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Chapter 3
Illumination-Invariant Descriptors for
Discriminative Visual Object
Categorization∗

3.1 Introduction

Illumination-invariant descriptors are important for a number of applications, such as object cate-
gory recognition and scene classification. The goal of object category recognition is to determine
the presence or absence of objects of a certain class within an image. The popular bag-of-words
model provides high detection accuracy [36]. The different stages of the bag-of-words model
are well-studied: first, there is the point sampling strategy [80, 108]. Recent benchmark re-
sults [35, 36] and [65] show that densely sampling in a regular grid is the preferred approach
for object recognition. Region descriptors [82] are then computed over the area around these
points. The SIFT [75] and SURF [6] descriptors are the most well-known region descriptors.
Because changes in the illumination of a scene can greatly affect the performance of object
recognition, the descriptors need to be robust to these changes. Finally, the point descriptors are
vector-quantized against a codebook of prototypical descriptors [40, 65, 71, 72, 95, 109].

Object classification is largely improved by descriptor design [24, 82, 107, 112]. In [112],
several (color) SIFT descriptors are evaluated for object recognition under varying imaging con-
ditions: OpponentSIFT [10], C-SIFT [1], HSV-SIFT [9], HueSIFT [118], RGB-SIFT [112] and
SIFT [75]. Of these descriptors, three are at least invariant to light intensity changes and shifts.
However, the number of these descriptors is limited because only a limited set (usually 1 or
3) is used of predefined color models such as HSV , O1O2O3 and RGB. For object category
recognition, in general, a single set of descriptors is employed for all object categories [36].
A predefined set of color channels may negatively influence the discriminative power of visual
object categorization.

Therefore, in this chapter, the aim is to generate a general class of discriminative, illumination-
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34 Chapter 3. Illumination-Invariant Descriptors for Discriminative Visual Object Categorization

invariant descriptors for object category recognition which go beyond existing color models. We
design this new class of illumination-invariant descriptors based on SIFT, with the aim to re-
main invariant to light intensity changes and shifts under different normalizations. We propose
to select discriminative descriptors based on learning, by selecting the best descriptor through
cross-validation and by multiple kernel learning (MKL) [47, 103, 122] to learn weights for the
different descriptors. The combination of newly developed descriptors and selection strategy is
used to improve visual object categorization accuracy.

The contribution of this chapter is two-fold. First, we develop a new and general class of
color descriptors which (a) is illumination-invariant (b) is not limited to existing color spaces
(c) is intuitive and simple to compute and (d) allows emphasis on certain color models. Second,
we adapt color descriptors to the object category by (a) selecting one descriptor per object cat-
egory by learning or (b) learning the weights for a combination of color descriptors in a MKL
framework.

We evaluate the color descriptors on the challenging PASCAL VOC object classification
datasets, where the new class of color descriptors outperforms current descriptors in terms of
classification performance. Another application is object localisation, where accuracy is in-
creased by selecting a more discriminative color descriptor. Finally, we suggest using an ex-
tended opponent color descriptor instead of current color SIFT descriptors.

The chapter is organized as follows. In Section 3.2, the class of illumination-invariant SIFT
descriptors is derived and instantiated. Section 3.3 outlines the methods and experimental setup.
In Section 3.4, results of experiments with descriptor selection and optimization are detailed.
Finally, in Section 3.5, conclusions are drawn.

3.2 Illumination-Invariant Descriptors

3.2.1 Introduction

In this section, we have propose a new class of color descriptors. Instead of using a limited and
predefined set of color models for the descriptors, we identify a class of descriptors which are
illumination-invariant to common photometric changes within the diagonal model of illumination
change.

3.2.2 Diagonal Model

Photometric changes can be modeled by a diagonal mapping or von Kries Model [126] as follows:

f c = Du,cfu, (3.1)

where fu is the image taken under an unknown light source, f c is the transformed image of the
same scene, so it appears as if it was taken under the reference light (called canonical illuminant),
and Du,c is a diagonal matrix which maps colors that are taken under an unknown light source u
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to their corresponding colors under the canonical illuminant c:Rc

Gc

Bc

 =

a 0 0
0 b 0
0 0 c

Ru

Gu

Bu

 . (3.2)

To include a ‘diffuse’ light term, Finlayson et al. [43] extended the diagonal model with an offset
(o1, o2, o3)

T . The ‘diffuse’ light term includes a wide range of possible causes besides diffuse
light, such as interreflections, infrared sensitivity of the camera sensor, scattering in the medium
or lens. The extended model results in the diagonal-offset model:Rc

Gc

Bc

 =

a 0 0
0 b 0
0 0 c

Ru

Gu

Bu

+

o1o2
o3

 . (3.3)

The diagonal model with offset term corresponds to the Lambertian reflectance model extended
with a ‘diffuse’ lighting term [92], when assuming narrow-band filters. For broad-band cameras,
spectral sharpening can be applied to obtain narrow-band filters [42].

