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ABSTRACT 

Objective: The aim of this study was to investigate why CCR2 as well as CCR5 blockade failed 
in the treatment of rheumatoid arthritis (RA) by using an in vitro monocyte migration system 
model.

Methods: Monocytes from healthy donors (HD; n = 8) or from RA patients (for each chemokine 
receptor antibody n = 8) were isolated from peripheral blood and pre-incubated with different 
concentrations of either anti-CCR2 or anti-CCR5 blocking antibodies (or medium or isotype 
controls) prior to chemotaxis. Chemotaxis was induced by CCL2/MCP-1 (CCR2 ligand), or 
by CCL5/RANTES (CCR5 ligand), or by a mix of 5 RA synovial fluids (SFs) and compared to 
chemotaxis medium alone.

Results: Anti-CCR2 antibody treatment blocked CCL2/MCP-1-induced chemotaxis of both 
HD and RA monocytes compared to isotype control. Similarly, anti-CCR5 antibody treatment 
blocked CCL5/RANTES-induced chemotaxis of RA monocytes. However, none of the blocking 
antibodies was able to block SF-induced monocyte chemotaxis.

Conclusion: The RA synovial compartment contains several ligands for both CCR2 and 
CCR5 as well as other chemokine receptors involved in monocyte recruitment to the the site 
of inflammation. The results indicate that redundancy might indeed account for the observed 
chemokine receptor blockade failure in clinical trials.
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INTRODUCTION

Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by massive infiltration 
of synovial tissue and synovial fluid with immune cells that is mediated by chemokines and 
adhesion molecules(1;2). It is well accepted that monocyte/macrophage numbers are increased 
in clinically affected joints and these numbers correlate with the clinical signs and symptoms(3). 
Accordingly, clinical improvement after effective antirheumatic therapy is consistently associated 
with reduced macrophage numbers in the synovium(4). Taken together, synovial macrophages 
are considered key effector cells in the pathogenesis of RA(5;6). 
Chemokines play an important role in the accumulation of these cells at the site of inflammation. 
They belong to a superfamily of small (6-14 kDa) structurally related proteins that regulate the 
traffic of various leukocytes (7). Inflammatory chemokines are expressed in inflamed tissues by 
resident and infiltrated cells upon stimulation by pro-inflammatory mediators present in situ. RA 
synovial tissue and fluid contain high concentrations of a variety of inflammatory chemokines 
(1;8);(9-13) that can interact with chemokine receptors on the surface of monocytes/macrophages 
contributing to their accumulation at these sites. Specifically, CCR2 (major ligand CCL2/MCP-
1) and CCR5 (ligands CCL3/MIP-1a, CCL5/RANTES and CCL7/MCP-3) are abundantly 
expressed by RA monocytes/macrophages (1;10) suggesting that interference with the migration 
of these cells by cytokine receptor blockade might be a successful therapeutic approach to reduce 
synovial inflammation. Although CCR2(14) and CCR5(15) receptor blockade has shown 
positive results in animal models of RA, targeted CCR2(16) and CCR5(17;18) blockade was not 
effective in RA patients.Therefore, we investigated the effect of specific CCR2 or CCR5 blocking 
antibodies on monocyte migration in an in vitro model, to provide insight into the question as 
to why CCR2 and CCR5 blockade may have failed in RA patients.

MATERIAL AND METHODS

Patients
Peripheral blood was obtained from RA patients (19) with active disease, defined by the presence 
of at least one clinically inflamed joint (for each CCR antibody n = 8) and healthy subjects (n = 
8). None of the patients was being treated with biologicals. The study protocol was approved by 
the Medical Ethics Committees of the AMC/University of Amsterdam and all patients gave their 
written informed consent. Demographic and clinical features are shown in Table 1.  
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Table 1. Demographic and clinical data of patients
Anti-CCR2 Anti-CCR5

Sex, female/male (n) 8/8 7/8
Age in years, mean (range) 56.1 (44-72) 57.1 (41-78)
Disease duration, mean (range) 35.5 (2-108) 46 (4-120)
Rheumatoid factor positive, n (%) 4 (50%) 7 (87.5%)
ACPA positive, n (%) 4 (50%) 6 (75%)
SJC, mean (range) 6.7 (0-13) 1.6 (0-3)
TJC, mean (range) 8.5 (0-15) 5.8 (0-15)
ESR mm/h , mean (range) 21.6 (7-62) 32.7 (5-110)
CRP mg/liter, mean (range) 6.7 (1-21.7) 3.6 (2-4.8)

ACPA, anti-citrullinated protein/peptide antigens; SJC, swollen joint count; TJC, tender joint count; ESR, 
erythrocyte sedimentation rate; CRP, C reactive protein.

