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Humans and Insects Decide in Similar Ways
Philippe Louâpre*, Jacques J. M. van Alphen, Jean-Sébastien Pierre

CNRS UMR6553 EcoBio, IFR90/FR2116 CAREN, Université de Rennes I, Campus de Beaulieu, Rennes, France

Abstract

Behavioral ecologists assume that animals use a motivational mechanism for decisions such as action selection and time
allocation, allowing the maximization of their fitness. They consider both the proximate and ultimate causes of behavior in
order to understand this type of decision-making in animals. Experimental psychologists and neuroeconomists also study
how agents make decisions but they consider the proximate causes of the behavior. In the case of patch-leaving,
motivation-based decision-making remains simple speculation. In contrast to other animals, human beings can assess and
evaluate their own motivation by an introspection process. It is then possible to study the declared motivation of humans
during decision-making and discuss the mechanism used as well as its evolutionary significance. In this study, we combine
both the proximate and ultimate causes of behavior for a better understanding of the human decision-making process. We
show for the first time ever that human subjects use a motivational mechanism similar to small insects such as parasitoids
[1] and bumblebees [2] to decide when to leave a patch. This result is relevant for behavioral ecologists as it supports the
biological realism of this mechanism. Humans seem to use a motivational mechanism of decision making known to be
adaptive to a heterogeneously distributed resource. As hypothesized by Hutchinson et al. [3] and Wilke and Todd [4], our
results are consistent with the evolutionary shaping of decision making because hominoids were hunters and gatherers on
food patches for more than two million years. We discuss the plausibility of a neural basis for the motivation mechanism
highlighted here, bridging the gap between behavioral ecology and neuroeconomy. Thus, both the motivational
mechanism observed here and the neuroeconomy findings are most likely adaptations that were selected for during
ancestral times.

Citation: Louâpre P, van Alphen JJM, Pierre J-S (2010) Humans and Insects Decide in Similar Ways. PLoS ONE 5(12): e14251. doi:10.1371/journal.pone.0014251

Editor: James Arthur Robert Marshall, University of Bristol, United Kingdom

Received February 4, 2010; Accepted November 15, 2010; Published December 8, 2010
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Introduction

From basic behaviors to complicated decisions, all animals,

including humans, have to make choices throughout their life in

order to maximize their utility function [5–8]. The choice of the

best option can be defined either in proximate terms (satisfaction,

welfare, reinforcement) or in ultimate functions (fitness); however,

proximate decision cues are supposed to have a predictive value

for fitness. Neuroeconomists study the proximate mechanisms of

such decisions in humans and look at the role of the different brain

areas in the decision process [9]. On the other hand, behavioral

ecologists interpret the proximate mechanisms of decision-making

in animals within the framework of a natural selection process

[10]. We note that similar problems are studied in both fields, but

from a different point of view. For example, human and animal

decisions in terms of foraging activities are studied in situations

where the resource distribution is clumped in patches (e.g.

information on the internet for humans [11] and prey for animals

[12]). Thus, it is important to decide when the current action

should be continued (foraging on the current patch) and when to

switch to another action (leave the patch) in order to maximize the

yield. This problem originated from Charnov’s well-known

Marginal Value Theorem [12]. He identified the optimal decision

to leave the current patch as a function of the rate of energy gain

in the environment. Iwasa et al. [13] later showed that the optimal

decision should rely on a Bayesian estimation of the number of

prey remaining in a patch.

Behavioral ecologists have suggested that insects such as

parasitoids and bumblebees use a motivational mechanism

[1,14] (Figure 1) to perform these tasks. Here, the term motivation

is defined according to the implicit motivational system described

by McClelland et al. [15]: motivation is a biological variable that

drives a behavior in the sense that it energizes, directs and selects

behavior [16,17]. Dorman and Gaudiano [18] following Hull [19]

and Skinner [20], provide a very similar definition: ‘‘the internal

force that produces actions on the basis of the momentary balance

between our needs and the demands of our environment’’. These

definitions apply to both humans and animals, and this concept is

assigned to the category of hidden or latent variables, which

cannot be measured directly but only by its correlation with an

observable behavior. According to the motivational hypothesis of

making the decision to leave the patch, an animal enters a patch

with an initial motivation that decreases monotonically as long as

no rewarding item is found. Each time an item is discovered, the

motivation suddenly increases (positive reward, incremental

model) or decreases (negative reward, decremental model). The

animal leaves the patch when the motivation falls below a certain

threshold. This process was first described in Waage’s model [1],

in which the value of the increment depends on the time since the

last capture.