In [107], the OSID descriptor is proposed, which is invariant to any monotonically increas-
ing brightness change, while the diagonal model only handles linear changes. In practice, such
nonlinear brightness changes are quite rare, except perhaps for gamma corrections. It has been
shown empirically in [112], using a dataset with 1000 objects under known illumination condi-
tions [48], that descriptors which are analytically illumination-invariant in the diagonal model
are indeed robust to real-world lighting changes. Therefore, the diagonal model with offset is
used in this chapter.

3.2.3 A Novel Class of Illumination-Invariant SIFT Descriptors

The Scale-Invariant Feature Transform (SIFT) descriptor by Lowe [75] measures the area around
a sampling point and describes this area using an edge orientation histogram. The descriptor is
computed from spatial and gradient information only: the spatial position of a pixel determines
in which of the 4x4 spatial quadrants it falls, the gradient orientation determines in which of the
8 orientation bins a pixel falls. The weight of a pixel within the bin depends on the gradient
magnitude at that pixel, plus a Gaussian weighting determined by the distance of the pixel to the
descriptor center. The weight of a pixel can be distributed over multiple bins when it is close
to the boundary of a quadrant or orientation bin; however, the total weight of the pixel will not
change by this operation.

SIFT descriptors have been evaluated for object recognition [10, 112]: OpponentSIFT, C-
SIFT, RGB-SIFT and standard intensity SIFT. These descriptors have different levels of invari-
ance. In general, it is concluded that invariance to light intensity changes and light intensity shifts
is most important for object recognition [112]. It is shown that intensity SIFT, OpponentSIFT
and RGB-SIFT are invariant to these changes and shifts. Illumination changes are represented
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within the diagonal model (3.3) as follows:Rc

Gc

Bc

 =

a 0 0
0 a 0
0 0 a

Ru

Gu

Bu

+

o1o1
o1

 ; (3.4)

where the image values change by the same factor in all channels (a = b = c and o1 = o2 = o3
compared to (3.3)), i.e. intensity changes. In fact, SIFT, OpponentSIFT and RGB-SIFT descrip-
tors are computed from (color) channels which are linear combinations of R, G and B. For
example, Intensity= 0.2126R + 0.7152G+ 0.0722B, O1 =

R−G√
2

and O2 =
R+G−2B√

6
. The com-

plete set of existing descriptors uses only the standard color spaces and therefore is limited in
size. These standard color spaces use both linear and nonlinear color transformations. Because
the above set of existing descriptors is limited to a few non-related descriptors, the question is
whether there exists a larger class of illumination-invariant descriptors which can be generated
in a systematic way.

To this end, we propose a new class of illumination-invariant descriptors based on SIFT:
any linear combination of the R, G and B channels will result in an illumination-invariant SIFT
descriptor. Further, the descriptors remain invariant under different normalizations.

To be precise, let the linear combination from R, G and B be defined as channel C:

C = dR + eG+ fB, (3.5)

where d, e and f are scalar values. To compute the SIFT descriptor on channel C, the gradient
magnitude and orientation are required, i.e. first order derivatives. The first order derivative of C
in direction x is:

Cx =
δ

δx
(dR + eG+ fB). (3.6)

If we introduce light intensity changes and shifts from Eq. (3.4) by substitution, the following is
obtained:

Cc
x =

δ

δx
(dRc + eGc + fBc)

=
δ

δx
(d(aRu + o1) + e(aGu + o1) + f(aBu + o1))

=
δ

δx
(a(dRu + eGu + fBu) + o1(d+ e+ f)))

= a
δ

δx
(dRu + eGu + fBu) = aCu

x . (3.7)

Obviously, the offset is cancelled out by taking the derivative and the derivative is scaled by
a factor a. The gradient angle determines in which orientation bin of the SIFT descriptor a pixel
falls. The gradient angle is arctan Cy

