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Orthogonal Polynomials and Laurent Polynomials
Related to the Hahn—Exton g-Bessel Function

H. T. Koelink and W. Van Assche

Abstract. Laurent polynomials related to the Hahn—Exton g-Bessel function, which
are g-analogues of the Lommel polynomials, have been introduced by Koelink and
Swarttouw. The explicit strong moment functional with respect to which the Laurent g-
Lommel polynomials are orthogonal is given. The strong moment functional gives rise
to two positive definite moment functionals. For the corresponding sets of orthogonal
polynomials, the orthogonality measure is determined using the three-term recurrence
relation as a starting point. The relation between Chebyshev polynomials of the second
kind and the Laurent g-Lommel polynomials and related functions is used to obtain
estimates for the latter.

1. Introduction and Motivation

The Lommel polynomials are orthogonal polynomials closely related to the Bessel
function. Although the Lommel polynomials have a representation involving a hyper-
geometric ; F3-series, they do not fit into Askey’s scheme of hypergeometric orthogonal
polynomials. The reason for this is that the orthogonality measure for the Lommel poly-
‘nomials is supported on the set consisting of one over the zeros of a Bessel function,
‘which are not explicitly known in general. So there is no Rodrigues formula or difference
equation for the Lommel polynomials.

The Bessel function J,(z) of order v and argument z is given by the absolutely
convergent series expansion

Z( l)k(z/z)v+2k

(1'1) k'F(v+k+1)

The properties of this special function are well understood; see, €.g., the book on Bessel
functions by Watson [24]. A simple recurrence relation for the Bessel functions is. (cf.
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[24, §3.2(1)])
2v
(1.2) Jor1(2) = - J (@) = Jo1(2).
From iteration of (1.2) we see that we can express J,.., (z) in terms of J,,(z) and J,_1(2)

and the coefficients of J, (z) and J,_, (z) are polynomials in z~!. This was first observed
by Lommel in 1871. Explicitly, we have [24, §9.6]

1 1
(13) Joim(2) = hm,v (;) Jo(@) — hm—l,v-H (2) Jo-1(2),

where A, , () are the Lommel polynomials, which are also known as associated Lommel
polynomials. The Lommel polynomials satisfy the three-term recurrence relation

(14) hm+1,v(z) = 2z(m + V)i, o(2) — hm—l,v(z)’ h—l,v(z) =0, ho,u(Z) =1

Favard’s theorem {7, Ch. II, thm. 6.4] implies that the Lommel polynomials are or-
thogonal polynomials with respect to a positive weight function for v > 0. The explicit
orthogonality relations are [7, Ch. VI, §6], [9], [10], [16], [21],

.5 i LY O U T B U W
G ) T R 20

k=1

where j?, v > —1, are the positive zeros of the Bessel function J,(z) numbered
increasingly [24, Ch. 15]. The squared norm of (1.5) is not correct in [7] and [9].

Another relation between the Lommel polynomials and the Bessel function is given
by Hurwitz’s asymptotic formula [24, 9.65(1)]:

(22)' " B 1 (2) 1
(1.6) Totm — Jy (Z)’ m — o0,

For the Bessel function (1.1) there exist several g-analogues. The oldest g-analogues
for the Besse! function were introduced by Jackson in a series of papers in 1903—19035
(see the references in [16]). For the Jackson g-Bessel function, Ismail [16] introduced the
associated g-Lommel polynomials, which turned out to satisfy an orthogonality relation
similar to (1.5), but involving the zeros of the Jackson g-Bessel function. Ismail used
these g-Lommel polynomials to prove that the zeros of the Jackson g-Bessel functions
behave like the zeros of the Bessel function. '

A more recent g-analogue of the Bessel function was introduced by Hahn in a special
case and by Exton in full generality (see the references in [19]). The zeros of the Hahn—

' Exton g-Bessel function and several associated g-analogues of the Lommel polynomial
have been studied by Koelink and Swarttouw [ 18]. The zeros of the Hahn—Exton g-Bessel
function behave like the zeros of the Bessel function. In that paper [18), a g-analogue
of the Lommel polynomials was introduced. However, this g-analogue of the Lommel
polynomial is no longer a polynomial, but a Laurent polynomial. One of the goals of this
paper is to give an explicit orthogonality measure for these orthogonal Laurent g-Lommel
polynomials.
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The Laurent g-Lommel polynomials are defined by [18, prop. 4.3 with R, ,(z"'; q) =
hm,v (z; Q)]

1
.7 Bmyip(x; @) = (; +x(1 - q”*’”)) Bnv (X3 @) = Bm—1,0(x; q),

with initial conditions 2_;,, (x; g) = 0, ko, (x; ¢) = 1. A second independent solution of
(1.7)is given by Ay, 1 v41(x; g). Note that taking the limit g 4 1 in (1.7) after replacing x
by 2z/(1 — g) gives (1.4). The Laurent g-Lommel polynomials originate from a relation
similar to (1.3); see Proposition 3.1. '

The explicit orthogonality relations for the Laurent g-Lommel polynomials 4, ,(x; g)
defined in (1.7) is derived in Section 3. The method of proof is based on the existence
of asymptotically well-behaved solutions of (1.7) reminiscent of J, ., (x), cf. (1.3). The
method used by Dickinson [9] to prove (1.5) can then be adapted to our situation. The
orthogonality measure gives rise to a strong moment functional £; i.e., a functional on
the space of Laurent polynomials so that all moments £(x"), n € Z, exist. From L
we obtain two moment functionals £, as considered in, e.g., [7, Ch. 1], by putting
Li(x™) =L(x"),neZy,and L_(x") = —L(x"?™"), n € Z,. (The 2 has to do with
the fact that all moment functionals are symmetric.) It turns out that both £, and £_ are
positive definite moment functionals.

The orthogonal polynomials for £, are g-analogues of the Lommel polynomials and
the support of the orthogonality measure consists of the origin and one over the zeros
of a Hahn—Exton ¢-Bessel function, where the mass at zero is strictly positive. This is
worked out in detail in Section 4, where we use Dickinson’s method [9] once more. In
Section 5, we study the orthogonal polynomials for £_. We give explicit expressions
for these polynomials in terms of Al-Salam—Chihara polynomials, which can be used
to determine the asymptotic behavior as the degree tends to infinity. The asymptotic
behavior is expressed in terms of a function j, (x; g) closely related to the Hahn—Exton
g-Bessel function. Since we can do this for the associated polynomials as well, we
have the Stieltjes transform of the orthogonality measure from which the orthogonality
follows. Using the results of Section 5, we can simplify the expression for the strong
moment functional £ using a Wronskian type formula. This is done in Section 6.

For g = 0, or for v — oo, we see that U, {(x + x~!)/2), where U,, denotes the
Chebyshev polynomial of the second kind, satisfies (1.7) with the same initial conditions.
So we can view the Laurent ¢-Lommel polynomials #,, ,(x; g) as a perturbation of the
Chebyshev polynomials. This point of view allows us to obtain estimates for the Laurent
g-Lommel polynomials, the Hahn—Exton g-Bessel function, and the related function
Jv(x: q). This is done in Section 7.

Finally, in Section 2 we show that the general theory of orthogonal Laurent polynomi-
als presents us with an existence theorem for the strong moment functional £. We also
state a result concerning the zeros of the Laurent g-Lommel polynomials.

To end this introduction we briefly recall the notation for basic (or ¢)-hypergeometric
series. We follow the standard notation of Gasper and Rahman [11, Ch. 1]. We take
0 < g < 1 for the rest of the paper. A g-shifted factorial is a product defined by

k-1
{a; g = H(l —agq'), acC, kelZ,,
i=0
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where the empty product equals 1 by definition. Since 0 < g < 1, we can take & — o0
to get limg ., 00 (@ gk = {@; §)o- A basic (or g-) hypergeometric series is

a1, ..., 4
res g,z ) =,ps(ar,...,a5 b1, ..., b4, 2)
by,....bs

00 (a]; q)k ‘e (EZ,.; Q)k kL k=) l+s—r ‘
1.8 - PN '
o ; q; @)eb1; @)k - .. (bs; @) (( )q ) 2

For generic values of the parameters, the radius of conVergence of the series in (1.8) is
0,1, 00, correspondingtor > s+ 1, r=s+1,r <s+ 1.

2. Orthogonal Laurent Polynomials

In this section, we apply some of the theory of orthogonal Laurent polynomials to
the Laurent polynomials %, ,(x; ¢) to obtain the existence of a strong moment func-
tional £—i.e., a linear functional on the space of Laurent polynomials for which the
moments £(x"™) exist for all m € Z—for which the Laurent g-Lommel polynomials are
orthogonal. We use the paper by Hendriksen and van Rossum [15] as the main reference
for this section.” The recurrence relation, as in (2.1), has been generalised to a wider
class of recurrence relations by Ismail and Masson [17] by replacing x in front of the
Vin_1.0(x) by (x —a,,), for which they prove a Favard-type theorem. Specialization to the
case considered here yields the Favard-type theorem contained in Hendriksen and van
Rossum [15]. For further information concerning this section, the reader may consult
the introductory paper by Cochran and Cooper {8].

From the recurrence relation (1.7), it follows that k,, ,(x; g) is an even function for
even m and an odd function for odd m. Consequently, x™h;,, ,(x; g) is a polynomial in
x2, which we denote by V,,,(x?) = x™h,,(x; g). For V,,, we obtain from (1.7) the
recurrence relation

2.1 Ving1,v(X) = (1 +x(1— q"+'")) Vinw(X) — X V1,0 (X),

with initial conditions V_; ,(x) = 0, Vo, (x) = 1 [15, (2.2)]. The Favard-type theorem
[15, thm. 1.1] implies that for the Laurent polynomials 0, (x) defined by

02, (X) = X" V2, (X) = h2n v (VX3 9),

)
Oopy1(x) = x_n_IVZn—H,v(x) =x 2 h2n+1,v(\/}; Q)s

there exists a strong moment functional £, such that £;(Q, Q) = 0 forn # m.

