chihara polynomials,  0 < k < n, 

Pk(-(q + ql/2); q; --(1 + q-1/Z)qn-k+2, q2(n-k)+7/2, q3/2) 

(5.20) (_ql/2)k(q; q)k(ql/2; ql/2)2n+l_ k 
(q 1/2; q 1/2)k (q 1/2; q 1/2)2n+ 1-2k 

The A1-Salam-Chihara polynomials are expressible in a 3~o2 series, as proved by Askey 
and Ismail [5, sect. 3.8]. Explicitly, the following connection between the original 
notation of  [1] and the notation of  [5] holds: 
(5.21) 

0(-k 
- -  Pk(20(x; q; (y + 8)or, y60( 2, 0(2) =Sk(X; y,  (~ I q) 
(q; q)k 

where x = (y + y-l)~2. 

(2/8; q)k ( q-h, yy, y /y  ) 
= (q ;q )k  y-k3~02\ yS, 0 ;q 'q  ' 

Coro l la ry  5.7. The summation formula 

(c2; q)k 3~~ ( q-k' cq-1/2' c ) c 2, 0 ; q '  q = (cq-1/2)k (_ql /2;  ql/2)k(c; ql/2)k 

holds for k ~ Z+ and c c C. 

Proof.  In (5.20), we use (5.21) with the parameters ot = _q3/4, x = (q 1/4 + q-1/4) /2 ,  
y = qn-k+3/4, 8 ~ qn-k+5/4 to get the result o f  the proposition for c = qn-k+~. Replace 
n - k by m in this result to prove the corollary for c = qm+l m ~ Z+. Since both sides 
are polynomial in c, the result follows for arbitrary values o f t .  [] 

Remark. (a) Comparison o f  (5.5) with (5.18) instead of  (5.4) with (5.18) leads to 
the same corollary. The same result is also obtained if we work out the different 
expressions for the associated polynomials in the case v = 1/2. 

(b) Corollary 5.7 can be obtained directly from q-analogues of  Gauss 's  quadratic trans- 
formation and of  the Chu-Vandermonde summation formula [11, ex. 3.1, (1.5.3)], 
or by taking a = 1 and z = q-k  in [11, ex. 3.8]. We thank Mizan Rahman, Ren6 
Swarttouw, and the referee for pointing this out. 

Proposition 5.8. Consider the monic orthogonal polynomials given by (5.16) and the 
associated polynomials given by (5.19). Then,for every x ~ C, we have 

lira x'~Pn(1/x) = F(x), lira x"P~l)(1/x) = F(xx/--fi), 
n ..-.+ o 0  n --~" 0 0  
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where 

F(x)  = 
k=O (P; P)k 

( ) --o~O~ 0 ; p ' - x 2 p  " 

Proof. Straightforward by letting n --~ cx~ in (5.t8) after changing x to l /x  and 
multiplying by x n. �9 

From Proposition 5.8 and Propositions 5.1 and 5.2 for v = 1/2, we obtain the equalities 

OtPl (--; O; ql/2, _x2qt/2) =Xl/2j_l/2(x; q), 
(5.22) 

0r (--; 0; ql/2, _x2q) :X-I/2jl/2(X ; q), 

which give two transformations ofa 0~ol-series of base q 1/2 = p in terms of 1 ~01 -series of 
base q. In two special eases the left-hand sides of (5.22) can be summed by the Rogers- 
Ramanujan identities [11, (2.7.3), (2.7.4)]; this gives explicit values for j-1/2(x; q) for 
x : -4-i, :kiq 1/4 and for jl/z(x; q) for x = :ki, :kiq -1/4. 

6. Orthogonality for the Laurent q-Lommel Polynomials 

In this section, we give a different form for the strong moment functional introduced 
in Section 3. The limit transitions (3.4) and (3.6) suggest the rewriting of the strong 
moment functional E defined in (3.15) as a contour integral over the unit circle. This 
can be done if j~_l (l; q) 5~ O, since we have sufficient knowledge on the location of the 
zeros ofj~_t (x; q) (see Theorem 5.3) and of  J~-i (x; q) (see [18, sect. 3] and Section 4): 
A Wronskian type formula can be used to simplify the integrand. 