Cx
. Combined with Eq. (3.7), the scaling factor a is cancelled

out. Therefore, the gradient orientation does not change for light intensity changes and shifts.
Each pixel will fall in the same SIFT descriptor bin for both the canonical and the unknown
illuminants.
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The weight of a pixel within the SIFT descriptor depends on two factors: the distance to
the center of the descriptor, which is used for the Gaussian weighting function, and the gradient
magnitude of the pixel. When the same image region is described, but under different illuminants,
the same spatial sampling grid is used for both and therefore the same Gaussian weighting is
obtained. Then, the question is how the scaling of the first order derivatives by a (i.e. Eq. (3.7))
influences the gradient magnitude ||∇C|| =

√
C2
x + C2

y as follows:

||∇Cc|| =
√

(Cc
x)

2 + (Cc
y)

2 =
√

(aCu
x )

2 + (aCu
y )

2

=
√
a2(Cu

x )
2 + a2(Cu

y )
2 = a

√
(Cu

x )
2 + (Cu

y )
2

= a||∇Cu||. (3.8)

The gradient magnitude is scaled by a under light intensity changes and shifts. Because this
scaling influences all pixels, the total weight in each SIFT descriptor bin will be multiplied by
a as well. Due to the L2-normalization performed in the final stage of the SIFT descriptor, this
scaling has no effect on the final descriptor:

bin′i =
a · bini
||bin||2

=
a · bini√∑m
j (a · binj)2

=
a · bini√∑m
j (a

2bin2
j)

=
a · bini√

a2
∑m

j (bin
2
j)

=
a · bini

a
√∑m

j (bin
2
j)

=
bini√∑m
j (bin

2
j)
, (3.9)

where m is the number of bins in the SIFT descriptor, and bini the ith bin of the SIFT descriptor
before normalization. This proves that the SIFT descriptor will be the same under the canonical
and the unknown illuminants for channel C. Because C is a linear combination of R, G and B, it
follows that SIFT descriptors computed from linear combinations of RGB are invariant to light
intensity changes and shifts.

Moreover, this invariance is preserved for any Lp norm, since:

||bin||p =
( m∑

j

(a · binj)p
) 1
p
=
(
ap

m∑
j

(binj)
p
) 1
p

= a
( m∑

j

(binj)
p
) 1
p
, (3.10)

so a will cancel out again. The derivation of photometric invariance for SIFT in this section
also holds for other gradient-based descriptors, such as SURF [6] and to Histogram-of-Oriented
Gradients [24] when ε in their normalization is equal to 0.

In conclusion, it is proven that the SIFT descriptor computed for a linear combination of R,
G and B is invariant to light intensity changes and shifts. Furthermore, this invariance holds for
any Lp normalization of the SIFT descriptor. This gives us a new class of illumination-invariant
color descriptors, which includes the standard SIFT, OpponentSIFT and RGB-SIFT descriptors.
The new descriptors are based on simple to compute linear combinations of the RGB channels.
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Figure 3.1: Stylized drawing of the RGB cube: view of the front planes of the cube (on the left)
and the back planes of the cube (on the right). If we sample linear combinations of R, G and
B with coefficients d, e, f , then we can interpret the coefficients as a vector in the space of the
RGB cube. The dark arrows are such vectors and they all point in the same direction. Because
the SIFT descriptor operates on gradient information only, these arrows will lead to the same
descriptor: only the direction matters, not the starting point. Also, the length of the vector has
no effect on the final descriptor. Therefore, only unique directions in the RGB cube constitute a
unique instantiation of an illumination-invariant descriptor.

3.2.4 Instantiating Illumination-Invariant Descriptors
Uniform Sampling of the RGB Cube

The number of linear combinations of R, G and B is infinite. Because of descriptor normaliza-
tion, scaled versions of the same channel are trivial ((d, e, f) = k(d, e, f)) with coefficients d,
e, f as weights for R, G and B. If we interpret the coefficients as a vector in the space of the
RGB cube (see Figure 3.1), then the length of the vector is not important. To compute a SIFT
descriptor on a color channel, only the gradient information is used, not the absolute image val-
ues. This implies that parallel lines in the RGB cube will lead to the same gradient information:
only the direction of the coefficient vector is important, not the absolute starting point. This is
illustrated in Figure 3.1. Therefore, only unique directions in the RGB cube constitute a unique
instantiation of an illumination-invariant descriptor.