If we form the lacunary Laurent polynomials [15, (1.16)], we get the Laurent poly-
nomials Py, (x) = hpmy(x;q), Pypr1(x) = x Ay, (x; q). The lacunary Laurent
polynomials are orthogonal with respect to the strong moment functional £ defined
by L&) = Li(x"), L&*F!) = 0 for n € Z [15, prop. III]. So the orthogonality
relations for the even lacunary Laurent polynomials gives *

=0, n#m,
(2.2) L (B (%5 @l (X3 ))

#0, n=m.
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But we also have the orthogonality for the odd lacunary Laurent polynomials,
=0, n#m,

2.3 L (xR0 (X3 @, (x;
(2.3) (xR (%5 Qbm, (x5 ) 40, nem.

The space A, of Laurent polynomials of the form Y , cpxP"is (2n + 1)-
dimensional, n € Z,. The Laurent polynomials A, ,(x;¢9), m = 0, 1, ..., n, form
an (n + 1)-dimensional subspace of A,. Moreover, they form an orthogonal basis for
this subspace with respect to L. Equation (2.3) states that this orthogonal basis can be
complemented with x 1A, ,(x;g), m = 0,1,...,n — 1, to give an orthogonal basis
of A, with respect to L. L{x  hy, ,(x; ), ,(x; q)) = 0 follows immediately from
L2ty = 0. ‘

Remark 2.1. For orthonormal polynomials, the three-term recurrence relation can be
used to prove that the zeros of the orthonormal polynomials correspond precisely to the
eigenvalues of a truncated Jacobi matrix. A similar approach can be used here. Define
coeflicients by

n+l

(2.4) XVio @) = D cniViw (x);
k=0 -

then the matrix H, = (¢, j)o<i, j<n—1 1S @ Hessenberg matrix, i.e.,¢; ; = 0fori +1 < j.
Using (2.4) in (2.1) gives recurrence relations for the matrix elements ¢; ;, which can be
solved to give

1
_ ifk=n-+1,
1__qv+n
V. v+k—1
2.5) Cne = %‘L—_, if0 <k <n,
s )n+1
-1
_ ifk =0.
L (@7 Pt

Note that each row sum of H,, except the last, equals zero.

Introduce the vector w,(x) = (Vo,v(x), Vip(x), ..., V,,_],,,(x))'; then we see from
(2.1) that H,w, (x) = xwa(x) if V, ,{x) = 0. So a zero x of V,,, implies that H, has
an eigenvector for the eigenvalue x. It is also possible to prove that an eigenvalue x of
H, implies that V, ,(x) = 0, which can be proved by showing that the characteristic
polynomial of H, times the normalisation constant (—1)*(g"; g), satisfies (2.1). So
we conclude that the zeros of V,, ,(x), and hence the zeros of the Laurent g-Lommel
polynomials &, ,(x; q), are completely determined by the spectrum of the Hessenberg
matrix H,.

3. Minimal Solutions and Orthogonality Relations

In this section, we give an explicit formulation for the strong moment functional £
introduced in the previous section. We describe £ in terms of contour integrals, where



482 H. T. Koelink and W. Van Assche

the integrands depend on the Hahn—Exton g-Bessel function and on a function closely
related to the Hahn—Exton g-Bessel function. These functions give rise to two other
solutions of the recurrence relation (1.7), but with prescribed behavior for m — oo.
The proof of orthogonality of the Laurent g-Lommel polynomials for £ uses a method
already introduced by Dickinson [9] to prove the orthogonality relations (1.5) for the
Lommel polynomials.

Using a generating function argument, the following explicit expressions for the
Laurent g-L.ommel polynomials have been derived in [18, (4.23)] from the recurrence
relation (1.7)

N mean 4™ Doo(@”3 oo ¢1<qf”,q”“”"";q’qn+:)

G.D hp(9)=) x

mr 4 ,;0 @ Do @ Do v
m n—m 0+l

(3.2) =Zx”’"2"z<p1(q C,Iq ;q,q”+’"‘").
n=0

The Hahn—Exton g-Bessel function is defined by

i @)oo 0
(3.3) J(x; q) = ux 1<p1( M:q,qxz);

the following g-analogue of Hurwitz’s formula (1.6) then holds:

; 1 :
3.4) Iim x™"h, ,(x; q) = Mx”“],,_l (— ; q) , x| > 1.
m=>00 (7% Qoo x

Relation (3.4) has been proved formally in [18, (4.24)] from (3.1), but it follows from
their proof that it is valid only for |x| > L.

In order to state the asymptotic behavior of the Laurent g-Lommel polynomials inside
the circle we introduce the function

Jox: @) =x"(qx%; @)oo 10103 gx75 ¢, 4" xP)

v+l 2,

(3.5)
=x"(¢""' %% @)oo 191 (0; " F'x%: g, gxP),

where we use (X; @)oo 101(0; X9, Y) = (¥ Doo191(0; ¥5 ¢, x) [19, (2.3)]. This
function is related to the Hahn—Exton g-Bessel function in the following way

x_vj”(X; = (g q)oo(x_ujl‘(x; q)) lu=v+21nx/lnq ’

Now we can use (3.2) to obtain

m qn—m qn+1
X (6 @) = Y X7 20 ( . ;q,q”+’“‘”)

n=0

m —n m-~n+1
n ’q n
=2+ 2<m<q ;q,q”+)
n=0 q
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and by dominated convergence we obtain

—_
i x"hy o (x; ) = Zx2"2<p1 (q . ;q,q”")
n=0

“Z

where the last equality follows from interchanging the summations, which is allowed
for |x| < 1. The inner sum can be written as

nl 2n
(¢; q)z(q an Z_,:(q T

o0 o0
LIy 77 -
Y (@ P POg P = X (—1)lq DN "(gPt g7y P

p=0 p=0
1+1 q)
= (=1/q " V(g g Z————’ L x?
(g 9)p
2 1 tig-n @
= x¥(-lg bty DL
7 (2 @41
by the g-binomial theorem [11, (1.3.2)]. This leads to the result
1 0
fim X"y, (x; q) = m( 2;q,q”xz)
m—00 qx
(3.6) -
X .
=—— Ju1(x; q), x| < L.

*% @)oo

Proposition 3.1. The functions J,1m(x~';q) and j,im(x;q) satisfy the recurrence
relation (1.7). Moreover,

Jotm T @) = By 65 ) (75 @) = At w1 s T (07 @),
Joam (x5 @) = R v (x5 9) Ju (X3 @) ~ B 1,041 (x5 @) o1 (X5 @).

Proof. Since h,, ,(x; g) and hp,_;,,+1(x; g) are linearly independent solutions of the
recurrence relation (1.7), the last statement of the proposition implies the first. Also, if
Joem(x~; q) and oy (x; q) satisfy (1.7), then they must be a linear combination of
hmv(x; q) and hy, 1 ,41(x; g), from which the second statement follows by considering
the casesm = 0 and m = —1.

The last statement for J,,, has already been proved in [18, (4.12)], so it remains to
consider j,,. The second order g-difference equation for the ;¢;-series—or by taking
a suitable limit in [18, (4.14)] in combination with (3.6)—reveals that

1
Jori(xs g) = (; +x(1 - q”)) Ju(xsq) — ju-1(x; q).

Replacing v by v + m proves the statement. » ]
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Remark. (a) The solutions J,,.,(x~'; ¢) and j, 4 (x; g) of (1.7) have the following
asymptotic behavior for m — oo valid forx € C:

-2,
lim x™J,m (x5 ) =M
3.7 m-00 @ Qo
lim x™77 j,4m(x; q) =(qx22 9o

m-—>00

Note that x* are solutions of (1.7) for m — oo (or for g = 0). So the solutions
Joim @™ Y5 q) and jy1m(x; g) behave as x¥” up to a factor independent of m as
m — 00.

(b) The functions Jy4pm (x~'; q) and j, 4 (x; g) are related to a minimal solution X, (x)
of (2.1); i.e., X, (x) is a solution such that limy,— o X (x)/ Vv (x) = 0, where
Vv (x) is the polynomial solution of (2.1). Using the limit transitions (3.4) and
(3.6) and the relations in Proposition 3.1, we obtain

Jo VT Vi ®) = 22 jumt (W ) Vinet w1 ()

=xi"jm (W), <1,
Jo(UNZ Vo) = £ Jumt (/%5 @) Vit ()

= X3 Jym(1//Tq), ] > 1.

With the functions J, (x; g) and j, (x; ¢) and their relation with the Laurent g-Lommel
polynomials described in Proposition 3.1 at hand, we can give an explicit expression for
the strong moment functional £. The proof we give is an adaption to the Laurent case of
Dickinson’s proof of the orthogonality (1.5) of the Lommel polynomials [9].

First we investigate the quotient of two Hahn—Exton g-Bessel functions.

Xn(x) =

Lemma 3.2. For v > 0, the following expansion holds around 0 for n € Z.:
Lnliig) a1 @
Joo1G @) (@Y D1

Ckx2k,

where the coefficients c are recursively defined by co = 1 and

(=g LR+ L (—krg 1 (k=p)(k—p+1)

— —_ c
(qv+n-|71; Q)k(éﬁ q)k =0 P (q"§ Q)k(q; q)k—P

(3.8) Ck

Proof. From (3.3) we immediately get
JonOsq) X" 101(0; ¢ g, gx%)
Tt ) @ Dnnt 1910:9% 4,957
so we have to solve for the coefficients ¢, by comparing powers of x on both sides of

(-DPq 3 p(p+1) 2p S (=1)y"q i men+1) 4 2m

X0 o
2k
Cr X -
Zkzo Sy @ Dp@ Dy

p=0

=2 @Y Ol Dm

m=0

from which the recurrence relation (3.8) for the coefficients ¢ is obtained.
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A rough estimate gives

(- l)kq % k(k+1)
@'+ 9), (g; 9)r

< A= _._____1_._.._____
@Y oo (g Do

for v > 0. The same estimate applies to the factor in front of ¢, on the right-hand side
of (3.8); thus, we obtain

k—1
leel < A+ Alcal.

n=0

A discrete version of Gronwall’s inequality [23, p. 440],

k=1 k-1
(3.9) ax <A+ duay, and A, a,,dy > 0 =5 a, < Aexp (Zd,,),
n=0 n=0

yields |c;| < Ae*4; thus, the series on the right-hand side of the statement of the lemma
is absolutely convergent for |x| < e=4/2, [ ]

Choose 0 < R < j; '1, where jl‘"1 denotes the smallest positive zero of J,_; (x; q),
v > 0, cf. [18, sect. 3]. Using Lemma 3.2, we obtain forv > 0,m € Z,andn € Z,

1
(3.10) — T —————dz =

2mi Jyy=iyr - o1zl g)

w @) 0, m—noddorm < n,
@l m=n

Note that the coefficients c; of Lemma 3.2 for n = 0 are in fact the moments of the linear
functional £, defined by

1 (7 0, m e Z, odd,
Gl L™ = — m D@59 Z={ +

- z
278 Jig=iyr Jo-12715 ) Cmp2, M € Ly even.