Lemma 6.1. Let rm(x) and sin(x) be solutions of  the recurrence relation (1.7); then 
the Wronskian rm (x)s,,+l (x) -Sm (X)rm+l (X) ig-independent o f  m ~ Z. 

Proof, 
relation for sin(x) by r,~ (x). Subtract the resulting identities to find the result. 

Multiply the recurrence formula for rm (x) by Sm (x) and multiply the recurrence 

Proof, Jv+m(1/x; q)j~+m-l(x; q) - J~+,n-l(1/x; q)jv+m(x; q) is independent o f m  
by proposition 3.1 and Lemma 6.1. Take m = 0 to obtain the left-hand side of the lernma 
and use (3.7) and m ---> oo to see that it also equals 

(x_l _ x) (qx-2; q)~(qx2; q)oo , 

(q; q)oo 
which proves the lemma. �9 

Lemma 6.2 implies that x(q; q)oo [ J~(1/x; q) j~-l (x; q) - J~_l ( l /x; q)jv(x; q)] is 
a theta product [3, sect. 1 ]. 

Lemma 6.2. 

Jv(1/x; q)J~-1 (x; q) - J~-l(1/x; q)jv(x; q) = x -l  (qx-2; q)eo(x2; q)vo 
(q; q)oo 
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Now we can rewrite the strong moment functional Z; with respect to which the Laurent 
q-Lommel polynomials are orthogonal (see Theorem 3.4). 

Theorem 6.3. Let s > 0 such that s is not a zero o f  Jo-i  (1 /x ;q)  and Jv-I (x;q). For 
v > O, the strong mOment functional s defined in (3,15) equals 

frz (qz-2; q)o~(z2; q)c~ dz  1 p(z) 
s  2Jri(q;q)oo I=~ J ~ - l ( 1 / z ; q ) j ~ - l ( Z ; q )  Z 

( ( §  " 
N --1 - J v ( J k  , q) 

+ E P + p --~'-1-2 . . . .  ~-~. k=l Uk ) s~-i tJk , q )  

M 

+ E (P(X[ -1) + P ( - X [ - 1 ) )  J~(x[-1; q) 
l=l J~-~l (x[ -1; q) ' 

where p is an arbitrary Laurent polynomial. Here j v - I  (respectively x ~-1) denote the k I 

positive zeros o f  Jr- l  (x;q) (respectively jr-1 (x ; q ) ) numbered increasingly. N is defined 
,I)--I by j~- I  < s < Ju+l, and so the sum over the zeros o f  J~-i (x;q) is empty i f  j~ -1 > s. 

~-1 ~-1 and so the sum over the zeros o f  j~_l (x;q)  is empty M is defined by x M < s < XM+ 1, 
i f  x[  -1 > s. The discrete weights in the first sum over k are positive and the discrete 
weights in the second sum over l are negatfi~e. 

Remark. (a) By choosing s --- r (respectively s = 1/R)  with r and R as in Section 3, 
we get M = 0 (respectively N = 0). In Section 7 we show that for v sufficiently 
large we have N --- M = 0 for a suitable choice ors .  

(b) The nonzero poles o f  the integrand in Theorem 6.3 are simple. Indeed, if  0 r a 
satisfies J~_ I ( 1/a; q) = 0 = j~ _ i (a; q),  then Lemma 6.2 implies that the numerator 
is zero as well. Moreover, a --- qp/2 for some p ~ Z,  which is a simple zero o f  the 
numerator, There exist only finitely many such values in the (possibly empty) interval 
[x~ -) , 1/jl~-l]. 