Therefore, in this chapter, to approximately uniformly sample the possible directions in the
RGB cube [21], linear combinations with integer coefficients from −2 to 2 are taken:

C = {dR + eG+ fB|d, e, f ∈ [−2,−1, 0, 1, 2]}. (3.11)

Excluding scaled versions of the same channel ((d, e, f) = k(d, e, f)) and excluding the trivial
channel (0, 0, 0), this set contains 49 linear combinations, which includes the channels from
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OpponentSIFT, O1 (1, -1, 0) and O2 (1, 1, -2), as well as the channels from RGB-SIFT. For
completeness, we also consider the intensity channel I = 0.2126R+0.7152G+0.0722B, which
is used in intensity SIFT, in our experiments.

Different Normalizations

As was shown in Section 3.2.3, illumination invariance holds for any Lp normalization of the
SIFT descriptor. To allow for multiple candidate normalizations, we consider the following set
of norms L:

L = {L2, L4, L8, L16}. (3.12)

The influence is that, for large p, SIFT bins with small values will be discounted, and bins with
large values are emphasized due to the normalization. Therefore, large color transitions are
favored over small transitions. The dominant color transition in a patch will receive the extra
weight for large p. The consequence is that emphasis is placed on certain color edges, whose
color gradient corresponds best to the direction (d, e, f) chosen in the RGB cube.

3.2.5 Discussion

Instead of using a limited and predefined set of color models, in this section, we have proposed
a new class of color descriptors consisting of linear combinations of R, G and B with any Lp

normalization. We have derived that any descriptor from this class is invariant to light intensity
changes and shifts, and, being a linear combination, is simple to compute. For the new descriptors
it holds that linear combinations C are directions in the RGB cube and different normalizations
L emphasize certain color edges corresponding to this direction. The aim is now to select the
right color descriptors from C and L per object category.

3.3 Methods and Experimental Setup
In the previous section, we developed new illumination-invariant color descriptors. In sec-
tion 3.3.1, we detail how to use these descriptors to represent an image using a feature vector,
i.e. feature extraction. In section 3.3.2, we discuss how to train an object category model based
on features. The experiments investigate how to select the best color descriptor per object cate-
gory: experiment 1 (section 3.3.3) selects a single descriptor per category based on learning and
experiment 2 (section 3.3.4) uses multiple kernel learning to obtain a weighted combination of
descriptors per category, instead of selecting a single descriptor. Finally, we discuss the dataset
and evaluation criteria used in the experiments.

3.3.1 Feature Extraction

For image representation, the bag-of-words model is used [65, 71, 95]. The feature extraction
stages are illustrated in figure 3.2. First, points are densely sampled uniformly throughout the
image with a spacing of 6 pixels. Results in object recognition benchmarks [36] show that dense



40 Chapter 3. Illumination-Invariant Descriptors for Discriminative Visual Object Categorization

D SIFT
Reduction 

PCA reduction

V t

Codebook

Feature vector
Image

Dense 
Sampling

SIFT 
descriptor(s)

to 100 
dimensions

Vector 
Quantization

Feature vector

Figure 3.2: Feature extraction with the bag-of-words model. First, points are densely sampled in
the image. Over the area around each sampled point, SIFT descriptors are computed. On which
(color) channels these SIFT descriptors are computed is a parameter of the pipeline. To allow fair
comparisons of 1-channel and two-channel descriptors, all descriptors are reduced to 100 dimen-
sions using a PCA reduction estimated from the training set. After that, the reduced descriptors
are vector quantized against a codebook with prototypical (reduced) descriptors. The occurrence
frequency of each prototypical codebook element forms the fixed-length feature vector for the
image.

sampling is one of the best sampling methods. After sampling, descriptors are then computed
over the area around each sampled point. Depending on the number of channels described, the
descriptor will have a varying length (128 for one channel, 256 for two channels, etc.). To allow
for a fair comparison between these descriptors, their total length is reduced to 100 dimensions
using PCA. Without this step, a two channel descriptor would have more degrees of freedom
than a single channel descriptor. The PCA-reduced descriptors are then vector-quantized against
a codebook of prototypical descriptors: a descriptor is assigned to the codebook element closest
in Euclidian space. The number of descriptors assigned to each codebook element then forms
the representation of the image.†

The PCA reduction to 100 dimensions is computed from 250,000 randomly sampled de-
scriptors from the training set. The codebook of size 4,096 is built using k-means clustering on
250,000 randomly sampled descriptors from the training set. Both sets of 250,000 descriptors
are independently sampled, i.e. they are different. Naturally, each different type of descriptor has
its own codebook and PCA reduction.