We will return to this moment functional in Section 4 and calculate the corresponding
orthogonal polynomials, which turn out to be g-analogues of the Lommel polynomials.

The following lemma is the analogue of Lemma 3.2 for the functions j,(x; q) instead .
of the Hahn—Exton g-Bessel function.

Lemma 3.3. Forv € R, the following expansion holds around 0 forn € Z: -

]:v+n(x; Q) — xn-l—l idkxzk,
JV—I(X; Q) k=0

where the coefficients dy are recursively defined by dy = 1 and

k—1
G12)  de=201 (g7 034, ") = D " dy 201 (477 0103 9,47 HF7).
=0
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Proof. The proofis completely analogous to the proof of Lemma 3.2 and we only give
the differences. Here use the expansion

% 1)kq =D
101(0; gx% g, ¢ xh) = g™ (-+Dk 2k

1
(1-x2) ; (@5 D @it

ii L:llk_f]_i__ 41k 2 @75 q) o2
k=0 I=0 (@ Dk (g;9)

k(k—1)

o0
=Y x701(q77, 0:q:9.4"P),
p=0

which is valid for [x| < 1 by the g-binomial theorem, and rearrange the absolutely
convergent sum using [ = p — k. From this we obtain the recurrence relation (3.12). The
general estimate

- (—=q,—Ixl; @)
l201(g7%, 0, q; g, xq")| < —q—,—q—‘”
(@ Do
and Gronwall’s inequality (3.9) prove that the sum is absolutely convergent around
0. u

Choose r > 0 so that j,_;{x; ¢) has no nonzero zeros in the ball with radius r and
the origin as center, which is possible since ;¢;(0; gx?; ¢, ¢"x?) equals 1 at x = 0 and
defines an analytic function for |x| < ¢~'/2. Using Lemma 3.3, we obtain, form € Z
andn € Z,,

i . 0, m—noddorm > —n—2,
(3.13) ! m Jrin(Z0) :{

Py FA
270 Jig=r -1z Q) 1, m=-n—-2.

The coefficients d;, of Lemma 3.3 for n = 0 can be interpreted as the moments of the
moment functional £_ defined by

i (1. 0, me Z»+ Odd,
G149 L= n 2Dy [ |

F A
i lzi=1 Jo-1@7h q) dyupy, melZ, even.

In Section 5 we consider the orthogonal polynomials for £_ from which some properties
for j,(x; g) can be derived.
Define the strong moment functional £ for v > 0 on the space of Laurent polynomials
by
L@ q) o1 G

1
3.15) Lip)= — ) ————dz — — 2) =
( p) = 278 Jig=1/8 pe )Jv-l(Z‘l; q) 278 Jigl=r Jv-1(Zs q)

for any Laurent polynomial p(z) = Z cpz?,n < m,n,m € Z. Note that L is inde-
pendent of the choice of R (respectively r) aslongas J,_;(x; q) (respectively j,—1(x; q))
has no nonzero zeros in the ball with radius R (respectively ). All moments of £, both
positive and negative, are well defined due to Lemmas 3.2 and 3.3.
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The moments of the strong moment functional £ and the moments of the moment
functionals L. defined in (3.11) and (3.14) are related by £, (x") = L(x"), n € Zy,,
andby L_(x") = —L(x > ™), n e Z,.

Theorem 3.4. Let v > 0. The Laurent g-Lommel polynomials h, ,(x;q) defined by
(1.7) are orthogonal Laurent polynomials with respect to the strong moment functional
L; see (3.15). Moreover, the Laurent polynomials x ' hy, ,,(x;q) are also orthogonal with
respect to L. Explicitly,

8n.m

‘C(hn,v(X; Q)km,v(X; Q)) = 1

— qu+m

L Ry (65 @)% P (65 @) =—8nm-

Remark. (a) This result corresponds nicely with the fact that the Laurent g-Lommel
polynomials correspond to a sequence of lacunary orthogonal Laurent polyomials;
see (2.2) and (2.3).

(b) Since L(x~2) = —1 we see that £ is not a positive definite strong moment functional.

Proof. The asymptotically well-behaved solutions J,,(x™'; g) and j, 1. (x; q) of the
recurrence relation (1.7) are expressible in terms of the Laurent polynomials £, ,(x; g)
and the associated Laurent polynomials 4,1 ,+1{x; g); Proposition 3.1. From this we
obtain, for any m € Z, the expressions

RTINS e ')

3.16 =X ——h, (x;q) = x"h,_1, 1q),
(3.16) J1x7h ) Jo—1(x71 9) V) ot (45 9)
and
Jotn(x5 @) Ju(x;9)
3.17 Xt = 2 hy (s q) — xRy X;q).
]u—l(x;Q) Ju_l(x;q) nv( q n 1,u+1( Q)
Since we obviously have
1 " 1
o hn—— v ; dz= — mhn— v N d ,
T IzI=—,’5Z 1Lv+1(z; ) dz T |z|:rz 1Lv+1(z; ) dz

we get, from the combination of (3.16), (3.17), (3.10), and (3.13), the relations

0, -n<m<n,
L&y (x5 9)) = 1
(qv; q);+1a m=n,

0, —n<m=<n,
LG by (x5 ) = {
-1, m=-n—-1
This proves the orthogonality.
It remains to calculate the norm. From (3.1) and (3.2), we see that the coefficient
of x" in h, ,(x; ) equals (g"; q), and that the coefficient of x "~ in x 1k, ,(x; )
equals 1. |



488 H. T. Koelink and W. Van Assche
4. Orthogonal g-Lommel Polynomials Associated with the Positive Moments

In this section, we consider the orthogonal polynomials for the moment functional
Ly, (3.11), which corresponds to the positive moments of the strong moment functional
L. These polynomials are g-analogues of the Lommel polynomials £, ,(z), (1.4).

We consider the following three-term recurrence relation:

“4.1) Pni1{X) = x(1 _qvw)Pn(x) _knpn—l(x), Aoy = q", Aoyl = qu+3n+1
with initial conditions p_;{x) = 0 and po(x) = 1. Note that we can write the recur-
rence coefficient A, in closed form as g2 +1/21=1n/2D+1n/2] 'where a] denotes the
greatest integer less than or equal to @ € R. So the recurrence relation (4.1) depends on
whether 7 is odd or even. Favard’s theorem implies that these polynomials are orthog-
onal with respect to a positive definite moment functional for v > 0. Taking ¢ 1 1 in
(4.1) after replacing x by 2z/(1 — g), we get the three-term recurrence relation (1.4) for
the Lommel polynomials; thus, we have g-analogues of the Lommel polynomials. The
recurrence relation (4.1) was found by guessing using the explicit form for the positive
moments of £—i.e., the moments of £, obtainable from Lemma 3.2—and calculating
the first few terms of the recurrence relation (4.1) using Mathematica.
The monic orthogonal polynomials satisfy a recurrence relation of the type

a1 (X) = X0 (x) = tnn-1 (%), ri(x) =0, rx)=1,

with 4, > O foralln € Nand Y o, u, < oo. This type of orthogonal polynomials
has been studied by Dickinson, Pollak and Wannier [10]; by Goldberg [14], who cor-
rected some of the results of [10]; and, from the point of view of continued fractions, by
Schwartz [21]. See also Chihara [7, Ch. IV, thm. 3.5]. The support of the corresponding
orthogonality measure, which is uniquely determined, is a purely discrete denumerable
bounded set with only one accumulation point at zero. This result can also be obtained
by remarking that the Jacobi matrix J for the corresponding orthonormal polynomials
defines a self-adjoint operator J: £2(Z,) — €*(Z), which is an operator of trace class.
Since the spectral measure of J is the orthogonality measure for the orthogonal polyno-
mials 7, the result follows from standard facts on the spectral measure of a self-adjoint
trace-class operator. Moreover, for the orthogonal polynomials in this class we have the
asymptotic behavior of the form lim,_, oo x 7, (x) = f(x) for an analytic function f in

C\{0} [10], [14], [21].

We denote by p{" the associated orthogonal polynomials—i.e., the polynomials
satisfying

4.2) pPx) = x(1— V+")p“)1(x) AP @), Aam =g Aze =g"

with initial conditions p(l)(x) (D(x} = 1.
The following proposition is a q-analogue of the identity (1.3) relating the Bessel
functions and Lommel polynomials.

Proposition 4.1. For n € Z,., the polynomials defined by (4.1) and (4.2) satisfy

1 1 .
P (35) D) = Py (—) Joi(x; @) = gV g, (g DA, g,
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where J,(x;q) denotes the Hahn—Exton q-Bessel function (3.3).

Proof. The left-hand side is a solution of the three-term recurrence relation,

1— qv+n
(43) Apt+1 = —x—an — Anln—1.

The right-hand side satisfies the same recurrence relation (4.3). To see this, we use, for

even n, the relation
_ v
4.4) el

Jo (@) = et (5. @) = ¢V 01 (xg 2 )

and, for odd n, we use the relation

1-g¢g"

(4.5) Jo(x;q) —qU V2T, _1(xq7 V% q) = Juni (x5 ).

These identities can be checked straightforwardly by comparing the coefficients of the
powers of x on both sides of (4.4) and (4.5).
Since p,(x~') and p,(Ll_)1 (x~ 1) are linearly independent solutions of (4.3), we obtain

the proposition after checking the equality for n = 0, which is trivial, and forn = 1,
which is (4.4). ]

The polynomials defined by (4.1) turn out to be orthogonal polynomials with respect
to the moment functional £ . For more information concerning the zeros of the Hahn—
Exton g-Bessel function, which play a role in the following theorem, the reader is referred
to [18, sect. 3].

Theorem 4.2. We have the following orthogonality relations for v > 0 for the
polynomials defined by (4.1):

- +1 +1 —LG )
Po| 3 ) om | = o o + Pu(0) pm (0)
; n<Jk” 1) m(]k 1) GG T
q(n+u)L(n+1)/2J

l_qn+v

- an,m

Here j; ~! are the positive simple zeros of the Hahn—Exton q-Bessel function J,_1(x;q)
numbered increasingly. All weights are positive.