Proof.  In the first contour integral in (3.15), we shift the contour integration from 
Izl = I / R  to [zl = s and in general we assume s < 1/R.  We pick up residues at the 
simple poles z = + l / j ;  - I ,  k = 1 . . . . .  N (see Theorem 4.2). For 1/R < s we have the 
case N = 0. The second contour integral in (3.15) is shifted from [z[ = r to Izl - s. In 
general we assume r < s, otherwise we have the case M = 0. Here we pick up residues 
at the simple poles z = •  -1, I = 1 . . . . .  M. The residues are easily Calculated. Next 
we take together the integrands o f  the contour integrals over I zl = s using Lemma 6.2 to 
prove the expression for s  in this case. The last statement follows from Theorem 4.2 
and Theorem 5.5. �9 

Remark. The most natural choice for s in Theorem 6.3 seems to be s = 1. This is 
motivated by the fact that there is a transition in the asymptotic behavior o f  the Laurent 
q-Lommel polynomials on the unit circle (see (3.4) and (3.6)). Moreover, numerical 
experiments indicate that for m --+ ec the non-real zeros o f  the Laurent q-Lommel 
polynomials (remark 2.1) are possibly dense on the .unit circle. Of  course, from (3.4) 
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(respectively (3.6)), we see that the real zeros outside (respectively inside) the unit circle 
tend to the zeros of J~-I (x- l ;  q) (respectively j~-l (x; q)). This corresponds precisely 
to the discrete set in the orthogonality measure of Theorem 6.3 for s = 1. 

7. Laurent q-Lommel Polynomials as Perturbations of Chebyshev Polynomials 

Let us now return to the recurrence relation (1.7), which we rewrite as 

(7.1) hn+l,v(x; q) -- (x -1 + x)h,,,~(x; q) + h,,_l,~(x; q) = -xq~+nhn,~(x; q). 

In this way, as q --+ 0 or as v ~ r the Laurent polynomials h~,~ (x; q) should be close 
to a solution of the three-term recurrence relation 

(7.2) h,+l (x; 0) - (x -1 + x)hn(x; O) + hn-i (x; 0) = 0. 

The solution of this recurrence, with initial values h0(x; 0) = 1 and h- i  (x; 0) = 0, 
is given by hn(x; O) = (x ~+1 - x -~- l ) / (x  - x- l ) ,  which, in terms of Chebyshev 
polynomials of the second kind, can be written as 

hn(x;O) Un( x + x - ~  ) = , n E Z + .  
2 

In this way the Laurent polynomials h~.~ (x; q) can be considered as perturbations of 
the Chebyshev polynomials. We now do a perturbation analysis, much as is done for 
perturbations of  orthogonal polynomials in [ 12] and [23]. In the spirit of  the Liouville-- 
Green approximation (WKB method), we will consider (7.1) as a second order recurrence 
relation with nonhomogeneous term - x q  ~+n hn,~ (x; q), even though this term depends 
on the desired solution h~,~ (x; q). 

W e  solve this nonhomogeneous recurrence relation by Green's method. We need 
the Green function Gl(n, m), which is the solution of the recurrence relation with 
nonhomogeneous term ~,m, i.e., 

(7.3) G l ( n + l , m ) - ( x - l  + x ) G l ( n , m ) + G l ( n - l , m ) = $ n , z ,  

with boundary conditions 

(7.4) G1 (n, m) = O, n >_ m. 

Clearly Gl(m, m) = Gl(m + 1, m) = 0; thus, from (7.3) we find Gl(m - 1, m) = 1. 
For k > 0 we find that r~(x) = Gl(m - k - 1, m) is a solution of the homogeneous 
recurrence relation (7.2) with the same initial conditions ro(x) = 1 and r_l(X) = 0; 
hence, 

G t ( n , m )  Urn-n_l( x-'~'-x-1 ) , n < m .  
2 

Now multiply (7.1) by Gl(n, m) and (7.3) by hn,~(x; q) and subtract the equations 
obtained to find 

hn+1,v(x; q)Gl(n, m) - hn,v(x; q)Gt(n - 1, m) + h,~,u(x; q)6n,m 

= hn,~,(x; q)Gl(n + 1, m) - h~_l,~(x; q)Gl(n, m) - xqV+'~h,,.~,(x; q)Gl(n, m). 