To add coarse spatial information to the bag-of-words pipeline, the spatial pyramid by Lazeb-
nik [69] is included. In the spatial pyramid, specific parts of the image are also represented as
if they were complete images, e.g. with subdivisions of 2x2, the image quarters each have their
own representation. All these representations are then concatenated to obtain a single feature
vector. In this chapter, image subdivisions of 2x2 and 1x3 (horizontal bars) are used.

3.3.2 Category Model Training

To learn object models, Zhang et al. [130] show that the χ2 kernel is a good choice for the
Support Vector Machines classifier. Therefore, the Support Vector Machines classifier is used

†The software used to compute the descriptor set from section 3.2.4 will be made available online.
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with the χ2 kernel function to train object models:

k(~F , ~F ′) = e−distχ2 (
~F , ~F ′), (3.13)

with distχ2 the χ2 distance, and with ~F and ~F ′ the feature vectors of two images.
We use the Shogun toolbox [103] to train the Support Vector Machines classifiers. Besides

training a classifier from a single feature, this toolbox also supports multiple kernel learning
(MKL) to train a classifier from multiple features. During the training of a MKL classifier, a set
of weights for a linear combination of the input features is learned.

3.3.3 Experiment 1: Candidate Descriptor Selection

In the first experiment, we compare the performance of selecting illumination-invariant descrip-
tors per object category. Candidate color channels, inside the illumination-invariant descriptor,
are the 49 elements of C (see section 3.2.4) and the intensity channel; all of which are invariant
to light intensity changes and shifts (section 3.2.3). To select the descriptor to use for a specific
object category, the one with the highest cross-validation score on the train set after 3-fold cross-
validation with 10 repetitions is chosen. The final object category model is then trained with that
descriptor using the full training set.

Besides the selection of a color channel, the experiment studies the selection of a normaliza-
tion. The experiment is carried out once with the default L2 norm for each channel, and once
with multiple candidate norms L (see section 3.2.4) under consideration. Still, only a single
combination of color channel and normalization can be chosen for each object category.

3.3.4 Experiment 2: Multiple Kernel Learning

In the second experiment, we allow the use of multiple candidate color channels and normal-
izations per object category through multiple kernel learning. By providing many candidate
channels and normalizations as input to the MKL process, it will automatically determine the
weight of the different descriptors for a linear combination with good classification accuracy.
Compared to experiment 1, the trained classifier is no longer restricted to a single feature.

3.3.5 Experiment 3: Optimized Multi-Channel Descriptors

In the third experiment, we seek to construct a new color space which captures most of the
weight assigned to different features in the multiple kernel learning of experiment 2. The new
color space will consist of a set of channels S with S ⊂ C. Viewing the candidate color channels
from set C as directions in a vector space, the approximation error of a channel C depends on the
angle between C and the closest channel S ∈ S and the total weight wC assigned to the channel
over all concepts:

Eapprox =
∑
C∈C

w2
c argmin

S∈S
∠(C, S) (3.14)
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We consider the weights from a MKL system trained with L1 norm and the 49 one-channel
descriptors from C. In the experiment, we consider the color spaces S with 1 through 8 chan-
nels which minimize the above approximation error. To penalize models with additional free
parameters, we compute the bias corrected version of Akaike’s information criterion [2, 11]:

AIC = n log
Eapprox
n

+ 2K +
2K(K + 1)

n−K − 1
, (3.15)

with n = 49 the number of data points, i.e. input channels in the dataset, K the number of
parameters that were fitted. Each color channel defines a direction, and therefore there are two
degrees of freedom per channel (two angles are sufficient to describe a channel). Besides this
measure, we computed the Bayesian information criterion (BIC) using:

BIC = n log
Eapprox
n

+K log n. (3.16)

The preferred model is the one with the lowest AIC or BIC value.

3.3.6 Datasets

The PASCAL Visual Object Classes (VOC) Challenge [36] provides a yearly benchmark for
comparison of object classification systems. The PASCAL VOC Challenge 2007 dataset contains
nearly 10,000 images of 20 different object categories, e.g. airplane, bottle, car, dog, motorbike
and person. The dataset is split into a fixed training set and test set with 5011 and 4952 images,
respectively. The PASCAL VOC Challenge 2009 has 3473 images for training and 3581 images
for validation. It is recommended to carry out comparitive experiments on the validation set.