Proof. We start, as in the previous section, by establishing a complex orthogonality,
following Dickinson’s method [9]. For this we need the expansion

qL(n+1)/21/2; q) n+1 00

4.6) glrTh20+)/2 Join(x = glo+D/2ioy X 2%k

J1(x5q)

CrX™,
@¥; Pn+1 —0

which is absolutely convergent for small x. Moreover, ¢o = 1. This is proved as in
Lemmas 3.2 and 3.3.
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Let R > 0 be smaller than the smallest positive zero j; ~1of J,_(x; g); we then
obtain from Proposition 4.1 and (4.6), for 0 < m < n,

m (27 q)
2" pn(2) ————=dz
ﬁl:I/R Bz q)

1qL(n+1)/2J/2; 9) p
z

_ % qu L(n+1)/2] (n+v)/2 JV+n (z~
l2j=1/R Joo1(z7 g)

0, 0<m<n,

2rigU e Zigve =l =,

since fm:] /R " p,(,l_)] (2)dz = 0. The leading coeficient of p, is (¢”; g),, as can be seen

from (4.1), and so we get the complex orthogonality relations

Jv (Z—l. q) q(n+v)}_(n+l)/2j

3

1
4.7 L m) = 5 z ——dz = —.
4.7 +(Pﬂp i i=L/R pm( )pa(Z) jv—l(z_l; q) n,m (- qu_m)
The considerations given at the beginning of this section show that we can rewrite (4.7)
as a sum aver the zeros of the Hahn—Exton ¢g-Bessel function J,_|(z; ¢) and possibly
zero. The residues at the pole (j;~')~! of the left-hand side of (4.7) equal

) ( Ly, LG g
n U m - Sv— ’ fv— '
W 2O G

To see this we note that J/_, (j''; g) # 0 since the zeros of J,_; (x; ¢) are simple [18,
Lemma 3.3] and that J,(j’~'; g) # 0 by the interlacing property of the zeros of the
Hahn—Exton g-Bessel function [18, thm. 3.7]. The positivity of the corresponding mass
follows from the fact that J,(j'~'; ¢) and J._(ji™'; q) have opposite signs, which
follows from the FourierBessel orthogonality relations for the Hahn—Exton g-Bessel
function [18, prop. 3.6] or from the fact that the zeros of the Hahn—Exton g-Bessel
functions J, (x; ¢) and J,, (x; g) are interlaced as described in [18, thm. 3.7]. The mass
at —(j ')~ yields the same weight.

The set of mass points { ~1y=1 k € N, has zero as the only point of accumulation, so
that zero may occur as a mass point as well. This happens if 30 | 5r(0)}* < oo, where
B are the corresponding orthonormal polynomials [S, thm. 2.8]. Now the orthonormal
polynomials p, are given by

l_qn+v
1—¢gv

Moreovet, M (PnPm) = 8n.m, where M is the moment functional given by

1/2
) q*L(n+1)/2J(n+v)/2pn (x).

CX) Palx) = (

l—g* % Ju(Z_IIQ)
M(p) = p Pt T dr =1 — gL D).
@ L Jil=1/R @ Jo_1(z7"% ) ¢=1-a)tp)

From (4.1} with x = 0 we see that p;,, (8} = Gand that p,, (0) satisfies a simple two-
term recurrence relation from which we get ps, (0) = (—1)?g"0tD)+s=17Z Combining
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this with (4.8) shows that psy1(0) = 0 and

l_qv+2n 172 ) i
P2 (0) = (=1)" (TT) g,
Hence,
p= ZO |Pr(0)? = g ZO(I — grremygnans=D)
k= n=|

and this sum is an absolutely convergent telescoping series; thus, o0 = (1 — g*)~\.
Consequently, M has a mass point at zero with weight p~! and £, has a mass point at
zero with weight 1. |

From the explicit orthogonality relations of Theorem 4.2, we see that the orthogonality
measure for p, (x) is supportedin[—1/ j;’"l Vil ~!}. On the other hand, from the explicit
values of the recurrence coefficients for the orthonormal polynomials 5,, which are
easily obtained from (4.1) and (4.8), and the bound on the spectrum from [23, (1.3)
with n — o0], which is Gershgorin’s theorem for the Jacobi matrix, we see that the
orthogonality measure is supported in [-N, N]with N < 2/(1 — ¢”). So we obtain the
following corollary after shifting v by 1.

Corollary 4.3. For v > —1, the first positive zero j! of J,(x;q) satisfies j| > (1 —
qv-H )/2

For more information on bounds for the first zero of the Jackson and Hahn—Exton
g-Bessel functions we refer to Kvitsinsky [20, sect. 4] and references therein.

5. Orthogonal Polynomials Associated with the Negative Moments

In this section we consider the orthogonal polynomials for the moment functional £
related to the negative moments of the strong moment functional £ introduced in (3.14).
In subsection 5.1, we introduce the three-term recurrence relation for the polynomials we
study. The three-term recurrence relation has been obtained by calculating the first few
recurrence coefficients using Lemma 3.3 with n = 0 using Mathematica and then guess-
ing the general result. In subsection 5.1, we give explicit expressions for these orthogonal
polynomials and the associated orthogonal polynomials in terms of Al-Salam—Chihara
polynomials. From the explicit expressions we can determine the asymptotic behavior
of the (associated) polynomials as the degree tends to infinity in terms of the function
Jv{x; g). In particular, we obtain the Stieltjes transform of the orthogonality measure.
In subsection 5.2, we use the Stieltjes transform to obtain information on the zeros of
ju(x; q) in a similar way as in [16, sect. 4] (see also [2, sect. 4]) and to give explicit
orthogonality relations. In subsection 5.3, we give a different derivation of some of these
results in the special case v = 1/2, which turns out to be related to known orthogonal
polynomials [2], [22]. Comparison of these two approaches yields a summation formula
for a one-parameter terminating 3¢,-series.
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5.1. Explicit expressions for orthogonal polynomials

We investigate the monic orthogonal polynomials satisfying the three-term recurrence
relation

(5.1)  Pupi(x) =xPy(x) — AP (%), A =4g", Aoy =q"",

with initial conditions P_1(x) = Oand Py(x) = 1. By Favard’s theorem, the polynomials
P, are orthogonal with respect to a positive definite moment functional for v € R,
Moreover, the polynomials P, fit into the same class of [10], [14], and [21] described at
the beginning of the previous section.

The polynomials P, are even functions of x for even n and odd functions of x for odd
n. Introduce

PZn(x) = Rn(xz) and P2n+l(x) = -xSn(-xz);

so that the monic polynomials R, and S, satisfy the three-term recurrence relations (see
[7,p. 451)

Rus1(x) = (x — A2n — An41) Ry (x) = Aan—1A2n Rp—1 ()
and

Spa1(x) = (¢ = Aznp1 — A2n42) Sp (X) — A2pA2n 11801 (x),
with initial conditions Ro(x) = 1, Ry (x) = x —g” and S_;(x) = 0, So(x) = 1. A simple
computation from (5.1) gives the recurrence coefficients for the polynomials R,:

(1+g")g" ifrn>0,

Az + Aonq1 = [ A2nAon_1 = an—H—v’ n >0

q" ifn=0."
For the recurrence coefficients of S,;, we find similarly
Aot + rama = (@ + 979", Anhanpt =g, n>0.

The recurrence coefficients of R, and S, decrease exponentially.
Consider the monic polynomials u, (x; a, b; q) satisfying the recurrence relation

(5.2)  Upp (@b q) = (x — aq"un(x; a, b; q) — B¢ Pun_1(x; 4, b3 q),

u_1(x) = 0, ug(x) = 1, which are studied in [22]; then, S,(x) = wu,(x; 9 +
q',q“td72; q). For R, we have to be a little bit more careful, since for n = 0 one
of the recurrence coefficients behaves differently. However, R, is still a solution of the
recurrence relation (5.2) witha = 1+¢” and b* = q"*', but it satisfies the different ini-
tial condition R, (x) = x —g” = u;(x) + 1. Such polynomials are known as co-recursive
polynomials (61 and can be expressed as
Ra(x) = un(x: 144", g2 )+ (x5 1 +4”, 4“2 ).

The associated polynomials corresponding to the recurrence relation (5.2) are given by
uD(x; a, b; ) = un(x; aq, bq; q) = q"u,(x/q; a, b; g); thus,

Ro(0) = un(x; 14", g% ) + ¢ tuac1 (x/q; L+ 47, %V g).
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An explicit expression of the polynomials u,, (x; a, b; g) interms of Al-Salam—Chihara
polynomials is given by Van Assche [22, thm. 2]:

n gk gh(e=1)/2

= (@ Pk

Here P,(x; q; a, b, ¢) are Al-Salam—Chihara polynomials {1, (6.1)] which satisfy the
recurrence relation

Un(x;a,b; q) = Pi(—a; g; —ag" ", D220 B2y,

Puyi(x;g;5a,b,¢) =(x ~aqg")P,(x;g5a,b,c)
—(c—bg" (1 —q")Pri(x;9;a, b, ¢).

More information, including the orthogonality relations, concerning the Al—Salam——
Chihara polynomials can be found in [5, sect. 3].
Thus, we obtain the explicit expressions

(5.3)

5.4
4 n n—qu(k—l)/Z . )
Sp(x) =Y —————P(—(g +q"); g; —(1 + " )g" T2, 203 gy
and
n xn—qu(k—l)/z .
Rix)= ) —————P(=(1+¢"); q; (1 +¢")g" ™", g0+ g¥)
k=0 ((1, Q)k
n=1 _n—l—k k(k+1)/2
X
+ Y T P-4 g) g (1 + Mg TR gy
= @ Dr
n xn—qu(k—l)/Z il 2k s
=xn+2 W[Pk(_(l +4");q; —(1+¢")g" 7, g2 mOHeR gy
k=1 ’

+ (1 _ qk) Pk—l("(l +qV)’ q; _(1 +qv)qn—k+1’ qZ(n—k)+U+2’qV)] .
A generating function for the Al-Salam—Chihara polynomials is [1, p. 23]

Z ' (2900 (B 9o
@ P b H)
.2 = (5 4:4,5,0) @9Dn Y2 D37 oo

where 1 —az +bz22 = (1 —az)(1 — Bz) and 1 — xz + cz?> = (1 — y2)(1 — 82).
Take x = —(1+¢g") and c = g" so that y = —1 and § = —q". Consequently,
(1 4 2)®(z, —(1 + ¢")) is the generating function for x = —(g + ¢*) and ¢ = ¢**!.
Hence,

P.(—(14+9");9;a,b,4") + (1~ q") P, (—(1 +q"); q;a, b, q")
= Pu(—(@+q");q;a,b,q""")

and thus
(5.5

Ry (x) =

n xn—kq

k=0 (q; Q)k

k(k-1)/2
P(—(g +g%); g —(1 + g*)g"FF1, g¥n=hvi2 gutly
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Now that we have the explicit expression for the polynomials P, defined in (5.1) at
hand, we can determine the asymptotic behavior, which is related to the function j,(x; g)
introduced in (3.5).

