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Techniques and Visualization Approaches for Analyzing Local and Global 
Pareto Optimal Sets in Multi-Objective Design Space Exploration 
 
Toktam Taghavi, University of Amsterdam, the Netherlands, T.TaghaviRazaviZadeh@uva.nl 
Andy D. Pimentel, University of Amsterdam, the Netherlands, A.D.Pimentel@uva.nl 
 
Abstract 
 
VMODEX is an interactive visualization tool to support system-level Design Space Exploration (DSE) of MPSoC 
architectures. It provides insight into the search process of Multi-Objective Evolutionary Algorithms (MOEAs) that are 
typically used in the DSE process, and it facilitates the analysis of the DSE results. In this paper we extend VMODEX 
to enable designers to evaluate and compare the properties of the discovered design points in different subspaces of the 
explored design space. Several techniques and visualization methods are provided to compare different parts of the 
design space from various aspects. Furthermore, some Multi-Objective Decision Making (MODM) methods are utilized 
to help designers with understanding the trade-offs between different criteria and guide them towards the most 
appropriate solutions among the Pareto optimal solutions. Moreover, new visualization approaches are proposed, which 
provide the designer with the visual interpretation and detailed analysis of the results of the MODM methods. 
	  
1 Introduction 
The complexity of modern embedded systems has led to 
the emergence of system-level design. A key issue of 
system-level design is the notion of high-level modeling 
and simulation in which the models allow for capturing 
the behavior of system components and their interactions 
at a high level of abstraction. As these high-level models 
minimize the modeling effort and are optimized for 
execution speed, they can be applied at the very early 
design stages to perform, for example, architectural 
Design Space Exploration (DSE). Such early design space 
exploration is of eminent importance as early design 
choices influence the success or failure of the final 
product. 
System-level simulation frameworks that are deployed for 
DSE of embedded systems that are based on 
heterogeneous Multi-Processor System-on-Chip (MPSoC) 
architectures, usually use independent application and 
architecture models. The application model describes the 
functional behavior of the system expressed as processes 
(computations) and channels (communications). The 
architecture model represents the hardware components in 
the system, such as processors, reconfigurable modules, 
memories, etc. Then, different mappings of processes and 
communication channels to the various architectural 
components are evaluated by simulation to find the 
optimum mapping solutions. Each mapping decision 
taken in this step corresponds to a single point in the 
design space. 
Generally, for designing complex embedded systems, 
multiple criteria need to be considered simultaneously 
such as performance, power, cost, etc. Such design space 
exploration, during which multiple criteria should be 
considered simultaneously, is called Multi-Objective 
Design Space Exploration (MODSE). Since objectives are 
often in conflict, there cannot be a single optimum 
solution, which simultaneously optimizes all objectives. 
Instead, a set of optimal solutions denoted as the Pareto 
optimal set or non-dominated set has to be found. This is 

the set of those solutions for which one objective cannot 
be improved further without causing a simultaneous 
degradation in at least one other objective. These optimal 
decisions provide the designer trade-offs between the 
design objectives. The set of objective vectors 
corresponding to a set of Pareto optimal solutions is 
called “Pareto optimal front” or “non-dominated front”. 
In order to find a Pareto optimal set with respect to the 
design criteria, the designer should ideally evaluate and 
compare every single point in the design space. However, 
such an exhaustive search is infeasible, as in real-scale 
problems the design space is too large to be explored in 
an exhaustive manner. Therefore, heuristic search 
techniques, such as Multi-Objective Evolutionary 
Algorithms (MOEAs), are often used to search the design 
space for optimum design points using only a finite 
number of design-point evaluations. MOEAs evaluate a 
population of design points (solutions) over several 
iterations, called generations. With the help of genetic 
operators, a MOEA progresses iteratively towards the best 
possible solutions. 
As the searched design space still is vast, interpreting all 
evaluation data and understanding how the MOEA 
searches through or prunes the design space is 
cumbersome. Therefore, in [1] we proposed a novel 
interactive visualization tool, VMODEX1, which is based 
on tree visualization. This tool shows both design 
parameters and objectives in a single view. It enables 
designers to easily understand how a MOEA explores the 
design space, where the optimum design points are 
located, how design parameters influence each objective, 
and find out the relationship between the different 
objectives. In this paper, we extend VMODEX to enable 
designers to evaluate and compare the properties of the 
discovered design points in different subspaces of the 
explored design space. By modeling the design space as a 
tree (like in VMODEX), it is divided in several 
subspaces. Each subspace represents a unique instance of 
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the architecture platform. On the other hand, solutions 
inside a subspace have exactly the same architecture 
components but the way in which the application is 
mapped onto those components is different. In each 
subspace, the Pareto optimal solutions found by a MOEA 
are called local Pareto optimal solutions. In the extended 
version of VMODEX several techniques and visualization 
methods are provided to compare various local Pareto 
optimal sets in different parts of the design space from 
various aspects. In most multi-objective optimization 
problems, the global Pareto optimal sets obtained by 
applying different MOEAs are compared to investigate 
which algorithm is more suitable for a specific problem. 
Comparing different local Pareto optimal sets (like we 
explain in this paper) is a new point of view in MODSE 
process and has not been considered before. Such 
comparison is, however, essential to the designer as it 
provides insight into the “landscape” of the design space 
and can help him to comprehensively understand the 
properties of the discovered design points in different 
subspaces of the explored design space (as it is illustrated 
later on in the paper).  
Furthermore, in the extended version of VMODEX, some 
Multi-Objective Decision Making (MODM) methods are 
utilized to help designers to find out the trade-offs 
between different criteria and to aid them to distinguish 
those solutions that are better than the others in terms of 
non-dominance. Moreover, new visualization approaches 
are proposed, which provide the designer the visual 
interpretation and detailed analysis of the results of the 
MODM methods. 
There are several MODM techniques, which help the 
decision maker to identify the most preferred solutions in 
multi objective optimization problems. One approach is 
based on cluster analysis. A clustering method such as 
Leader-Follower [2] or hierarchal clustering [3] is used 
for clustering the solutions in a Pareto optimal set. So, the 
Pareto optimal front is reduced to a set of k clusters. Each 
cluster consists of solutions with similar properties, and 
therefore the decision maker has to investigate only the 
representative solution of each cluster, which can be the 
closest solution to the cluster center. Another method is 
ranking such as TOPSIS [4] and PROMETHEE [5]. They 
rank the Pareto optimal solutions from the best to the 
worst with respect to the all objectives. Another approach 
is based on the selection of a subset of Pareto optimal 
points that contains the most satisfying solutions, such as 
filtering the solutions by the decision maker’s preferences 
on each objective.  
Usually the results of MODM methods are shown in a 
table or displayed in a 2D graph. Although these kinds of 
representations are useful to find out the most preferred 
solutions in the Pareto optimal set, they do not provide 
insight on how these results come out. In this paper, we 
propose several visualization techniques, which visualize 
the outcomes of MODM methods. They provide decision 
makers a detailed analysis of relations between Pareto 
optimal solutions and allow for finding out why one 
solution is considered a more preferred solution with 
respect to a specific MODM method. 