Images in the dataset are stored as JPEGs, where the storage format is sRGB. In sRGB,
there is a nonlinear transformation between the intensity of a pixel and the actual number stored.
This transformation roughly corresponds to a power law with γ = 2.2. Because the same trans-
formation is applied to all pixels in all the images, analytically, all derivations from Section 3.2
can still be applied, substituting R by Rγ , G by Gγ , etc.Empirically, the effect of sRGB com-
pared to the linearRGB space is limited: in the standard VOC experiment, inclusion of a gamma
correction of 2.2 to address the nonlinear transformation has very little impact: SIFT perfor-
mance changes by 0.0036 and OpponentSIFT performance by 0.0007. Therefore, we leave out
this additional transformation in our experiments.

3.3.7 Evaluation criteria

For our results, the average precision is used. The average precision is a single-valued measure
that is proportional to the area under a precision-recall curve. This value is the average of the
precision over all images judged to be relevant. Hence, it combines both precision and recall into
a single performance value. When performing experiments over multiple object categories, the
average precisions of the individual categories are aggregated into the Mean Average Precision
(MAP).
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Experiment 1: Candidate Descriptor Selection
Candidate Descriptor(s) MAP with L2 norm MAP with norm ∈ L

Intensity SIFT 0.4902 0.4959
OpponentSIFT (baseline) 0.4975 0.5109
Intensity SIFT or OpponentSIFT per category 0.4975 0.5077
One channel C ∈ C SIFT per category 0.4881 0.4861
Two channel I and C ∈ C SIFT per category 0.5085 0.5130

Table 3.1: Performance results for experiment 1 on the PASCAL VOC 2007 test set, where a
single descriptor is selected per object category for different sets of candidate descriptors and
normalizations.

3.4 Results

3.4.1 Experiment 1: Candidate Descriptor Selection

PASCAL VOC 2007 test set: The goal of this experiment is to investigate the object recognition
performance of different sets of illumination-invariant descriptors. See table 3.1 for all results.
The OpponentSIFT baseline with L2 normalization has a MAP of 0.4975. When using the set of
49 candidate channels C to select a single channel per object category, it can be derived that the
performance is reduced. The channels selected using cross-validation do not perform better than
either intensity SIFT or OpponentSIFT. When performing descriptor selection with just intensity
SIFT and OpponentSIFT, we notice that there is noise in the selection process: performance
is not improved, while performance should have improved had the best descriptor per object
category been selected.

Besides the noisy descriptor selection process, another cause for lack of improvement in the
candidate channel C experiment is the lack of intensity information in the candidates. When
introducing color channels in the descriptor, it is important to include the intensity channel as
well [112]. Indeed, when we extend the experiment to two channels, one of which is always
the intensity channel I , results do improve over the OpponentSIFT baseline. When we allow
different descriptor normalizations L instead of a fixed L2 norm, the MAP improves further.

Overall, selecting the color channel and descriptor normalization per object category im-
proves by 3% over the baseline (from 0.4975 to 0.5130). We note that selecting a single best
feature per object category based on cross-validation scores is sensitive to noise and leads to
suboptimal results.

3.4.2 Experiment 2: Multiple Kernel Learning

PASCAL VOC 2007 test set

In experiment 1, we saw that selecting a single best feature per object category is sensitive to
noise. To reduce this noise, in experiment 2, we allow the use of multiple features per object
category through multiple kernel learning. This also eliminates the descriptor selection process,
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Experiment 2: Multiple Kernel Learning
Descriptors MAP with L2 norm MAP with norms ∈ L

Intensity SIFT 0.4902 0.5169
OpponentSIFT (baseline) 0.4975 0.5203
Intensity SIFT and OpponentSIFT 0.5187 0.5357
One channel C ∈ C SIFT 0.5351 0.5405
Two channel I and C ∈ C SIFT 0.5463 0.5507

Table 3.2: Performance results for experiment 2 on the PASCAL VOC 2007 test set, where
multiple kernel learning is used on different sets of descriptors and normalizations.

as multiple kernel learning will automatically learn weights for the different input features. See
table 3.2 for all multiple kernel learning results.