We examine here whether human subjects follow a similar

process in a foraging task. In order to simplify the motivational

model, we assume here that the value of the increment constant
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does not depend on the time since the last discovery. We will

further examine whether or not this simplification holds. Under

this assumption, the level of motivation m(t) at time t in the current

patch is simplified as:

m tð Þ~aP{btzn tð ÞI ð1Þ

where aP is the initial tendency to stay in the patch, b the slope of

the linear decrease, n(t) the number of hosts met by time t and I the

value of the motivation increment (greater than 0) or decrement

(less than 0). Otherwise, if we accept Waage’s original model, the

course of motivation should be written as:

m tð Þ~aP{btz
Xn

j~1

Ij ð2Þ

The rule emerging from these processes is quite simple: the

animal leaves the patch when m(t) falls under a given value m0

which can be fixed at 0 without the loss of generality. The sign of I

is important for the adaptive value of the behavior. It is now

accepted that the adaptive value of the sign of I depends on the

distribution of the prey or hosts among the patches. This concept

arose from the work of Iwasa et al. [13]. They devised a process

that is quite different from Waage’s model but which share some of

the same features. They addressed the question of how a Bayesian

forager can estimate the number of items remaining in a patch

when it has caught n of them after having spent a time t in it. They

first showed that for an over-dispersed distribution, the pair (n, t) is

a sufficient statistic for that. Secondly, they showed that each

discovery and consumption of a new item resulted in a sudden

increase of this estimation, such as the negative binomial, whereas

they resulted in a sudden decrease for an underdispersed

distribution such as the binomial. As the Marginal Value Theorem

is based on a rate of discovery and depends on the number of

remaining items in the patch, many authors have concluded that

the incremental case for Waage-like models was adaptive in very

clumped distributions and that the decremental one was adaptive

for even distributions (see [21] for a review).

Behavioral ecologists have hypothesized that natural selection

tailored decision-making based on a motivational process, which is

adapted to the resource distribution that animals experience [13].

As mentioned above, it is not possible to record the motivation

itself, only proxies. Human beings are the only animals that can be

asked to assess and communicate their own motivation. Verbal self

evaluation by the subjects may be a better proxy than the

behavioral ones available in animals. Psychologists admit that

humans are able to accurately report some cognitive processes by

introspection [22,23]. For example, Corallo et al. [24] demon-

strated the remarkable accuracy of introspective estimates of task

duration. Their results show that subjects excel at estimating the

duration of their internal process. With respect to motivation,

different self-reported measures are routinely used to assess the

motivational state of humans and the psychometric properties of

these measures have been widely supported [25]. There are also

many psychological and neuronal evidences of a human

introspective system providing a subjective image of an emotional

state [26]. In this sense, humans appear to be an appropriate

model to study this motivation-based mechanism. The method,

however, is far from being unbiased and its results must be

discussed thoroughly.

Many authors have studied how such a decision could be

mediated in the human brain in relation to the predictability of

finding a resource [27–30]. Quite recently, Hutchinson et al. [3]

and Wilke et al. [31], using two different electronic games, found

the fundamental result that human decision-making is insensitive

to the resource distribution. In this article, we primarily address

the question of the likelihood of a motivational process sharing the

features proposed by Waage and other authors, in the case of

human subjects faced with a foraging task. In particular, we ask if

it is possible to find evidence of the increase and decrease of

motivation linked to the amount of time spent without finding any

items (weariness), the discovery of items (reinforcement) or the

finding of an empty chest (disappointment). We will also examine

if this process is sensitive to the distribution of items among patches

during a time-limited foraging task.

For this purpose, we devised a foraging computer game and

asked the subjects to evaluate their own motivation during the

task. We recorded the foraging behavior and declared motiva-

tional states of the subjects in various environments differing in

terms of the resource distributions among patches. The resource

was either evenly distributed or aggregated (low vs. high levels of

variance, respectively).