504 H.T. Koelink and W. Van Assche 

Add all the equations from n = 0 to n = m and use the boundary conditions (7.4) to find 

m--I 
ho, v(x; q ) G t ( - 1 ,  m) = hm,v(x; q) + x ~'~ q~ m)hn,v(x; q). 

n=0 

This gives 

( x + x - ~ )  m-1 (x+x-1)h~,~(x;q)"  
(7.5) hm,u(x; q) --- Urn 2 - x ~ qv+nUm-n_l 2 

n~---0 

From this relation we can deduce some useful properties. 

Lemma 7.1. 

(7.6) 

and 

Suppose x = e i~ with 0 ~ [0,2rQ; then, 

Ih~,~(x; q)r < (n + 1) exp (1 - q)2 

(7.7) [sin0 hn,~(x; q){ < 1 + - -  

For [x l r 1 we have 

qp . QP �9 

lx~h. ~(x; q)l < ~ exp , txl < 1, 
- I 1  I I - x Z l  ~-q 

Ix-nhn ~(x; q)} < exp , Ixl > 1. 
' - l l - ~ x - 2  t l - x - 2 1  1 - q  

ProoL We use Gronwall 's  inequality (3.9); for nonnegative A, cn, and dn (n > 0), we 
have 

n--I n--I ) 
e n ~ a - t - ~ d k c k = : = = > c n < a e x p ( ~  dk " k = o  

From the bound Ian(cos0)l _< n + l and (7.5), we find 

n--| 
Ih,,~(x; q)l -< n + 1 + ~--~qV+~(n - k)lhk,~(x; q)l. 

k=0 

Hence, taking Cn = I hn,~ (x; q) 1/(n + 1) in Gronwall 's  inequality gives 

n-1 ) 
,hn,v(x;q)'nq_l -<exp(k__~o(k+l)qV+g " 

The desired inequality (7.6) then follows from Y]~k~=0(k + 1)q k = (1 -- q)-2. I f  we use 
this inequality (7.6) and [sin0 U,(cos 0)1 < 1 in (7.5), then 

n-I ( q" ~(~ + l~q v+k, 
]s in0 h,.,Cx;q)l < 1 + exp (1 - q)2 k=0 
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which gives (7.7). The bounds away from the unit circle follow by using 

and 

[ x n U n ( Y - ' ~ X - 1 ) l  -~. x n Y n + l - - x - n - l [  < 2 

2 x - x  -1 - l l - x 2 1  ' 

( i x _ n U  n X + X -1 = x n§ _-- __x - n - I  < 2 

2 x - x  -1 - [ 1  - x - 2 1  ' 

and by using Gronwall 's  inequality. 

Ixl < 1, 

Ixl > 1, 

From these bounds we see that the Laurent Lommel  polynomials have an expo- 
nentially increasing upper bound both inside and outside the unit circle, and that the 
Laurent polynomials are bounded on the unit circle, except when x = i 1, in which case 
Ihn,,(x; q)l = O(n). This strongly suggests that in Theorem 6.3 the choice s = 1 for 
the strong moment  functional 12 is the most natural. 

The Laurent polynomial solution of  (7.1) is not the only interesting solution. In Sec- 
tion 3, we obtained the minimal solutions j,+n (x; q) and J,+n (x - l ;  q) on the open unit 
disk and the exterior o f  the closed unit disk, respectively. The minimal solutions h~- (x; 0) 
and h + (x; 0) o f  the recurrence relation (7.2) on the open unit disk {z 6 C : lz[ < 1 } and 
the exterior o f  the closed unit disk {z ~ C �9 Iz] > 1} are given by h-~(x; O) = x n and 
h n+ (x," 0) = x -n ,  respectively. Our intention now is to find similar solutions hn~(x; q) 
satisfying 

lim 4- h,  , (x;  q)x 4-n = 1 
n --)" (X) 

on {z E C : Izl < 1} and {z 6 C : Izl > 1}. Such functions clearly exist, since by 
Proposi t ion 3.1 and (3.7) we see that 