In table 3.2, we observe that using both SIFT and OpponentSIFT now clearly improves over
the OpponentSIFT baseline. The gains from using additional norms are also increased. When
using the set of 49 candidate channels C to select a single channel per object category, it can
be derived that the performance now improves, even without explicitly including intensity infor-
mation. Still, when we include the intensity channel again, e.g. the two channel setting, results
improve over the single channel per object category like they did in experiment 1. Compared
to the baseline, the improvement is 10% (from 0.4975 to 0.5463) when using a fixed L2. With
multiple normalizations L, the improvement is 11% (from 0.4975 to 0.5507).

In a multiple kernel learning experiment, it is also interesting to compare to a combination of
intensity SIFT and OpponentSIFT, instead of to the OpponentSIFT baseline. In this comparison,
the improvement is 6% (from 0.5187 to 0.5507).

In figure 3.3, the results are split out per object category for the baseline and the two-channel
results. The largest gains are observed for potted plants, birds, bicycles, motorbikes, busses
and trains. In figure 3.4, for birds and trains, several images are shown. For birds, especially
the third image, with a small bright red bird, would not have been recognized without addi-
tional color descriptors and higher norms to emphasize strong color edges. As a side-effect, an
airplane seen through brightly colored tree branches is also placed higher in the ranking. For
trains, the commonality between images which have been placed higher in the ranking is that the
trains themselves are relatively small or truncated, but there is a clear presence of railroad tracks.
Through MKL, weight can be assigned to a color descriptor which triggers on the color edges of
railroad tracks.

Continuing with figure 3.3, for all object categories except bottle, there is a consistent small
improvement by using multiple norms. For bottle, it is shown that the performance using a fixed
L2 norm is higher than when using multiple norms, though it still exceeds the baseline. In this
case, the classifier has fitted too much to the training examples by using the additional norms.

In conclusion, applying MKL to our candidate descriptors improves performance by 11%
compared to an OpponentSIFT baseline, i.e. to the best single descriptor from related work [112].
Compared to a MKL combination of intensity SIFT and OpponentSIFT, the improvement is 6%.
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Experiment 2: Per Object Results
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Figure 3.3: Detailed per-object results from table 3.2 for the Opponent SIFT baseline and the
two-channel scores. Results are sorted by the average precision for the baseline.

PASCAL VOC 2009 validation set

In table 3.3, we show the results of experiment 2 on the PASCAL VOC 2009 validation set.
Compared to the PASCAL VOC 2007 test set results from table 3.2, we observe the pattern as
in that table: applying MKL to our candidate descriptors improves performance by 12% com-
pared to an OpponentSIFT baseline. Compared to a MKL combination of intensity SIFT and
OpponentSIFT, the improvement is 7%.

3.4.3 Experiment 3: Optimized Multi-Channel Descriptors

PASCAL VOC 2009 validation set

In experiment 2, we observed that MKL is a good way to learn the weights for multiple features.
However, because most features receive a non-zero weight for at least one concept, a drawback
of the MKL approach is that almost all features still need to be computed. In this experiment,
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Ranking Positions for Bird: From Baseline to Two-Channel

553→ 83 176→ 12 868→ 34 51→ 10
Ranking Positions for Train: From Baseline to Two-Channel

856→ 63 167→ 66 104→ 67 225→ 99

Figure 3.4: Qualitative results for birds and trains from figure 3.3: first number is the position
in the ranking for the OpponentSIFT baseline, second number for the two channel I and C ∈ C
descriptors with norms ∈ L. All images except the top-right one really contain birds/trains.

Experiment 2: Multiple Kernel Learning
Descriptors MAP with L2 norm MAP with norms ∈ L

Intensity SIFT 0.4535 0.4729
OpponentSIFT (baseline) 0.4566 0.4770
Intensity SIFT and OpponentSIFT 0.4725 0.4874
One channel C ∈ C SIFT 0.4911 0.4948
Two channel I and C ∈ C SIFT 0.4963 0.5031

Table 3.3: Performance results for experiment 2 on the PASCAL VOC 2009 validation set, where
multiple kernel learning is used on different sets of descriptors and normalizations.
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Experiment 3: Optimized Multi-Channel Descriptors
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Figure 3.5: Performance results (top plot) of descriptors with 1 through 8 color channels, selected
based on the MKL weights from experiment 2. For reference, results for the best single-channel
descriptor (intensity SIFT) and the best 3-channel descriptor (OpponentSIFT) [112] are also
shown. The bottom plot shows two information criteria (BIC and AIC), which penalize overly
complex models. The best choice is 6 channels, which corresponds to the maximum MAP (see
top plot). By analyzing the color channels selected, we observe that the optimized channels
are similar to an extension of the opponent color space, with finer sampling in the chromaticity
plane. Therefore, we propose a 6-channel Extended OpponentSIFT descriptor which exploits
this observation.
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we construct new color spaces based on the MKL weights assigned to features on the PASCAL
VOC 2009 training set. We construct color spaces which capture the most weight with 1 to 8
channels according to the procedure from Section 3.3.5. The advantage of these optimized color
spaces is that they only need to have a single feature extracted. Also, the feature extraction time
is largely independent from the number of color channels, because of the PCA reduction to 100
dimensions early in the pipeline (see Figure 3.2).