Materials and Methods

We developed a software system in the style of a FPS game

(‘‘first person shooter’’, a video game centering the player inside a

realistic 3D-environment) that records the instant-by-instant

actions of individuals foraging for patchily distributed resources

during a period of 30 min. The potential locations where resource

might be found are represented by chests. Each chest either

contains the resource (depicted by a little green sphere, see

Figure 2) or it is empty. 49 Chests are distributed over 40 patches

(in the shape of a dome) that are randomly distributed in a

meadow. To disorientate the players inside the domes, each dome

has 8 doors at its periphery and the chests are randomly

Figure 1. The motivational mechanisms of decision-making in
parasitoids and the bumblebee. The insect enters a patch with an
initial motivation to stay, which decreases linearly when no reward is
found (in the case of parasitoids, hosts for laying eggs). Note that the
motivation suddenly increases (incremental mechanism —) or decreas-
es (decremental mechanism – –) when a reward is found (D). The
decision to leave the patch occurs when the motivation falls below a
given threshold (*). From Waage (1979).
doi:10.1371/journal.pone.0014251.g001

Human’s Motivation to Foraging
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distributed inside the dome area. The meadow size is 3600 virtual

distance units in width and 3600 in height. The player speed is

approximately 16 units6min21. A fog reduces the visibility to

prevent the subjects from visually spotting the distribution of the

domes or to glean any information about the quality of the dome.

Therefore, the players can only gather information by active

foraging. Once inside a dome, the game is interrupted each time a

chest is opened. In order to continue foraging in the patch, player

must evaluate his motivational level typing in a number between 0

and 9 on the keypad, where 0 means ‘‘I want to leave the current

dome and forage elsewhere’’ and 9 means ‘‘I want to continue to

forage in the current dome’’. After being opened, each chest

appears as it did before but no longer contains a sphere inside.

With this procedure, the total number of chests inside a dome is

constant and the player cannot distinguish an already opened

chest from one that has never been opened. Each dome can be

exploited only once. After leaving a dome, its colour changes to

red, indicating that it has already been exploited, and all of the

doors are closed. During the experiment, the program records all

of the player’s actions and the declared motivation level in real

time. To test if humans adapt their behavior to the resource

distribution, five map types are defined. In each map, the spatial

distribution of the domes throughout the meadow is the same;

however, the domes differ in terms of their content. The ratio of

filled/empty chests is based on three probability distributions: the

number of items per patch is either Poisson distributed (random

distribution, 1 map, l = 30), binomially distributed (even distribu-

tion, 2 maps, respectively. p = 0.25 and p = 0.4) or negative

binomially distributed (very clumped distribution, 2 maps,

respectively. k = 0.5; m = 10 and k = 0.1; m = 15). Based on the

work of Iwasa et al. [13], we assume that the optimal theoretical

strategy differs according to the resource distribution.

Ninety-two subjects living within the vicinity of the University of

Rennes 1 were recruited (53 men, 39 women; aged between 18–55

and 18–57, SE 8.01 and 10.50) for the software beta-test (12

subjects) and for the experiment (80 subjects). Each subject played

the game only once. All of the subjects were volunteers and did not

receive any payment. The best five scores of the five maps were

published at the university. Because the recruitment was passive,

we considered the subjects to be motivated to win the game. One

of the five resource distributions is randomly assigned to the

subject without any indication. Following Hutchinson et al. [3], the

goal and method are explained with a slideshow on a computer

during a period of 5 min. The 30 min experiment is preceded by a

4 min practice session with the same resource distribution. This

familiarizes the player with the game, keyboard manipulation and

measurement of his motivation. According to learning theories,

the subjects need some experience within an environment in order

to stabilize their foraging strategy. For this reason, we only

considered the last half of the visited domes in each player’s

record. We first fitted the motivational model to the player’s own

assessment of his motivation course using by five linear and non-

linear methods.

Direct linear fitting (lm function of R)
Equation (2) can be fitted by a multiple linear regression with t,

the time spent in the patch and n the number of items found at

time t as an independent variable. This is model 1. An alternative

is to consider whether the opening of an empty chest has a

decremental effect. This is model 2, and the equation becomes:

m tð Þ~aP{btznI{mD ð3Þ

where m is the number of empty chests opened at time t and D is

their decremental effect. This first approach has some inconve-

niences. The estimate is unconstrained and may be negative or

greater than 9. Testing its significance relies on the classical

hypothesis on the normality, homoscedasticity and independence

of the residuals which are dubious when the observed variable is

both discrete and bounded.