Propesition 5.1.  For the orthogonal polynomials P,(x) defined by (5.1), we have, for
every x € C,

lim x"P,(1/x) = x'~ j,_1(x; q).
n—=>00

Proof. We follow the proof of Theorem 2 of {22]. For this we need the continuous g-
Hermite polynomials H, (x | g) introduced by Rogers in 1894. The three-term recurrence
relation is .

(5.6) Hopi1(x | ) =2xH,(x | @) — (1 =g Hu1(x | ),

with initial conditions H_;(x | ¢) = 0 and Hy(x | ¢) = 1 [4, sect. 6]. From (5.3) and
(5.6) we obtain [22, thm. 2]
(5.7

_ B a 1/2
lim Pu(—a; g: —ag" ™ Bq*" 0 b /g) = (—1)Pq “”H"( 7 “’)‘

Using this limit relation and dominated convergence, we obtain
lim x"R,(1/x) = lim x"S,(1/x)
n—oc n—oc

%0 (_1ykgktk=1)/2 1
(—D'q g s, (_2_(q(l—v)/2+q(v—l)/2) ,q);

= (giqn
hence,
(5.8)
. &\ (= 1)kghk-br2 <2k kD2 L Gowp | w-np
nlerolox”Pn(l/x Z @ q Hy 5(4 +gq )1g].
=p

To see that the right-hand side of (5.8) equals x'~¥ j,_ (x; ¢), we insert the explicit
expression [4, (6.1), (3.1)]

1 . B k o ggk e
H; <2 (x+x77) |q) - l;) (q;Q)z(q;CI)k—lx

for x = ¢®~/2 in (5.8). Interchanging summations and introducing m = k — [ shows
that (5.8) equals

$o e HOH & D" o mas

= (g5 9 fpard (4 Dm

0 (_1)g 3D ; )
(—ﬁ—( 24" Qoo = (420”5 Poo 101(0; x°¢”; g, gx°)

=x1 Yi1(x; q)

by use of [11, (1.3.16)]. - H
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Observe that the continuous g-Hermite polynomials are orthogonal on the interval
[—1, 1]; thus, the inequality 2 < ¢q™/2 4 q®~1/2 shows that the variable of the
continuous g-Hermite polynomial in (5.8) lies outside the support of the orthogonality
measure for the continuous g-Hermite polynomials—except when v = 1, in which case
it is an endpoint of the interval.

The Stieltjes transform of the orthogonality measure u for the orthogonal polynomials
P, can be obtained from

du@®y . PO@
5.9 =1 ,
e fRz—t n00  Po(2)

where P are the associated polynomials; see [5, thm. 2.4] and further references
therein.

So let us now consider the associated monic polynomials P satisfying
5100 PR =xPP® -npl®,  PYw=0, PP =1,

where y,; = Apy 1s defined in (5.1). These polynomials can be determined as before.
Because of the parity of these polynomials, we again set

PO® = T,6D, PO () =xU, ()

the monic polynomials 7,, and U, then satisfy the recurrence relations

Tor1(x) = (x — Y2u — Yoni D T (X) ~ Y21 ¥2u Tp1(x),
and

Unt1(x) = (X — Yont1 = Vons2)Un(X) — Y2n¥2ns1Un—1 (%),
Tyix)=1,Ti(x) =x —qgand U_;(x) = 0, Up(x) = 1, where

(g+4g"q" ifn >0,
Von + Vont1 = . s YVonYon—1 = q2"+“, n >0,
q ifn=0.
and
Yonil + Yz = 1+ 40", yauYour1 = g™, n>0.
Hence »
Un(x) = tn(x; g(1 +¢%), g" 7% q)
n_ yn—kpk(k-1)/2
=Y P(—q(l 49" g —(1 + g")g k12, q2rmbvea guay
=  @an

The polynomials 7, are again co-recursive polynomials for the recurrence relation (5.2)
witha = g + ¢” and b = g*P72_ with T| (x) = u;(x) + ¢"; thus,

L) =un(x;q +4".4“ @) + ¢ uu1(x/qs g + 4%, 4V ).
From the generating function of the Al-Salam—Chihara polynomials, we find
P.(—q(1+4q"); q;a,b,9"?)
= Pu(~(g +9"):4:0,5,¢"") + ¢" (1 = ¢V Pooi(—(q + ¢°); ¢; @, b, "),
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so that

n xn—k k(k—1)/2

q Pe(—q(1 +q"); g; —(g + g")g"~F1, g2rbrvi3 gvidy,

T,(x) =
® = @D

The proof of the following proposition is analogous to the proof of Propbsition 5.1

Proposition 5.2. For every x € C, we have

lim x" PV (1/x) = x77 ju (x; q).
n—>o0

5.2. Zevos of j,(x; q) and orthogonality relations

Combining Propositions 5.1 and 5.2 and (5.9) shows that the Stieltjes transform of the
orthogonality measure . for the polynomials is

(5.11) /dﬂ(t) _ _/zq)
R 2t j1(l/z9)

for all z ¢ supp(du) [5, thm. 2.4]. From the Stieltjes transform, we can derive the
orthogonality relations for the orthogonal polynomials P, defined in (5.1). We start with
an investigation of the zeros of j, (x; ¢). It turns out that the zeros of the function j, (x; g)
behave like the zeros of the (Hahn—Exton g-)Bessel function for v > —1. The method
of proof largely follows Ismail’s investigation [16] of the roots of the Jackson g-Bessel
function; see also [2, sect. 4].

Theorem 5.3. Let v € R and let the function j,(x;q) be defined by (3.5).

(@) The functions j,(x;q) and j,+1(x;q) have no common zeros, except possibly x = 0.

(b) The zeros of x~" j,(x;q) are real, simple, and symmetric with respect to x = 0.
There are infinitely many of them and their only point of accumulation is 0.

(¢) The zeros of x~"j,(x;q) and x4 (x;q) interlace. Moreover, the small-
est posmve zero of x7Vj,(x;q) is smaller than the smallest positive zero of

X~ .] v+1 (x 61)
Proof. First we prove (a) by use of an equality for the ;;-series. The relation

(5.12) 190100; ¢;9,2) — 19105 ¢, 9, q2) = —— 1<01(0 cq;q,q2)

can be proved directly or can be obtained from one of Heine’s contiguous relations for
the ,¢0, -series [11, ex. 1.9(iv)]. Take ¢ = gx? and z = ¢"+1x? in (5.12) to get, from (3.5),

(5.13) ) = x7 i (6 @) =~ (e @)
Substituting ¢ = g"*2x? and z = gx? in (5.12) and using (3.5) gives

(5.19 Jor @ @) — a7 Pxjy (7 @) = =g 2% o (0G5 ).
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If 0 # a is a zero of j,(x; ¢) and j,41(x; q), then (5.13) implies that a, /g is a zero of
Jjv(x; ). Next, (5.14) implies that a /g is a zero of j,41(x; g) as well. Soag*/?, k € Z.,
are zeros of the analytic function x™ j, (x; ¢), which implies that this function is zero.
This contradiction proves (a).

To prove (b) we recall that the orthogonality measure du is supported on a bounded
denumerable discrete set with zero as the only point of accumulation. So let d p, have
mass Ay at the points {#}7° ,; then, (5.11) is

= A wl/z)
619 k;z—tk‘ju_l(l/z;q)’ ks

The zeros of x! =7 j,_1(1/x; q) correspond precisely to the nonzero poles #; of the left-
hand side. So the zeros are real and simple. Since {#}7° | has zero as the only point of
accumulation, the only point of accumulation of the zeros of j,_;(x; ¢) is infinity.

To prove (c) we consider the (positive) mass of du at a nonzero 1,

2 pA/tiq
(/5 )
So ju(a; q) and j,_,(a; q) have opposite signs for 0 # a, a zero of j,_;(x;q). If
0 < a < b are two consecutive zeros of j,_i(x;¢q), then j,|_,(a;9)j,_,(b;q) < 0.
Hence also j,(a; 9)j,(b; q) < 0 and j,(x; q) has at least one zero in (a, b). In the
interval (1/b, 1/a) both sides of (5.15) are differentiable, and the derivative of the left-
hand side is strictly negative. If j,(1/z; ¢) has more than one zero in (1/b, 1/a), then
the derivative has a zero in that interval. Thus, j.(x; q) has precisely one zero in (a, b).
This proves the interlacing property.

Denote by x; the positive zeros of j, (x; ¢) numbered increasingly;

0<Ak=—

v v v v
O<x) <x; <+ - <xj <Xj <--.

Then it remams to prove that x;” < xl Since x 7V j, (x; g) equals 1 for x = 0 we get
that ]v NEIans q) < 0 and, thus T q) > 0. So j,(x; g) has an even number of
zeros in (0, x| ~1), and the same argument as in the previous paragraph shows that this
number is zero. [

The following proposition is the analogue of Proposition 4.1 for the orthogonal
polynomials P, and the functions j,(x; g).

Proposition 5.4. For n € Z., the polynomials P, and PV defined by (5.1) and (5.10)

1’[ Jp(x, Q) 1 (._) ]\)—l(x’ Q)
X n—1

qm(m+v/2) 2mJ (xq ) n= 2m,

qm(m—l-(v l)/2) 2m l(xq ), n=2m—1,

where j,(x;q) is defined in (3.5).
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Proof. TItsuffices to show that the right-hand side satisfies (5.1) with x replaced by x ',
since the left-hand side satisfies this equation and the cases n = 0 (trivial) and n = 1
(from (5.13)) are easily proved. This follows from (5.13) for n = 2m with x, v replaced
by xg™/?, v — 1, and from (5.14) for n = 2m - 1 with x, v replaced by xqg™~1/2,
v—1 n

In the proof of Theorem 5.3 we obtained information on the orthogonality measure for
the polynomials P, definedin (5.1). In the next theorem we describe the full orthogonality
relations. This theorem can also be proved from Proposition 5.4 by analogy with the proof
of Theorem 4.2 from Proposition 4.1.