Monocyte isolation
Peripheral blood mononuclear cells (PBMC) were isolated by Ficoll gradient as previously 
described (20). Monocytes were purified by negative selection using Monocyte Isolation Kit II 
(Miltenyi Biotec, Bergisch Gladbach, Germany) according to manufacturer’s instructions. The 
purified cells were > 95% pure as determined by FACS analysis. Isolated cells were phenotyped 
using: CD3-FITC (BD Biosciences, Oxford, United Kingdom), CD14-APC (BD Biosciences) 
and one of the following chemokine receptors CCR2-PE (R&D systems, Abingdon, United 
Kingdom) or CCR5-PE (BD Biosciences).

Neutralizing antibodies and isotype controls
The following neutralizing antibodies were a gift from Millennium Pharmaceuticals Inc.: mouse 
anti-human CCR2 (mouse IgG2a; clone m1D9) and mouse anti-human CCR5 (mouse IgG1; 
clone 2D7). Functional grade mouse IgG1 and mouse IgG2a antibodies were used as isotype 
controls (both from eBioscience, San Diego, CA) for CCR5, and for anti-CCR2, respectively.

In vitro chemotaxis
Monocytes were first washed in chemotaxis medium (PBS with 1% albumin low toxin), incubated 
for 30 minutes in the absence or in the presence of various concentrations of anti-CCR antibodies 
(anti-CCR5: 1 or 5 mg/ml; anti-CCR2: 1, 5 or 25 mg/ml) or respective isotype controls (25 or 
5 mg/ml). After incubation, 1x105 monocytes were transferred into the upper chamber of 5 mM 
pore size transwell plates (96 well ChemoTX®, NeuroProbe, Gaithersburg, MA). Chemotaxis 
medium was added to the lower chamber together with recombinant chemokines CCL2/
MCP-1 (100 ng/ml; R&D systems) or CCL5/RANTES (500 ng/ml; Peprotech, Rocky Hill, 
NJ) or pooled RA synovial fluid (SF; 50% diluted in chemotaxis medium, n = 5 RA patients). 
After 2 hours at 37°C, migration was quantified by staining the cells that were attached to the 
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membrane. Briefly, after aspiration and removal of the cells from the top wells the membrane 
was fixed in pre-chilled methanol (bottom side down) followed by addition of DAPI solution 
to the membrane. After the membrane was dried, it was mounted on an OptiPlate (bottom side 
up) and the number of DAPI positive cells (cells that were trapped in the membrane = migrated 
cells) was quantified using a multilabel reader Victor3TM (PerkinElmer, Inc., Waltham, MA). The 
DAPI counts of empty wells (no addition of cells; background) were subtracted from the wells 
containing cells. Data are expressed as mean ± SD of migrated cells.

Statistical analysis
Differences between groups were determined by unpaired t-test using the program GraphPad 
Prism (version 4) and (P < 0.05 considered statistically significant).

RESULTS

Anti-CCR2 antibody treatment blocks CCL2/MCP-1-induced HD or RA monocyte 
migration
As expected, CCL2/MCP-1 induced significant migration of both HD (Fig 1A) and RA (Fig. 
1B) monocytes pre-incubated with medium (HD P = 0.0358; RA P = 0.0205) or isotype control 
(HD P = 0.0483; RA P = 0.0005). Monocyte pre-incubation with anti-CCR2 antibodies resulted 
in blockade of CCL2/MCP-1-induced migration of cells derived from either HD (Fig. 1A; 5 or 
25 mg/ml, P = 0.0147 and P = 0.0035, respectively) or RA patients (Fig. 1B; 5 and 25 mg/ml, P 
= 0.0226 and P = 0.0009, respectively). There was no effect of CCR2 blockade on spontaneous 
migration, except for HD monocytes at the antibody concentration of 25 mg/ml (Fig. 1A; P = 
0.0294).