Non-linear fitting (nls function of R)
If the bounding of the observed motivation is taken into

account, it can be introduced as a ‘‘chop’’ function leading to the

following model:

Figure 2. Screenshots of the virtual foraging game. Top: An
overview of the virtual meadow with the spatial distribution of the
patches. Middle: The chests when the player enters a patch. Bottom:
The player opened a filled chest and found the resource. The French
text on the bottom screenshot asks the subject to note his motivation
to stay in the dome (from 0 to 9). At any given time, the player knows
both the number of items found (left top corner of the screen) and the
instantaneous yield (left bottom corner).
doi:10.1371/journal.pone.0014251.g002

Human’s Motivation to Foraging
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begin

m̂m tð Þ~aP{btznI

if m̂m tð Þw9 then m̂m tð Þ~9

if m̂m tð Þv0 then m̂m tð Þ~0

end

ð4Þ

This is model 3. Its inconvenience is to increase the kurtosis of

the residuals distribution by forcibly setting some of the residuals to

zero.

Generalized linear models (glm function of R)
The last approach considers the declared motivation as a

binomial variable taking discrete values from 0 to 9, linearly linked

to the external variables t, n through a logit link. The advantage is

to avoid the hazardous hypothesis of the normality and

independence of the residuals. The inconvenience is that the

constancy of the residuals is no longer valid on the measurement

scale, but only on the logit scale. On the scale of the

measurements, the increments are large when the declared

motivation is close to 4.5 and small when it is close to either 0

or 9. However, this might be realistic. The model 4 is then:

ln
m̂m

9{m̂m
~aP{btznI ð5Þ

where m̂m is the estimate of the declared motivation. Model 5 is the same

as model 4 but it incorporated the effect of opening empty chests.

These five sorts of models correspond to three different

psychological hypotheses:

Linear approach (models 1 and 2)

- The declared motivation is a faithful reflection of the

motivational state of the individual, this motivational state

is bounded and the subject has no difficulty to map it on

the obliged interval.

Non-linear approach (model 3)

- The real motivation is not bounded, the subject has to

chop it and a declared motivation of 9 means ‘‘9 or

more’’ just as 0 means ‘‘0 or even less’’. However, the real

motivation is a linear function of t and n, and the interval

[0,9] is a window to it.

Generalized linear model approach (models 4 and 5)

- The real motivation is not bounded, the subject has to

map it on the interval [0,9] and the mapping is of logit

type. This means that it requires more increments to pass

from 8 to 9 than from 4 to 5.

It was therefore interesting to see globally which of these models

fit best overall. To assess the significance of the fit, we used the

Bonferroni procedure at the level of risk 0.05/80. A significance

level such as this must be regarded carefully because of the

unavoidable correlation between residuals in time series. In our

case, this level only indicates if the fit of the model is better than

the null model. We then focused on (i) rho2, which is a statistical

indication about how well the model fits the observed motivation

and (ii) the AIC (Akaike’s information criterion), which measures

the goodness of fit of the model. We point out the fact that one of

the variables included in models 2 and 5, the number of empty

chests opened, is directly linked to the time spent on the patch

because it takes time to open chest and the number of empty chests

opened is proportional to the time needed to open them. However,

the AIC is known to detect strongly correlated variables and the

addition of a strongly correlated variable could increase the AIC,

thus indicating that the variable adds nothing to the model.

Moreover, the linear model can solve the partial confusion

between the variables (such as time and the number of empty

chests opened). These five models were fitted individually to each

participant. In the end, we kept model 5, as explained in the

‘‘Results’’ section. After examining the variety of the subjects’

reactions, we discovered that it would be very complicated to

analyze the data if the subjects were considered as a random factor

in an overall analysis, especially since it is important to visually

examine the fit of each individual run with the model.