Theorem 5.5. Letv € R and denote by x;, ~1, k € N, the positive zeros of the Jfunction
Jo=1(x;q) defined in (3.5). Then for the polynomials P, defined by (5.1), we have the
orthogonality relations

00 _ v—1,
Y P (%) P"‘( - ) PO D L (1 g )P0 Pa(0)
k=1 Xy '

%) @@ )

ql(l+")/2, n=2I,

= an,m

q(l+1)(1+v)/2’ n=21 + 1,

where the mass at x = 0 only occurs for v > 1. All weights are positive.

Proof. The only statements to be proved concern the norm and the weight at x = 0.
Denote the squared norm of P, by || P,||%; then (5.1) implies [10, (7)]

I Pall? = Anll Pact 12 == 1 Pall® = .. A4 lI1]1%

Together with the explicit value for A, in (5.1), the statement on the norm follows if we
prove ||1]]? = 1. The value of [|1]}? can be seen from the Stieltjes transform (5.11) as the
coefficient of z~! on the right-hand side and Lemma 3.3 for n = 0 and x = z~! shows
that it equals 1. 3 _

The weight at x = 0 equals p, where ol = Z:":O P,(0)? and P, denote the or-
thonormal polynomials [5, thm. 2.8]. From (5.1) we compute Ps,41(0) = 0, P5,(0) =
(=1)rg"*+n =172, thus, for the orthonormal polynomials, we have

D PZn(O) w—1)/2
Pou(0) = —==Z = (=1)"g" V2,
" ik A
and hence
&~ X foo ifv <1,
Y By =) gV = L
n=0 =0 (1-¢g""H"" ifv>1
Therefore there is a mass 1 — g*~" at the origin whenever v > 1. |

Again, as in the proof of corollary 4.3, using [23, (1.3) with n — 00] shows that the
orthogonality measure for the P, is contained in [N, N]with N < 1+ ¢*/2. Shifting
v to v + 1, we get the following corollary.
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Corollary 5.6. The first positive zero x} of j,(x;q) satisfies x} > (1 4+ q®+1/2%)~L,

5.3. The case v = 1/2

In the simple case v = 1/2, we have A, = ¢"/?. For simplicity, we take p = ¢q'/? so
that the recurrence relation (5.1) can be rewritten as

(5.16) Pri1(x) = x Py(x) — p" Ppe1(x).
We consider the generating function G(z, x) = Y .o P, (x)z". Multiply (5.16) by 7"+
and add all the terms from # = 0 to infinity; we then get

1 72
G(z,x) — 1 = x2G(z, x) — 22 pG(pz, x) => G(z,x) = — — 2P _G@p,x).
1 —xz 1 —xz
Solving the p-difference equation with respect to the condition G(0, x) = 1 gives, by
iteration,

. 0 k.,2k k
.17 Gen=3 P

= (2x; pPhn

We use the p-binomial theorem,
1 x k+l’
= WP oy,
@x; Pt 2= (PP

in (5.17). Changing the summation index #n to j — 2k gives

Glex) =3 3 (hfeiai2pt P Pk

k=0 j=2k (p; P)j—2k
2
:izjui/:( l)kxj —2k k2 (P »P)j Zk'
j =0 (ps P)j-2k

Next identify the coefficient of z” and use (p**'; p);_2x = (p; p)j—x/{p; P)« to find

/2]

(5.18) Po(x) = Z(~1)kxn-2kpkz (P; Pn—x
k=0

(p; P(P; PIn—2k

These polynomials are a special case of orthogonal polynomials associated with the
Rogers—Ramanujan continued fraction; they correspond to the case a = 0, b = p, and
g = p in [2]; (5.18) corresponds to [2, (3.7)]. These polynomials are also the special
case u,(x) in [22] witha = 0,b = g, and g*> = p; (5.18) corresponds to [22, (2.7)] after
observing that, for the Al-Salam—Chihara polynomials in (5.3), we have

b
P2 1(0;9;0,b,¢c) =0, Pzn(O:q;O,b,c)=(—1)"0"(;;qz> @; g*n-

n

The associated polynomials P! satisfy the recurrence relation

(519) P(l)l (x) — xP(l)(x) n+1P(l)1 (x)
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with Pf’l) = 0 and Po(l)(x) = 1. Replace x by x/./p in (5.19); then the monic
polynomials p"/?P,(x/./p) satisfy the recurrence relation (5.19) so that P{V(x) =
pPP(x/ D).

For the case v = 1/2, we have two different expressions for the same polynomials.
From (5.4) and (5.18), we obtain the following summation formula for the Al-Salam—
Chihara polynomials, 0 < k < n,

Pu(—(q +q"%); q; —(1 + g7 /2)g"H12, g2=bAT12 302y

(5.20) 1/2yk

_ @ @ 0@ 9 P01
@2 4" @ ¢ P ons1-a

The Al-Salam—Chihara polynomials are expressible in a 3¢, series, as proved by Askey
and Ismail {5, sect. 3.8]. Explicitly, the following connection between the original
notation of [1] and the notation of [5] holds:

(5.21)k

P.Qax; q; (y + d)a, y8a2, o?) =Sp(x: ¥,0|q)
(g5 D ,

_ &k (q"‘,yy,r/y,qq)
(q: P ys, 0 TN

where x = (y +y~1)/2.

Corollary 5.7. The summation formula
g%, g™,
2,0

holds for k € Z,. and ¢ € C.

. ) _
% g 3<p2< ;q,q) = (cq V¥ (—q"%; ¢"P(c; ¢ 0

Proof. In(5.20), we use (5.21) with the parameters « = —g>/%, x = (¢"/* +¢~1/%)/2,
y = q" %34 § = g"k+5/4 1o get the result of the proposition for ¢ = g"~**1. Replace
n — k by m in this result to prove the corollary for c = g™+, m € Z.. Since both sides
are polynomial in ¢, the result follows for arbitrary values of c. u

Remark. (a) Comparison of (5.5) with (5.18) instead of (5.4) with (5.18) leads to
the same corollary. The same result is also obtained if we work out the different
expressions for the associated polynomials in the case v = 1/2.

(b) Corollary 5.7 can be obtained directly from g-analogues of Gauss’s quadratic trans-
formation and. of the Chu—Vandermonde summation formula [11, ex. 3.1, (1.5.3)],
or by taking @ = 1 and z = ¢ % in [11, ex. 3.8]. We thank Mizan Rahman, Ren¢
Swarttouw, and the referee for pointing this out.

Proposition 5.8. Consider the monic orthogonal polynomials given by (5.16) and the
associated polynomials given by (5.19). Then, for every x € C, we have

lim x" P,(1/x) = F(x), linolox”P,f”(l/x) = F(x./p),
n—oc n—
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where

e ( l)k,'«\ka K? _ )
Z 0(/71(0;17,—«‘517)-

k=0 (p P)k
Proof. Straightforward by letting n — o0 mn (5.18) after changing x to 1/x and
multiplying by x”". ]
From Proposition 5.8 and Propositions 5.1 and 5.2 for v = 1/2, we obtain the equalities
or(— 0, "%, —x%q"%) =221 p(x: @),
op1(—; 0; ¢'%, —xq) =x7% jip(x: g),

which give two transformations of a o¢; -series of base g'/2 = p in terms of ¢ -series of
base g. In two special cases the lefi-hand sides of (5.22) can be summed by the Rogers—
Ramanujan identities [11, (2.7.3), (2.7.4)]; this gives explicit vatues for j_;(x; g) for
x = i, +ig'/* and for ji;5(x; q) for x = =i, £ig /4.

(5.22)

6. Orthogonality for the Laurent g-Lommel Polynomials

In this section, we give a different form for the strong moment functional introduced
in Section 3. The limit transitions (3.4) and (3.6) suggest the rewriting of the strong
moment functional £ defined in (3.15) as a contour integral over the unit circle. This
can be done if j,_1(}; g) # 0, since we have sufficient knowledge on the location of the
zeros of j,—1(x; g) (see Theorem 5.3) and of J,_;{x; ¢) (see [18, sect. 3] and Section 4).
A Wronskian type formula can be used to simplify the integrand.

Lemma 6.1. Lef r,(x) and s, (x) be solutions of the recurrence relation {1.7); then
the Wronsiian 1y (X)Sim+1(X) — S (X)rmq1 (x) iSindependent of m € Z.

Proof. Multiply the recurrence formula for r,, (x) by s, (x) and multiply the recurrence
relation for s,,(x) by r,, (x). Subtract the resulting identities to find the result. [ ]

Lemma 6.2.
- (%72 oo (5% @0
(9 D)oo

L /x gy jom1(xs ) — Lo (U/x @) ju (x5 9) =

Proof. Joym(1/%;q) joam—-1(x; @) — Joym-1Q1/%: @) josm(x; q) is independent of m
by proposition 3.1 and Lemma 6.1. Take m = 0 to obtain the left-hand side of the lemma
and use (3.7) and m — oo to see that it also equals

@x 7% Poolgx?; Poo
(99
which proves the lemma. [ |

Gt =-x)

’

Lemma 6.2 implies that x(g; §)oo [Jo(1/x; @) ju—1(x; q) — L1 (1/x; @) ju(x; @)] is
a theta product {3, sect. 11.
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Now we can rewrite the strong moment functional £ with respect to which the Laurent
g-Lommel polynomials are orthogonal (see Theorem 3.4).

Theorem 6.3. Lets > 0 such that s is not a zero of J,—(1/x;q) and j,_(x;q). For
v > 0, the strong moment functional L defined in (3.15) equals

: f p(z) @275 Do Poo dz
2711(q;5 Qoo Jiz)=s Jo-1/z @) jo1(z39) 2

A I ~1 —J, (j“";cp
+ plo1tpel - ;
;( (jk ! ) <]}c )) (fk 1)2-] 1(} 5 q)

. Jo 0775 q)
+ ) (p ™+ pl=xhH) =
=1 Jom1 775 9)

Lp) =

where p is an arbitrary Laurent polynomial. Here j =1 (vespectively x,""l) denote the
positive zeros of J,_ (x;q) (respectively j,—,(x;q)) numbered increasingly. N is defined

by ju !l <s < j}(,‘:l, and so the sum over the zeros of J,_1(x;q) is empty if j'™' > s.

M is defined by x; M <5 <Xy, +1, and so the sum over the zeros of j,—1(x;q) is empty
if x;” V'S 5. The discrete weights in the first sum over k are positive and the discrete
wezghts in the second sum over | are negative.