Anti-CCR2 antibody treatment does not affect SF-induced HD or RA monocyte migration
Since in RA circulating monocytes are recruited to the synovial compartment under the influence 
of chemotactic agents, we mimicked this situation by using SF as chemoattractant in our in vitro 
model. SF induced significant migration of both HD (Fig 1C) and RA (Fig. 1D) monocytes pre-
incubated with medium (HD P = 0.0153; RA P < 0.0001 compared to migration in medium 
control groups). Contrary to results for CCL2/MCP-1-induced migration, SF-induced migration 
could not be blocked by anti-CCR2 antibody treatment at the different concentrations used.

Anti-CCR5 antibody treatment blocks CCL5/RANTES-induced RA monocyte migration
CCL5/RANTES induced significant migration of RA monocytes (Fig. 2A) pre-incubated with 
medium (RA P = 0.0199). Anti-CCR5 antibody treatment blocked CCL5/RANTES-induced 
migration of RA monocytes (5 mg/ml, P = 0.0198 compared to isotype control). 
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Anti-CCR5 antibody treatment does not affect SF-induced RA monocyte migration
While SF induced significant migration of RA monocytes (Fig. 2B) pre-incubated with medium 
(RA P < 0.0002), this migration could not be blocked by anti-CCR5 antibody treatment.

Figure 1. Anti-CCR2 blocks CCL2/MCP-1- but not SF-induced HD or RA monocyte migration. (A) 
HD monocyte migration induced by CCL2/MCP-1. (B) HD monocyte migration induced by SF. (C) 
RA monocyte migration induced by CCL2/MCP-1. (D) RA monocyte migration induced by SF. Data are 
expressed as mean ± SEM (HD n = 8; RA n = 8).
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Figure 2. Anti-CCR5 blocks CCL5/RANTES- but not SF-induced RA monocyte migration. (A) RA 
monocyte migration induced by CCL5/RANTES. (B) RA monocyte migration induced by SF. Data are 
expressed as mean ± SEM (n = 8).

DISCUSSION

In the present study we showed that ligand-induced monocyte migration could be blocked by the 
respective receptor blocking antibody (CCL2: anti-CCR2 or CCL5: anti-CCR5) but not when 
RA SF (that contains several chemokines) was used as chemoattractant.
Chemokines and their receptors have been shown to participate in a number of various 
biological processes and due to their diverse role in autoimmune diseases have been considered 
good therapeutic targets, in particular CCR2 and CCR5 for immune-mediated inflammatory 
diseases of which RA is a prototype disease (21-23). In view of these observations, a number of 
chemokine receptor antagonists (small molecule receptor antagonists and neutralizing antibodies 
to the receptor) have been designed and tested in animal models and several clinical trials (21;24).  
While CCR2 and CCR5 receptor antagonists have shown initial promise in pre-clinical studies 
(14;15;21), blockade of CCR2 (16), its ligand CCL2 (25), and CCR5 (17;18) have failed in 
clinical trials in RA patients(16-18). 
There may be different explanations for the negative results in the clinical trials. First, we cannot 
completely exclude the possibility that the levels receptor occupancy needed to effectively block 
the CCR2 or CCR5 were not achieved in the clinical trials. Second, CCR5 is expressed by 
T regulatory cells in humans (26). Therefore, the lack of efficacy of treatment with a CCR5 
antagonist could perhaps be explained by inhibition of T regulatory cells. This may also be 
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relevant for the observation with the CCR2 antagonists, as CCR2 and CCR5 are very close in 
homology, and inhibitors often target both (27).
Apart from these and other mechanisms, the results presented here clearly show that there is 
redundancy in this system and that in vivo another chemokine receptor may substitute for 
CCR2 or CCR5. We found that SF-induced monocyte chemotaxis was not affected when 
one chemokine receptor was blocked, opposed to ligand (CCL2 or CCL5)-induced monocyte 
chemotaxis. As in RA patients the synovial joint (tissue and SF) contains several ligands for 
both CCR2 and CCR5 (1;8-13) that are responsible for monocyte recruitment to these 
compartments (via many receptors such as CCR1(28)), this redundancy might account for the 
observed chemokine receptor blockade failure in both our in vitro model and in the clinical trials. 
However, we might consider other possible explanations for the lack of efficacy of blockade of 
both chemokine receptors individually. In line with these observations, it is tempting to speculate 
that in certain inflammatory pathologies it might be beneficial to block several chemokine 
receptors simultaneously.
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