+ . ( q ; q ) ~  x ~ l  t x - l .  hn'"(x' q) = (qx-2; q)oo .'v+n~ ~, q), 
(7.8) 

1 
h~,v(x; q) = (qx2; q ) ~  x-"jv+n(X; q) 

fulfill the required conditions. 
We will now do a perturbation analysis o f  these minimal sol~utions in a similar way as 

for orthogonal polynomials [12], [ 13]. Again, we write the recurrence relation as 

(7.9) + • �9 4- �9 hn+l, v (x -1 -xq~'+nh~,(x;  q) -- + X)hn,v(x, q) + = hn-l,v(x, q) 

and look at this equation as a nonhomogeneous second-order recurrence relation with 
�9 v+n 4- . ' nonhomogeneous term - x q  hn,,(x, q). The homogeneous equation has two simple 

solutions, h~(x; O) = x :r-n. We solve the nonhomogeneous recurrence relation using 
Green functions, but now the Green function G2(n, m) is the solution of  

(7.10) G z ( n +  l , m ) - ( x - l  + x ) G z ( n , m ) + G z ( n -  l , m ) = ~ n . m  

with boundary conditions 

(7.11) G2(n ,m)  = 0 ,  n _<m. 
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Since G2(m, m) = G2(m - 1, m) = 0, we find G2(m + 1, m) = 1 and, in general, 

G2(n, m) = 

Multiply the recurrence (7.9) 
find 

• . h.~+l,~(x; q)G2(n, m) - hn,~(x, 
• . = h.,~(x, q)G2(n + 1, m) 

x + x  -I  ) 
Un-m-1 2 , n > m. 

by Gz(n, m) and (7.10) by • �9 hn,~(x, q)  and subtract to 

q)G2(n 1,m) • - + hn,~(x; q)~n,m 
• . v+n • . -- hn_l,v(x, q)Gz(n, m) - xq hn,~(x, q)Gz(n,  m). 

Add the equations from n = m to n = M, with m < M and use the boundary conditions 
(7.11) to find 

4- . h~,~(x; 1, m) hM+l,o(x, q)G2(M,  m) - q )G2(M + 

M 
4- : -hm,v(x ,  q) - x Z cl"v+nl"'t-t'tn,vl:a" ,eV. q)G2(n, m). 

n = m + l  

From (7.8) and (3.7), we obtain 

+ lim hM+i,~(x, q)G2(M,  m) - h+~(x;  q )G2(M + 1, m) = - x  -m, Ix[ > 1, 
M--+ ~ 

and 

lim hm+l.u(x; q)Gz (M,  m) - hM,o(x; q ) G z ( M  + 1, m) = - - x  m ,  IX[ < 1, 
M--+ oo 

so by letting M ~ c~, we have 

+ .  ~ f x + x - l ~  
hn,~(x, q) = x ";~ - x Z _~+k,.• (x; q)Uk-n-I ~, ) (7.12) 

k = n + l  c/ ;tk, v 2 

Compare these relations to (7.5). We can find appropriate bounds on these solutions and 
from this we can obtain bounds for J~+. (x-l ;  q) and j~+. (x; q). 

L e m m a  7.2. If x r + 1 then 

n + . ( 2 q~+n+l ) 
Ix hn,v(x,q)l  < exp [1 Sx -2 [  T---q ' [x[ R 1, 

(7.13) 
( 2 q v+n+l ) 

Ix h n , ~ ( x , q ) [ < e x p  [ l - -x2  [ ~ q  , [ x [ < l  

and 

(7.  t 4 )  

n q V + n + l  q V + n + l  ) 
, - -  Ixnh+.(x; q)f <_ exp 1 - q ( - f - _ ~ 2  ' 

nqu+n+l qv+n+l ) 
[x-~h,,-,~(x)[ <_ exp \ ~ : q  + (1 - q)-----~ ' 