Remark. (a) By choosing s = r (respectively s = 1/R) with r and R as in Section 3,
we get M = O (respectively N = 0). In Section 7 we show that for v sufficiently
large we have N = M = 0 for a suitable choice of s.

(b) The nonzero poles of the integrand in Theorem 6.3 are simple. Indeed, if 0 # a
satisfies J,_1(1/a; q) = 0 = j,_1(a; ¢), then Lemma 6.2 implies that the numerator
is zero as well. Moreover, a = g#/? for some p € Z, which is a simple zero of the
numerator. There exist only finitely many such values in the (possibly empty) interval

=t 17507,

Proof. In the first contour integral in (3.15), we shift the contour integration from
|z] = 1/R to |z| = s and in general we assume s < 1/R. We pick up residues at the
simple poles z = :l:l/j,f_l, k=1,..., N (see Theorem 4.2). For 1/R < s we have the
case N = 0. The second contour integral in (3.15) is shifted from |z] = r to |z] = 5. In
general we assume r < s, otherwise we have the case M = 0. Here we pick up residues
at the simple poles z=#x'"1,1=1,..., M. The residues are casily calculated. Next
we take together the integrands of the contour integrals over |z| = s using Lemma 6.2 to
prove the expression for £(p) in this case. The last statement follows from Theorem 4.2
and Theorem 5.5. ]

Remark. The most natural choice for s in Theorem 6.3 seems to be s = 1. This is
motivated by the fact that there is a transition in the asymptotic behavior of the Laurent
g-Lommel polynomials on the unit circle (see (3.4) and (3.6)). Moreover, numerical
experiments indicate that for m —> oo the non-real zeros of the Laurent g-Lommel
polynomials (remark 2.1) are possibly dense on the unit circle. Of course, from (3.4)
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(respectively (3.6)), we see that the real zeros outside (respectively inside) the unit circle
tend to the zeros of J,_1(x~'; q) (respectively j,_1(x; ¢)). This corresponds precisely
to the discrete set in the orthogonality measure of Theorem 6.3 fors = 1.

7. Laurent g-Lommel Polynomials as Perturbations of Chebyshev Polynomials

Let us now return to the recurrence relation (1.7), which we rewrite as
(7.1 P15 @) = 7+ X (65 @) + Anot (53 @) = —xg" R (x5 q).

In this way, as ¢ — 0 oras v — o0, the Laurent polynomials h, ,(x; g) should be close
to a solution of the three-term recurrence relation

(7.2) Bg1(x; 0) — (x71 + x)h, (x; 0) + hymy (x5 0) = 0.

The solution of this recurrence, with initial values ho(x;0) = 1 and A_;(x;0) = 0,
is given by h,(x;0) = (x"*! — x™*~1)/(x — x~!), which, in terms of Chebyshev
polynomials of the second kind, can be written as

~1
hn(x;O)—_—U,,<x+2x ), nelZl,.

In this way the Laurent polynomials %, ,(x; g) can be considered as perturbations of
the Chebyshev polynomials. We now do a perturbation analysis, much as is done for
perturbations of orthogonal polynomials in [12] and [23]. In the spirit of the Liouville—
Green approximation (WKB method), we will consider (7.1) as a second order recurrence
relation with nonhomogeneous term —xg” "k, ,,(x; ¢), even though this term depends
on the desired solution 7, ,(x; ).

We solve this nonhomogeneous recurrence relation by Green’s method. We need
the Green function G|(n,m), which is the solution of the recurrence relation with
nonhomogeneous term 6, p, i.€.,

(7.3) Gin+1,m) — (x7' +x)G(n,m) + Gy(n ~ 1,m) = 8, m,

with boundary conditions
(7.4) Gi(n,m) =0, n>m.

Clearly G(m, m) = G (m + 1, m) = 0; thus, from (7.3) we find G,(m — 1, m) = 1.
For k > 0 we find that ri(x) = G,(m — k — 1, m) is a solution of the homogeneous
recurrence relation (7.2) with the same initial conditions ro(x) = 1 and r_;(x) = 0;
hence,

-1
G1(n,m)=Um,ﬂ—1(x+2x ) - n<m.

Now multiply (7.1) by Gi(n,m) and (7.3) by h,,(x; q) and subtract the equations
obtained to find

hn+1,u(X; Q)Gl(n, m) - hn,v(x; Q)Gl(n - 19 m) + hn,u(X; q)an,m
= hno (% )G (0 + 1,m) ~ hpe1 (x5 )G (n, m) — xg" " h, , (x; 9)G1(n, m).
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Add all the equations from n = 0 to n = m and use the boundary conditions (7.4) to find

m—-1 -
how(: @G (=1, m) = hy o (x;9) +x Y g"V"G1(n, M, (x: ).
n=0
This gives
x4 x7! mol b x+x7! .
(1.5 hpu(x;q) = Um( 3 )*x;}q Um—n—l( 2 By (x; ).

From this relation we can deduce some useful properties.

Lemma 7.1. Suppose x = '® with 8 € [0,27); then,

(7.6) Von.v (3 @] < (2 + 1) exp ( a —q-vq>2)
and

| qv . qv.
1.7 [sind hnp (i I < 14 s e"p(flfq)'z)'

For |x| # 1 we have

2 2 v
lx”kn,vi-ﬁ q)f < il __ng ex?( d )s x{ <1,

T—x¥ 1—¢q
2 2 q’
—_n X < - —_— 1 > 1'
\x hn,v(x,q)]_ Il-—x_zl exp(ll_x._zl l—q) Lxl

Proof. We use Gronwall’s inequality (3.9); for nonnegative A, ¢,, and dy, (n = 0), we
have

n—1 n—1
<A+ }:dkck == ¢, < Aexp (de) .
k=0 k=0

From the bound |U/,(cos6)| < n + 1 and (7.5), we find

n—1i

ap G ) <+ 1+ ) g7 = 0)hi (x5 ).
k=0

Hence, taking ¢, = |k, (x; ¢)|/(n + 1) in Gronwall’s inequality gives

Ihn,v(x; q) =) v
SRS < e (Z(k +1)g +’°) .

k=0
The desired inequality (7.6) then follows from Y oo o(k + Dg* = (1 — g)°. If we use
this inequality (7.6) and | sin@ U,(cos8)| < 1in (7.5), then

v

n—1
Isind A, (xi )l < 1%6Xp< 1 2)Z(k+ Dg**,
(t—q) /=
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which gives (7.7). The bounds away from the unit circle follow by using

x +x—1 Paax! — xn—l
nU = n < R < 1,
* ( 2 )‘ e g TR
and
x + x~! Xl el
", = |x" < , x| > 1,
* "( 2 ) x—x-1 T —x2 d
and by using Gronwall’s inequality. ]

From these bounds we see that the Laurent Lommel polynomials have an expo-
nentially increasing upper bound both inside and outside the unit circle, and that the
Laurent polynomials are bounded on the unit circle, except when x = =1, in which case
[,,0(x; )| = O(n). This strongly suggests that in Theorem 6.3 the choice s = 1 for
the strong moment functional £ is the most natural.

The Laurent polynomial solution of (7.1) is not the only interesting solution. In Sec-
tion 3, we obtained the minimal solutions j,,(x; g) and J,,(x"; g) on the open unit
disk and the exterior of the closed unit disk, respectively. The minimal solutions %, (x; 0)
and h;F (x; 0) of the recurrence relation (7.2) on the open unit disk {z € C: |z| < 1} and
the exterior of the closed unit disk {z € C : |z| > 1} are given by £, (x; 0) = x" and
b} (x; 0) = x", respectively. Our intention now is to find similar solutions i (x; q)
satisfying

lim A% (x;q)xt" =1
n—>o00 7’

on{z € C: |z] < 1}and {z € C: |z[ > 1}. Such functions clearly exist, since by
Proposition 3.1 and (3.7) we see that

hi(xq) = (—(%gfg—x”fm(x"\; 9),
(7.8) q lvq oo
h;v(x; )2_‘——“3‘:—” fotn (X5 G)
VD G e

fulfill the required conditions.
We will now do a perturbation analysis of these minimal solutions in a similar way as
for orthogonal polynomials [12], [13]. Again, we write the recurrence relation as

(7.9 hfﬂm — ! ~|—x)h,fv(x; q) + hf_lyv(x; q) = —xq””h,fv(x; q)

and look at this equation as a nonhomogeneous second-order recurrence relation with

‘nonhomogeneous term —xq"“hiv(x; q). The homogeneous equation has two simple
solutions, hf(x; 0) = x¥". We solve the nonhomogeneous recurrence relation using
Green functions, but now the Green function G, (n, m) is the solution of

(7.10) Ga(n+1,m) — (a7 +x)Ga2(n, m) + Go(n — 1,m) = 8, »,
with boundary conditions

(7.11) Go(n,m) =0, n<m. .
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Since G, (m, m) = Go(m — 1, m) = 0, we find G,(m + 1, m) = 1 and, in general,

-1
Gy(n,m) = U, _p_ 1<x+2x ), n>m.

Multiply the recurrence (7.9) by G2(n, m) and (7.10) by h,fv(x; q) and subtract to
find

hfﬂ’v(x; q)Gax(n, m) — h,fv(x; q)Gz(n —-1,m)+ hi L @) m
= hE,(6;9)Ga(n + 1, m) — hi_, ,(x; 9)G2(n, m) — xq" "k (x; ) Ga(n, m).

Add the equations fromn = m ton = M, withm < M and use the boundary conditions
(7.11) to find

By (5 @)G2(M, m) — By, (3 ¢)Go(M + 1, m)

M
=—h:, (i)~ x Y q""RE,(x; 9)Ga(n, m).
n=m+1

From (7.8) and (3.7), we obtain

hm hEH (6 Q)G (M, m) — Ry [ (x; ¢)G2(M + 1,m) = —x7™, x| > 1,
and
Jim Ry, (6 @G (M m) = by, (5 )G2(M + Lm) = —x", x| <1,
so by letting M — 00, we have
k=1

Compare these relations to (7.5). We can find appropriate bounds on these solutions and
from this we can obtain bounds for J,1,(x~; ¢) and j,4,.(x; ¢).

Lemma 7.2, Ifx # %1 then

U+n+1
nh+ . < , > 1’
X"y, (x: )] < eXp([l 7 l—q ) x| =
(7.13)
v+n+1
|x‘”h,:u(x;q)|5exp(“_x2| =4 > [x] <1,
and
nqv+n+1 qv+n+l
Ix"ht (x; q)] < ex ( + x| > 1,
: PUT=g T a— ¢
{7.14) :
7Y Lasax v4n+1
Ix ™"k, (0)] < exp( Cll_q + g —q)z) x| < 1.