We then used Cox’s proportional hazard model to determine

the effect of the different stimuli on the tendency to leave the

patch. This model allows us to estimate the hazard rate at time t,

which can be interpreted as a tendency to leave the patch. We

estimated the effect of the different intra-patch cues (opening a

filled chest, opening an empty chest), extra-patch cues (total

number of empty/filled chests before entering the patch, travel

time between two successive patches) and fixed covariates (sex,

age, laterality, knowledge of the optimal foraging theory) on the

tendency to leave the current patch. We integrated a random

effect modelized by the Gamma frailty model describing the excess

risk above any measured covariates due to multi-censored data for

each individual [32]. The idea is that individuals have different

frailties and those individuals who are more frail will leave the

patch earlier than the others. The hazard rate hj (t) of the j th

individual at time t in the patch is given by:

hj t,z1,:::zi,:::,znð Þ~vkh0 tð Þ exp
Xn

i~1

bizi

( )
ð6Þ

where h0(t) is the baseline hazard function to leave the patch

depending only on the time spent on it (all of the covariates are set to

zero) and zi are the covariates which influence the tendency to leave the

patch with bi contributions. vk is the frailty parameter for each subject.

The patch-leaving tendency is reduced if a hazard ratio (exp{gbizi}) is

lower than 1, whereas a hazard ratio greater than 1 increases this

tendency. Finally we investigated the plausible relationship between the

results from model 5 and Cox’s model: we took into account the

simplified Waage’s model which explained more than 50% of the

variance (R2$0.5). According to Pierre [33], Waage’s parameters

cannot be identified separately on the basis of the mere observation of

the patch residence time. Only aP/b and I/b can be identified

separately. We used another Cox proportional hazard model that

integrates only the effect of opening a filled chest on the leaving

tendency for each individual. We then correlated the value of the

covariate b corresponding to the effect of encountering an item on the

patch-leaving tendency and the measure of an associative factor from

Waage’s model fitting.

All of the computations were done with the R 2.10.0. software

(R development core team, 2009).

Results

During the 30 min experimental session, a player visited an

average of 9.6 domes (SE 0.36), opened 252 chests (SE 7.63) and

Human’s Motivation to Foraging

PLoS ONE | www.plosone.org 4 December 2010 | Volume 5 | Issue 12 | e14251



found 65 spheres (SE 3.08). The mean residence time in a dome

was 758s (SE 2.33). The mean gain rate at the end of the game was

3.46 spheres.min21 (SE 0.10, range 0–18.2 spheres.min21).

Of the 80 motivational trajectories (one per subject), 78 showed

a significant fit to model 5, the Generalized Linear Model with

covariates t, n and nloose (see ‘‘Materials and Methods’’ section for

a description of all of the models) at the Bonferroni level

a’ = 0.000625 (0.05/80, x2). However, this significant level only

indicates that our model fits the data better than the null model.

According to the AIC criterion, this model gives the best results in

34 out of 80 cases (Table 1). The simple unconstrained linear

models are the best ones in only a few cases. The non-linear

chopped model and the generalized linear model 4 appear to be

equivalent. In more than 42% of the cases, the inclusion the

number of empty chests opened decreases the AIC of the model.

This demonstrates the decremental effect of opening empty chests

even if the AIC gain is low in all of the cases.

Bellow, we will refer to model 5 as the best fitting model.

Referring to the hypothesis that we formulated in the ‘‘Material

and Methods’’ section, this indicates that subjects are well able to

map the evaluation of their motivation into the 9-point scale that

we specified. Taking in consideration the effect of opening an

empty chest appears also to be important. However, the overall fit

of model 5 does not represent the quality of fit, which is very

different from one individual to another. After an examination of

the visual fit of each model line to each motivation course and

other criteria such as the presence of visible bias on the residuals vs.

fitted values diagrams, we then decided to classify the results into

three categories: (i) G - good. The line of the fitted values plotted

against time correctly follows the line of the motivation declared

by the subjects. No systematic bias is observable on the graph of

the residuals against fitted values. (ii) M - medium or acceptable.

The line of the fitted values correctly follows at least some parts of

the graph, generally in some patches. (iii) B - bad or poor. The line

of the fitted values is not very coherent with the course of the

motivation, strong biases are observed in the graph of the

residuals. We then compared this visual appreciation to the

determination coefficient of the model as a measure of the

goodness of fit. Figure 3 shows the relationship between this visual

and partly subjective classification and R2. Clearly, there is a

strong relationship between the classification and goodness of fit.