Ixl ~ 1, 

]x[ ~ 1. 
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Proof. We now use a backward version of  Gronwall's inequality: for nonnegative A, 
c,,, and dn (n > 0), we have 

c~ < A + d~ck < ee ~ cn < A exp 
k=n+l  \ k = n + l  / 

The inequalities (7.13) then follow from (7.12) and the inequalities 

[x• + x-1)/2)1 _< 2/11 -x•  

which hold for Ixl < 1 (for the + sign) and Ix[ _> 1 (for the - sign). 
Inequality (7.14) uses the inequality Ixi"Un((x + x-1)/2)l  < n + 1 on [xl _< 1 and 

Ixl > 1 respectively. So from (7.12)we get 

Ixnh+u(x; q)l -< 1 + ~ q~+klxkh~,~(X; q)l(k - n) 
k=n+l  

oo 

< 1 + ~ kq~+klxkh~,v(x; q)l, Ixl __ 1, 
k=n+l  

from which the first inequality of  (7.14) follows by Gronwall's inequality. �9 

We are now ready to give some information about the zeros of  the functions hn,~(x, • �9 q) 
inside and outside the open unit disk. 

Theorem7.3.  The zeros ofh~v(x;q) are all real. The function + �9 hn,v(x,q) has no zeros 
in {x ~ C: Ixl > 1} and h~,v(x;q) has no zeros inside {x ~ C: [xl < 1}, whenever 
n > M(v,q),  where 

In(1 - q) 1 
(7.15) M(v,q)  = - v -  1 +2  - -  

In q In q ' 

In particular, h+_l,~(x;q) has at most 2M(v,q) + 2 zeros in {x ~ C: Ixl > 1} and 
h-l.~(x; q) has at most 2M(v,q) + 2 zeros in {x ~ C: Ixl _< 1}. 

Proof. The reality of  the zeros follows from the explicit representation (7.8) and the 
reality of  the zeros of  the Hahn-Exton Bessel function [18, sect. 3] and the zeros of  
j~ (x; q) (see Theorem 5.3). For an upper bound on the number of  zeros, we use (7.12) 
to find 

in-t-. ;--~_vq-k,.•177 ( x'~-x-1 ) 
1 - x  h~,~(x,q)= q .~ ttk, v k ~ , q ) x •  1 

k=n+l  2 

Use the inequality (7.14) and Ix• + x- l ) /2 ) l  < n + 1 to find, for Ixl > 1, 

( k_q v+k_+l q~+k+, ) 
I 1 - x n h + ~ ( x ; q ) l <  Z (k - n)qV+~ exp + - -  

�9 k = n + l  ~ 1 - q (1 - -  q )2  ' 

and, similarly, for Ix l < 1, 

( k q ~ + k + l q ~ + k + '  ) 
I 1 - x - n h n - v ( x ; q ) [ <  (k--n)q~+kexp ~i - - -q  + 

k=n-I-1 (1 -- q)2 
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The fight-hand side can be bounded by 

( kq~+k+~ (k - n)q ~+k exp 
k = n + l  I - q ( l---q-)  2qo+k+l ) ( q~+l ) - -  + _< e x p  (k  - n ) q  "+k 

qV+n+l qV+n+l 

Choose M = M(v, q) such that 

qv+M+l qv+M+l 

then + �9 h,,~(x, q) for n > M cannot be zero for any x such that [xl > 1. An appropriate 
M(v, q) is given by (7.15). The same reasoning holds for h~,~(x; q) on the closed unit 
disk. So now we have established that, for n > M, the function hn+~ has no zeros for 
[xl >_ 1 and h~,v has no zeros for Ixl _< 1. The zeros o fh+~  are equal to the zeros of  
J~+n(1/x; q). I f  j{,  k = 1, 2, 3 . . . . .  are the zeros of  Jr(x; q) numbered increasingly, 
then, from the interlacing property o f  Theorem 3.7 in [18], we have j{ < j~+l < J{+l; 
hence, when the parameter v is decreased by one, then the kth positive zero moves to the 
left. This means that the kth positive zero (counted from the right) + �9 ofhn_l,v(x, q) is to 
the right o f  the kth positive zero ofh+~(x;  q). Since h +  ~(x; q) has no zeros x > 1, this 
means that + hM_~,v(x, q) can have one zero x > 1, namely 1/j~ +M-1 , and it cannot have 