Orthogonal Polynomials and Laurent Polynomials 507

Proof. We now use a backward version of Gronwall’s inequality: for nonnegative A,
¢n, and d, (n > 0), we have

o0 oo
<A+ Z dkck<oo=>,c,,_<_Aexp(Z dk>.
k

k=n+1 =n+1
The inequalities (7.13) then follow from (7.12) and the inequalities
U (e +x71/2) 1 < 2/11 = x*2),

which hold for |x| < 1 (for the -+ sign) and |x| > 1 (for the — sign).
Inequality (7.14) uses the inequality [x*"U,((x +x71)/2)| <n+lon|x| < 1and
|x] = 1 respectively. So from (7.12) we get

o0
Ix"ht, @)l < 1+ Z g " Ix*rf (s @k — n)

k=n+1
o0
<1+ ) k@Rl gl IxI 21
k=n+1
from which the first inequality of (7.14) follows by Gronwall’s inequality. - ]

We are now ready to give some information about the zeros of the functions h,ﬂ;v (x:q)
inside and outside the open unit disk.

Theorem 7.3.  The zeros of h,fv(x;q) are all real. The function hy (x;q) has no zeros
in{x € C: |x| = 1} and h; ,(x;q) has no zeros inside {x € C: [x| < 1}, whenever
n> M®,q), where

In(1 —g) 1

(7.15) My,g)=—-v—-142 .
Ing Ing

In particular, ht, (x;q) has at most 2M (v,q) + 2 zeros in {x € C: |x] > 1} and

—1,v

h—, ,(x;q) has at most 2M (v,q) + 2 zeros in {x € C: |x| < 1}.

Proof. The reality of the zeros follows from the explicit representation (7.8) and the
reality of the zeros of the Hahn—Exton Bessel function [18, sect. 3] and the zeros of
Jv(x; q) (see Theorem 5.3). For an upper bound on the number of zeros, we use (7.12)
to find

% -1
- x*hE (x1q) = Z g HanE (x; q)xin;k+1Uk_n—l(x +x )
| k=n+1 ’ 2
Use the inequality (7.14) and [x* U, ((x + x7')/2)| < n + 1 to find, for |x| > 1,

(kqv+k+l 4 qv+k+l )
l—q  (A-9?)’

o0
1= x"hf (sl < Y (k—mg"Hexp
k=n+1

and, similarly, for [x| < 1,

(kqv+k+l qv+k+l )

0
1—x7"h_ (x;9)| < k - n)g'tt
11 =x""h (5l < ) (k—n)g" ™ exp 17 T a2

k=n+1
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The right-hand side can be bounded by

oo o kqv+k+l qv+k+1
2 (k=ma’ exp( = +(1—q>2)§ex ( q)2>z(k_")qv+k

k=n+1 q k=nt1

_ qv+n+l exp ( qu+n+l )
(1-¢g)? (1-¢g)?
Choose M = M (v, q) such that

v+M+1 v+M+1
q exp( el ) < 1;

(1—¢g) (1—qg)?

then 47, (x; ¢) for n > M cannot be zero for any x such that [x| > 1. An appropriate
M(v, q) is given by (7.15). The same reasoning holds for £, (x; g) on the closed unit
disk. So now we have established that, for n > M, the function A, has no zeros for
Ix| > 1 and Ak, has no zeros for |x| < . The zeros of 4, are equal to the zeros of
Jo+n(1/x5 g). If i, k=1,2,3,..., are the zeros of J, (x q) numbered 1ncreas1ngly,
then, from the interlacing property of Theorem 3.7 in [18], we have j < ji*' < jl.;;
hence, when the parameter v is decreased by one, then the kth positive zero moves to the
left. This means that the kth positive zero (counted from the right) of £, ,(x; q) is to
the right of the kth positive zero of & (x; ). Since h}; , (x; g) has no zeros x > 1, this
means that h}; L v(x q) can have one zero x > 1 namely 1/j; iV TM=1"and it cannot have
two zeros x > 1 since 1/]“+M I < 1/]"+M < 1. Decreasing the degree of hf (x:q)
by one thus increases the number of zeros in |x| > 1 by at most 2 (one positive zero and
one negative zero). Therefore h_1 ,(x; g) has at most 2M + 2 zeros in |x| > 1. Similar
reasoning works for the zeros of hn,v (x; q) in |x| < 1 by using the interlacing property
of the zeros of j,(x; q) and j,1(x; g) given by Theorem 5.3. |

The upper bound on the number of zeros of hfl,v(x; q) gives a useful upper bound
on the number of discrete mass points of the strong moment functional £ as given in
‘Theorem 6.3 when s = 1. Indeed, the zeros of htl,v(X; q) correspond to the zeros of
Ju_1(1/x; g) and thus N < M (v, g) + 1. Similarly, the zeros of A_; ,(x; q) correspond
to the zeros of j,_1(x; g) and, thus, M < M (v, q) + 1. In particular, M = N = 0 in
Theorem 6.3 for s = 1 for v satisfying M (v, g) < 0.
Finally, let us give another derivation of the orthogonality of the Laurent polynomials
hn.,(x; q) by using the minimal solutions h,fv (x; q). Observe that, from (3.3), (3.5), and
(7.8), it follows that h,fv(x; g) have a power expansion of the form

o0
R, =1+ Y K kx ¥, x> 1,
k=0

and

o0
hy ) =1+ ) KT kx¥, <L
k=1
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We can get some information on the coefficients K*(n, k) by introducing Banach
algebras. If f is analytic in the open unit disk with Taylor series

o0
f@ =) fid,
k=0
then we define
[o.0]
= =) vl Al
k=0

and we denote by A~ all the functions f for which || f||- < co. Here v, k € Z,isa
positive increasing sequence for which vy = 1 and v, < v, v,_, foreveryn > m > 0.
Similarly, when g is analytic near infinity with Laurent series

o0
2@ =Y az
k=0

then we define

o0

lglhs =D velgal

k=0

and denote by A™ all the functions g for which ||g||; < 0. One easily verifies that for
two functions fi, f» € A* one has

Ifif2lle < 1fillx I 20+,

so that we must be dealing with Banach algebras.
Observe that

[e o]
ek, G Dl =1+ vad K¥(n, B,
k=0

x™"hy, s - =1+ vl K~ (2, k).
k=1

Taking norms in (7.12) gives

. oo _ x+x-1
Ix"hE s lle < 1+ Y g lixknf (s @)l 15 ’<+‘Uk_,,-1( 5 )||+.
k=n+1 )

x+x!
-y,
¥ ( 2 )

so that Gronwall’s inequality gives

o v
lx"h;,(x; @)ll+ < exp ( Z kqwrkvzk) .

k=n+1

Now

=+

n n
27
=1 xHle =) v < @+ D,
j=0 j=0
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—1/2 shows that

Taking v, = a"” witha < g

[o¢]

1+ Za2k|K+(n, k)| < oo;

k=0
thus, x”h+ ,(x; g) € A*. This shows that the function h+ ,(x; q) is, in fact, defined for
x>q'. Slmllarreasomng showsthatx™"h_ (x;q) € A andthath, (x; q) isdefined
for x < q~'/2. From (7.8) we see that i (x q) has poles at the zeros of (gx~2; ¢)oo
and that x = +4'/? are the poles of largest modulus. Similarly, &, ,(x; g) has poles at
the zeros of (gx?; ¢)e and x = g ~1/2 are the poles of smallest modulus.

Suppose now that +1 are not zeros of hfl (x; g). Evaluate the contour integral

1+=L B (x5 BT (x5 @) dx
278 Jiger  hE L, (x5 9)

If m < n, then the integrand behaves as x™ " near x = oo and thus I, has no

contribution from x = co. So when x (j = 1) are the zeros of h_1 L5 q), then

N R T BT, (x5 )
I = — J J
p=-2 LG

j=1
where N is defined as in Theorem 6.3 for s = 1. Similarly, we compute the contour
integral
| B (xs @Ry, (X5 q) 4

I_=— =
2ri Jix=1 hZy (x5 q)

The integrand behaves as x"~™*! near x = 0 and, thus, there is no pole at the origin
whenm < n (even form < n+1). There are poles at the zeros x; G=zD ofn”, (x:q)
and we thus have

L]

I = i hm,v(xi'_; q)h_n_,v(x,j; q)
(hZ, G5 a)]
where M is defined as in Theorem 6.3 for s = 1. Subtracting I, and I gives
B ()T, (i g) — bt (xR, (x;
Lt et [ bt (PO SR 0))
Jx|=1 Ry (xs@hZ (x5 q)

2mi
The Laurent polynomial &, ,(x; q) is a solution of the three-term recurrence relation
(7.1) and therefore a linear combination of the two special solutions h,fv(x; g). With
the initial conditions kg ,(x; g) = 1 and A_y.,(x; ¢) = 0 and by combining (7.8) with
Lemma 6.2, we find

7' = Xhn(xig) = kI, kY (5 9) —h _lv(x Dk, (x; q),

j=1

50 that

1 dx
-1 =— X —X l)hnvx hmv(x )
+ 2mi lx|= 1( (x:4) 1 _1 u('x Q)h_l V(X Q)
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On the other hand, at a zero x| we see that h,tv(xf; q) is a solution of (7.1) with initial
value hflgv(xf; q) = 0, so that h,tv(xf; q) = hg:u(x;’; q)hn,v(x;r; q). Similarly, at a
zero x; we have h;v(xj'; q) = hav(xj“; q)h,,,,,(xj‘; q). Therefore

M(v.q) hit x:7:9)

- - 0.v\j >
-1 = Po X7 Dhm (X5 q) —4————=
+ ; n j q)Mim,v J q [htl,u(xj ;Q)]/

Mv,q) h+ (x+q)
0,p\*j
+ D P @l (63 @)
2 ool Dl 6T 0 G L

Combining both expressions for I_ — I, gives the orthogonality of the Laurent poly-
nomials 4, , (x; ¢) and corresponds to the result given in Theorem 6.3 for s = 1. In the
case ¢'/? < s < q~1/2, the orthogonality relations of Theorem 6.3 can be derived in a
similar way.

This approach can also be used to prove orthogonality for the Laurent polynomials
x 7V h, (x5 ) (see (2.3)). Note also that the case ¢ = 0 gives the orthogonality relations
for the Chebyshev polynomials of the second kind.
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