We found this procedure better than a cut on the basis of the R2

because as shown in this figure, a high R2 value can mask strong

biases. On this basis, 49 fits were considered as good (61.25%), 19

as medium (23.75%), and 12 as bad (15%). If the good and

medium cases are added up, there are 68 acceptable fits and 12

bad (unacceptable) fits. We concluded that 85% of the subjects

show a course of their declared motivation which is coherent with

a process in which the discovery of an item in a chest has an

increasing effect and the opening of an empty chest a decreasing

effect.

We also verified Waage’s hypothesis linking the size of the

increments in reported motivation to the delay since the last

discovery of an item. We actually found a weak effect from this

delay (Figure 4). The shape is coherent with Waage’s idea of an

increase from zero to a maximum value, and for this reason it

Table 1. Number and percent of cases where each model
and model class appears to be the best using the AIC
criterion.

Model
number Best model % Model class Best class %

1 3 3.75 Linear 7 8.75

2 4 5

3 19 23.75 Non linear 19 23.75

4 20 25 Generalized linear 54 67.5

5 34 42.5

doi:10.1371/journal.pone.0014251.t001

Figure 3. Relationship between the visual classification of the
overall fit and goodness of fit of individual motivation, given
by R2 in the adjusted model 5. b: bad visual adjustment (strong
discrepancy between the course of motivation and the fitted values); m:
medium visual adjustment (partial consistency); g: good visual
adjustment (total consistency, no systematic bias).
doi:10.1371/journal.pone.0014251.g003

Figure 4. Relationship between the size of the increments and
the delay since the last discovery of an item. Each petal of the
sunflower plot represents one overlapped point. The relationship (red
dotted line, increment = 13.67627(1-exp(-0.06025delay))) is in accordance
with Waage’s model but the effect is weak and blurred by a large noise.
doi:10.1371/journal.pone.0014251.g004

Human’s Motivation to Foraging
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fitted the model:

I tð Þ~IM 1{ exp {aDð Þð Þ ð7Þ

by non-linear least squares (nls function of R base), where D is the

delay since the last discovery, a a parameter and IM the maximum

possible value of the increment. Although significant, the model

only explains 6% of the variance (R2 = 0.06) and Figure 4 shows

how the variables are the observed values and the poor

contribution of the model. We conclude that there is something

true in Waage’s intuition in the case of man, but that this effect is

blurred by a large noise.

Figure 5 shows the fit of each of the three classes of the model 5

in one individual (good, medium and poor fit, respectively). A

feature that is worth noting is that the fit classified as ‘‘bad’’ is

completely different from the others. It is clear that these subjects

do not exhibit, at all, a course of their evaluated motivation that is

compatible with Waage’s model. We were not able to determine if

it resulted from an inability to assess their own motivation or if it is

due to a completely different strategy. We discarded these

individuals from further comparisons between Waage’s process

and the analysis of incremental/decremental effect by Cox, given

that they did not follow Waage’s process.

For all of the players, the estimated values of the motivational

model 5 (initial motivation, decrease of motivation, motivational

increment and decrement due to the opening of an empty chest)

did not differ significantly in different environments (respectively.

F = 0.13, df = 4; 71, NS, F = 1.01, df = 4; 71, NS, F = 0.66, df = 4;

71, NS and F = 1.93, df = 4,71, NS). The players entered a patch

with a high motivational level (initial motivation = 7.49, after

inverse logistic transform, SE 1.73) that decreased over time

(b = 0.062s21, SE 0.00505 on the logit scale) and left the patch

when the motivational level approached 0. Opening a filled chest

increased the motivational level by 0.47 (SE 0.53) units on average

(on the logit scale), in every resource distribution scenario. The

model was therefore incremental, respective to the discovery of a

filled chest in every environment. We should note that on the

motivational scale, neither the increments I, nor the slope of

decrease b are constant. They are curved functions depending on t

and n.

The analysis of the residence time by Cox’s proportional hazard

model [34–36] (see the ‘‘Materials and Methods’’ section)

supported our previous results: opening a filled chest decreased

this tendency regardless of the resource distribution (Table 2; the

effect of the resource distribution – not shown – was not

significant). Opening an empty chest increased the player’s

tendency to leave the patch but this effect is lower than the

incremental effect of finding a resource. In order to compare this

with an alternative model to explain the patch leaving decision, we

added another covariable independent of the number of

discoveries but dependent of time since the last discovery

(giving-up time). As shown by Hutchinson et al. [3], the more

time that has passed since the last discovery, the lower the

tendency to leave the patch. The effect of the number of

discoveries influenced the leaving-tendency 16 times more than

the giving-up time. The extra-patch experience also changed the

tendency to leave: if more filled chests were opened in the previous

patches, the tendency to leave the visited patch was higher.