1/jv+ M-I two zeros x > 1 since z 2 < 1/J~ +M < 1. Decreasing the degree ofh+v(x; q) 
by one thus increases the number of  zeros in Ix l >_ 1 by at most 2 (one positive zero and 
one negative zero). Therefore h_+l,~(x; q) has at most 2M + 2 zeros in [xl > 1. Similar 
reasoning works for the zeros ofh~,~(x; q) in Ixl _< 1 by using the interlacing property 
of  the zeros o f  j~(x; q) and j~+l (x; q) given by Theorem 5.3. �9 

The upper bound on the number of  zeros of  h_il,~ (x; q) gives a useful upper bound 
on the number of  discrete mass points o f  the strong moment  functional s as given in 

T h e o r e m  6.3 when s = 1. Indeed, the zeros of  h+_l,~ (x; q) correspond to the zeros of  
J~-i  ( l / x ;  q) and thus N < M(v, q) + 1. Similarly, the zeros ofhEl,~(x;  q) correspond 
to the zeros of  j~_l(X; q) and, thus, M < M(v,q) + 1. In particular, M = N = 0 in 
Theorem 6.3 for s = 1 for v satisfying M(v, q) < O. 

Finally, let us give another derivation of  the orthogonality of  the Laurent polynomials 
hn v(X; q) by using the minimal solutions • " , hn, v (x, q). Observe that, from (3.3), (3.5), and 
(7.8), it follows that h~v(x; q) have a power expansion of  the form 

and 

n + . Z K+(n' k)x-2k' Ix[ > 1, x hn.v(x, q) = 1 + 
k=0 

oo 
x-nh~v(x; q) = 1 + Z K-(n, k)x 2k, Ix[ < 1. 

k=l  
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We can get some information on the coefficients K• k) by introducing Banach 
algebras. I f  f is analytic in the open unit disk with Taylor series 

f ( z )  = ~ fkz  k, 
k = 0  

then we define 

Ilfll- = ~ Pglfkl 
k = 0  

and we denote by A -  all the functions f for which II f II- < ee. Here vk, k ~ Z+,  is a 
positive increasing sequence for which v0 = 1 and vn < vm Vn-m for every n > m > 0. 
Similarly, when g is analytic near infinity with Laurent series 

g(z) = ~ -k gkZ , 
k=0 

then we define 

Itglt+ = ~ vklgkl 
k = 0  

and denote by A + all the functions g for which IIg I1+ < ~ .  One easily verifies that for 
two functions f l ,  f2 ~ A • one has 

11/1/211• -< Ilflll• 1l/2[l• 

so that we must be dealing with Banach algebras. 
Observe that 

Ilxnh+~(x; q)ll+ = 1 + ~ V2klg+(n, k)l, 
k = 0  

oG 

- r /  - o Ilx hn.~(x,q)ll-  = l +, . ._ ,VaklK-(n,k) l .  
k = l  

Taking norms in (7.12) gives 

Ilxnh+~(x; q)ll+ _< 1 + 
k = n + t  

Now 

qu+ktixkh+v(x; q) H+ Ilxn-k+l Uk_n_l ( x q-x-l) 
' 2 I1+. 

2 = II x-2J I1§ = v2j < (n q- 1)l)2n , 
j =0 j =0 

SO that Gronwall 's  inequality gives 

Ilxnh+~,(x; q)ll+ - exp kq~'+kv2k . 
\ k = n + l  / 
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Taking v,, = a n with a < q-l~2 shows that 

co 

1 + ZaZk[K+(n,  k)l < oo; 
k=0 

thus, n + . A +. h,,,,,,(x, q) is, in fact, defined for x hn,,~(x, q) e This shows that the function + �9 
x > q l/2. Similar  reasoning shows that x -n  h~, v (x; q) e A -  and that h~, v (x; q) is defined 
for x < q-l/2. From (7.8) we see that h+~,(x; q) has poles at the zeros o f  (qx-2; q)o~ 
and that x = 4-q l/2 are the poles o f  largest modulus. Similarly, h~,,,(x; q) has poles at 
the zeros o f  (qx2; q ) ~  and x = • are the poles o f  smallest modulus. 