Results for the optimized color spaces are shown in Figure 3.5. We observe that selecting
a single channel performs worse than intensity SIFT. With 3 channels, the optimized descriptor
performs equal to OpponentSIFT, which also has 3 channels. Going beyond 3 channels, the
optimized descriptors outperform OpponentSIFT (MAP=0.4566). The best result is obtained
with a 6-channel color space: a MAP of 0.4772, which is a relative improvement of 4.5%. To
penalize overly complex spaces, i.e. many channels, we consider the two information criteria
(BIC and AIC) from Section 3.3.5 with respect to how well they fit the MKL weights. The best
scores are obtained for 6 channels, which corresponds to the highest MAP.

To analyze the color channels which have been selected for the 6-channel space, we analyzed
their directions in the opponent color space (data not shown). Here, we observe that there is one
channel which is close to the intensity channel, and the five other channels are close to or in the
chromaticity plane. The lack of directions close to the intensity channel suggests that, to improve
classification accuracy, it is more sensible to have additional channels to discriminate between
different colors (chromaticity) than small variations of the intensity channel. Psychophysical
studies have shown that multiple chromatic mechanisms (channels) in the isoluminant plane, pre-
sumably operating at higher cortical levels, are required to describe experimental data on visual
search [29], image segmentation [57] and discriminability of chromatic distributions [53]. To
verify the importance of multiple channels in the isoluminant plane, we constructed an extended
opponent color space, which consists of the intensity channel I and 5 channels evenly spaced
in the plane perpendicular to the intensity direction. The Extendend OpponentSIFT descriptor
achieves a MAP of 0.4664, which is 2.1% better than OpponentSIFT without any optimization
on the training data. When computational resources are constrained and a single descriptor must
be chosen, we suggest using this descriptor instead of current color SIFT descriptors.

3.4.4 Application: Object Localisation

Several approaches [68,123] to object localisation use the bag-of-words model to classify whether
objects are present within a rectangular area of the image. Following the experimental setup of
Vedaldi et al. [123], we construct a simple localisation system based on their classification strat-
egy with the histogram intersection kernel for SVM. The codebook sizes and spatial pyramid
are the same as in previous experiments. We compare the baseline used in the other experi-
ments, intensity SIFT plus OpponentSIFT, to a combination of intensity SIFT plus the extended
6-channel OpponentSIFT descriptor. The first achieves a MAP of 0.2183, while the use of the
extended OpponentSIFT descriptor results in a MAP of 0.2267. Overall, this is an improvement
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of 4% with roughly the same amount of computation‡.

3.5 Conclusion
In this chapter, we have derived that any linear combination of the R, G and B channels will
result in an illumination-invariant SIFT descriptor. Also, the descriptor will remain invariant to
light intensity changes and shifts even if the L2 normalization is changed to a generic Lp normal-
ization. Selecting the most discriminative illumination-invariant descriptor per object category
improves over the OpponentSIFT baseline by 3%. By using multiple kernel learning instead of
selecting a single descriptor, this improvement increases to 11%. Comparing multiple kernel
learning results to the strong combination of intensity SIFT and OpponentSIFT, the improve-
ment is 6%. By analyzing the weights assigned to different color channels by multiple kernel
learning, we devised a single optimized color descriptor which performs 4.5% better than Oppo-
nentSIFT (the recommended descriptor from [112]) on the PASCAL VOC 2009 object classifi-
cation task and 4% better on the object localisation task. Furthermore, we have found that the
color channels in the new descriptor can be viewed as an extension of the opponent color space
with additional sampling in the color plane. Exploiting this observation, we propose the Ex-
tended OpponentSIFT descriptor which is 2.1% better than OpponentSIFT but does not require
any optimization on the training data.

‡Both combinations consist of two features. Due to the PCA reduction to 100 dimensions, the number of color
channels in each feature does not impact on computation times significantly.