Conversely, if the more empty chests were opened in the previous

patches, the tendency to leave the visited patch was lower. In

addition, when the travel time between two successive patches was

longer, the tendency to leave the visited patch decreased. To find

possible effects of the different categories of individuals, different

factors and covariates were included in Cox’s proportional hazard

model such as age, sex, laterality, type of environment, knowledge

of Optimal Foraging Theory, and familiarity with video games.

Only two fixed covariates influenced the tendency to leave: age

and laterality (Table 2). Being older or left-handed decreased the

tendency to leave a patch when compared respectively to being

young or right-handed.

Figure 6 shows the correlation between the values of the

covariate b, corresponding to the effect of encountering an item on

the patch-leaving tendency, and the values of the term I/b

calculated by fitting the motivational model (number 5, see the

‘‘Materials and Methods’’ section). We found a significant

relationship between the fitted values of I/b in Waage’s model

and the value of Cox’s model covariate (R2 = 0.27; regression

equation beta = 2.15-0.066I/b; F. test = 17.57; df = 1;64, P-value

,0.001). The subjects that reported a larger increase in motivation

to stay when a sphere was found (relative to the tendency of

motivation to decrease over time) were those subjects who were

not inclined to leave a patch when they found a sphere.

Discussion

Our results provide evidence for a simple decision-making

process, similar to what is generally assumed in parasitoids [37]

and bumblebees [2]. Humans decide whether to stay in a patch or

move to another one according to the sensitivity to finding a

resource. The state of the motivation level depends on the number

of rewards received but not on the among-patch resource

distribution: humans use a motivational mechanism of incremental

arousals as a response to finding rewarding items, irrespective of

the resource distribution. In the analysis of the course of

motivation, we noticed that the consideration of the number of

empty chests found improved the prediction, especially when the

motivation drops just before leaving the patch. This effect,

however, is weaker than the incremental effect of opening a filled

chest.

Another variable can be used to explain the residence time. As

Hutchinson et al. [3] found, the time since the last capture

influences the decision to leave the patch. However, in their

experiment, the time since the last capture was sufficient to explain

the residence time. In the present work, we need to incorporate the

effect of finding of an item. One possible explanation could be that

humans strongly respond to the type of foraging task. The game

used by Hutchinson et al. simulates angling, an activity in which

the subject experiences a sort of ambush predation: he stays in the

same place and waits until a fish takes the bait. In our game, the

subject moves between the domes and between the chests inside

the domes. In the first case, the time since the last discovery could

be perceived as being longer by a subject who is passively foraging

than in the second case, where the time between two successive

discoveries is the time it takes to open the chests. It is then

plausible that the evaluation of the remaining number of prey in

the patch could be linked more so to a time cue in the first case

than in the second one. Regardless, it is remarkable that in both

experiments the human subjects seem unable to switch from the

incremental rule when they face an even distribution. This is a

strong convergence between two studies designed with a different

interface and for a different purpose.

The experiment is based on the ability of people to

communicate their motivation to stay in a patch. To accurately

record the motivation course, the level of motivation felt is asked

every time a chest is opened. This method could partly influence

the declared motivation. Indeed, there is a strong tendency for

humans to make up plausible stories to justify decisions that are

actually normally determined by processes of which humans are
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not consciously aware [22]. Having to declare the motivation

every time a chest is opened could also influence the leaving-

behavior. A high declared motivation could prompt the subject to

stay in the dome even if he wanted to leave. Nevertheless, the

subjects were aware that the motivation level they declared had no

influence at all on the score. The accuracy of the declared

Figure 5. Motivational course during the foraging time of a player classified as ‘‘poor’’, ‘‘medium’’ and ‘‘good’’, using the
motivation adjustment described in the text.
doi:10.1371/journal.pone.0014251.g005
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motivation could also be questionable. The subjective perception