Suppose now that 4-l  are not zeros o f h !  (x; q).  Evaluate the contour integral 

1 f x  h .... (x; q)h+,,(x; q) dx. 
I+ = 27ri _ _ l =  1 h+l.~,(x; q) 

I f  m < n, then the integrand behaves as x m-"- I  near x = oe and thus I+ has no 

contribution from x = oo. So when x + ( j  >_ 1) are the zeros ofh+l_ ,~(x; q),  then 

U + h + x + hrn,v(xj o q) n,v( j , q) 
i+ = - y ~  ~ 7 ~ ,  , 

s=l [h-t, , ,(xs ' q ) ]  

where N is defined as in Theorem 6.3 for s = 1. Similarly, we compute the contour 

integral 

1 ftx h,,,.,,(x; q)h~,,,(x; q) dx. 
I_ = 2~ri __l=l h~l.~(x; q) 

The integrand behaves as x n-m+l near x = 0 and, thus, there is no pole at the origin 

when m < n (even for m _< n + 1)  There are poles at the zeros x f  ( j  > 1) o f  h-_ l, v (x; q) 

and we thus have 

M hm,v(xf; q)h~v(xj; q) 
I_ = ~ [hT-l,,,(xf ; q ) ] '  , 

where M is defined as in Theorem 6.3 for s = 1. Subtracting I+ and I_ gives 

l fx hm ~(x; q) ( h~'v(x; q)h-1''(x'q)-hn'v(x'q)h-l"fix'q))~x~,q~ " + "q) - " dx. 
1_-1+ = ~ I=1 ' 

The Laurent polynomial  hn,v (x; q) is a solution o f  the three-term recurrence relation 
(7.1) and therefore a linear combination o f  the two special solutions • �9 h,,,,,(x, q). With 

the initial conditions h0,v(x; q ) =  1 and h-l~v(x; q) = 0 and by combining (7.8) with 

Lemma 6.2, we find 

(x -I -x)hn,v(x;q)  = h- l ,v (x ;  + x" - _ , q)hn,~( , q) h+l ~(x; q)h~,~(x; q), 

so that 

f~ l= l (  x dx 1 - x-t)hn ~(x; q)hm,~,(x; q) h_+l,~(x; q)h_l.v(x; q) .  I_ - I+ = 2rci 
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On the other hand, at a zero x + we see that h + ~ (x +; q) is a solution of (7.1) with initial 
value h+l ~(x+; q) = 0, so flaat h+~(x+; q) = h~v(x+; q)hn ~(x+; q) Similarly, at a 

- - ,  J , J , J , j �9 
zero x~- we have h~.~ (x;;  q) = h~.. (x)-; q)h.,~ (x~-; q). Therefore 

M(v,q) 

I_ -- l+ = j~=o hn ~(xf; q)hm,v(xT; q) h~'v(xT; q) 
' [h+l,v (x~-; q)]' 

M(v,q) + +. h0,~(xj, q) 
+ ~ hn,v(xj+', q)hm,v(xj+', q) �9 

W=o [h+_l,v(xf ; q)]' 

Combining both expressions for I_ - I+ gives the orthogonality of the Laurent poly- 
nomials hn,~(x; q) and corresponds to the result given in Theorem 6.3 for s = 1. In the 
case ql/2 < s < q-1/2, the orthogonality relations of Theorem 6.3 can be derived in a 
similar way. 

This approach can also be used to prove orthogonality for the Laurent polynomials 
x-lhn,v(x; q) (see (2.3)). Note also that the case q = 0 gives the orthogonality relations 
for the Chebyshev polynomials of the second kind. 
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