of a physical intensity law suggests that an exponential variation of

a physical intensity of a stimulus (for example, noise) is often

perceived as a linear variation. This could be applied to the

proprioceptive appreciation of motivation. It is plausible that the

linear mental scale for exponential variation could be responsible

for the linearization of the motivational feeling. The neural basis of

this phenomenon in now known and has been demonstrated in

primates [38,39]. It also could be accentuated by the experimental

discretization and truncation of the motivation scale. The arbitrary

scale of motivation from 0 to 9 could influence the perception of

motivation and suggests a linear scale to the subject. Moreover, in

many cases, when many rewards were found, the subjects gave a

long series of ‘‘9’’ marks, when actually his real motivation level

was unknown. However, the relationship between what the players

declared and the statistical analysis of the patch-leaving tendency

demonstrates the consistency between behavior and the declared

feeling. In this sense, reported motivation is consistent with the

leaving behavior observed.

Some neuroscientific studies have suggested that the motiva-

tional mechanism discovered in our study could have a neural

basis in the human brain. For example, Aston-Jones and Cohen

[40] demonstrated that the locus coeruleus-norepinephrine (LC-

NE) system is implicated in the control of the decision to persist in

a given action or switch to another. They described two neural

activity patterns (phasic and tonic modes), which are similar to the

proximate mechanism we found here: in the phasic mode

(associated with a high level of task performance), neurons exhibit

a phasic activation responding to the task-relevant stimuli. In

contrast, cells fail to respond to the task-relevant stimuli during the

tonic mode (associated with a poor level of task performance)

[41–43]. Thus, the neural activity of the LC-NE system could

provide a biological basis for the motivational mechanism

highlighted here: during a high performance task (visiting a

‘‘good’’ patch), the motivation suddenly increases in response to

the rewards (phasic mode of the LC-NE system). When the task

performance is low (visiting a ‘‘poor’’ patch), the motivation

decreases and the subject becomes less sensitive to the task-

relevant stimuli (tonic mode).

Our study confirms that humans seem unable to adjust their

response to the spatial distribution of resources because they use

an incremental mechanism irrespective of the resource distribution

[3,31]. Both our study and other studies suggest that humans are

adapted to finding resources with a clumped distribution over

patches. Wilke and Barrett [44] expected the cognitive skills of

humans to be adapted to the types of fitness-relevant problems that

people faced in ancestral environments. Hunter-gatherer societies

prevailed during two million years of human history. We thus

hypothesize that natural selection tailored a proximate mechanism

for patch leaving, which is strongly adaptive in an environment

where food is distributed in an aggregated way, as is the case in

hunter-gathering populations. By moving to the savanna,

hominids faced dispersed but sometimes profitable food sources

[45] that corresponded to an aggregative distribution of resources.

In the patchy savanna environment, selection would have favored

Table 2. Estimated regression coefficients (b), standard errors (SE) and hazard ratios (exp (b)) for covariates that have a significant
effect (P-value,0.05) on the patch-leaving tendency of humans in a multi-patch environment. x2 corresponds to the likelihood
ratio test.

b exp(b ) SE(b ) x2(df ) P-value

Effect of the within-patch experience

Number of full chests opened so far 20.1631 0.85 0.0205 63.17 1.9e215

Number of empty chests opened so far 0.0519 1.053 0.0172 9.13 2.5e203

Time since the last capture 20.0097 0.99 0.0026 13.90 1.9e204

Effect of the previous experience

Total number of filled chests opened before entering the patch 0.0188 1.019 0.0054 12.18 4.8204

Total number of empty chest opened before entering the patch 20.01 0.99 0.0023 17.85 2.4e205

Effect of fixed covariates

Age of the subject 20.068 0.934 0.0181 14.14 1.7e204

Laterality (left-handed) 21.29 0.275 0.4136 9.73 1.8e203

Note: the overall significance of the fitting model: x2 = 534, df = 67.4, P-value,0.001.
doi:10.1371/journal.pone.0014251.t002

Figure 6. Relationship between Cox’s model b and the term I/b
from Waage’s model. The Y-axis refers to the values of the effect of
opening a filled chest plotted against on the hazard rate for Cox’s
proportional hazard model. The X-axis is obtained from the motiva-
tional model.
doi:10.1371/journal.pone.0014251.g006
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a foraging strategy that is efficient for an aggregative resource

distribution. Thus, the motivational mechanism observed here and

the neural mechanism detailed above are most likely adaptations

that were selected for during ancestral times and are, still adaptive

now for foraging on the internet or in a supermarket.
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