The rest of the paper is organized as follows. In Section2 
we briefly explain how VMODEX visualizes the multi-
objective DSE process. Section 3 introduces several 
metrics and their visualization approaches for comparing 
design points discovered in different subspaces of the 
explored design space. Section 4 describes various 
MODM techniques and their visualization methods for 
comparing the global Pareto optimal solutions and 
choosing the most appropriate solutions among them. 
Finally, Section 6 concludes the paper. 

2 Visualizing Multi-Objective DSE 
by VMODEX 

For describing the visualization techniques provided in 
VMODEX, we use a case study of which the results are 
used as input data for all visualization methods explained 
in this paper. In our case study, we map a parallel multi-
media application to an MPSoC platform architecture 
consisting of: two Application Specific Integrated 
Circuits (ASICs), an Application Specific Instruction 
Processor (ASIP), a general-purpose microprocessor 
(mP), a microcontroller (mC), two Dynamic RAMs 
(DRAMs) and one Static RAM (SRAM). The mapping 
decision problem (i.e. mapping application tasks and 
communication channels onto the architecture 
components) is formulated as a multi-objective 
optimization problem in which three criteria are 
considered: the processing time, energy consumption and 
cost of the architecture. To solve this problem, a Multi-
Objective Evolutionary Algorithm (MOEA) has been 
used to achieve a set of optimal alternative mapping 
decisions under the aforementioned criteria.  
In this section, we briefly explain how VMODEX [1] 
visualizes a multi-objective design space exploration. 
Figure 1 represents the design space of our case study, 
which is visualized by VMODEX. It should be mentioned 
that this figure shows only those parts of the design space 
that are compared with each other in section 3 and not the 
entire design space. This is because the size of the tree 
representing the entire design space is large and it is not 
possible to include it in the paper. In Figure 1, the first 
four levels represent the design space parameters, which 
(from top to down) are: number of processors, processor 
type, number of memories and memory type. The fifth 
level shows the architecture cost. Since this is the first 
level for which all the components are known, the cost of 
the architecture can be computed. Because the cost is an 
objective and not a design parameter, we represent it with 
a different shape; a circle. For a better view, the size of 
the circle becomes bigger as the cost increases. The next 
level shows the global Pareto optimal solutions found by 
the MOEA. Each solution represents a unique mapping of 
the application onto the MPSoC and is a child of its 
corresponding platform architecture instance. That means, 
for each solution, its parents at the previous levels show 
its design parameters and cost. For instance, P4 has the 
following architectural components: three processors, of 
which one is an ASIP, one an mC and the other one is 
mP, and two memories, of which one type is DRAM and 



another type is SRAM. The last level shows the local 
Pareto optimal solutions. A design point is called a local 
Pareto point if within the design points with the same 
architecture (but with different mappings), there is no 
point dominating that one. So, it is an optimal solution 
with respect to a specific architectural instance. However, 
in the entire design space, a design point might exist 
which dominates the local Pareto point. Local Pareto 
points, which have the same parent at the cost level (and 
thus in the higher levels) are in the same subspace and 
therefore are members of the same local Pareto set. In 
Figure 1 four local Pareto optimal sets (S1, S2, S3 and S4) 
are shown of which their properties are compared from 
different perspectives in Section 3. It is clear that all the 
global Pareto points are local Pareto points as well. 
However, not all the local Pareto points are global Pareto 
points and therefore we use a relation node at the global 
Pareto level to make a connection between them and the 
previous level. These nodes are labeled with “R” in 
Figure 1. In this paper, we simply refer to the global 
Pareto optimal design points as Pareto optimal solutions. 
The size and color of the third dimension of a solution 
shows the energy consumption. As the energy 
consumption increases, the size of the third dimension 
becomes bigger and its color becomes darker. The color 
of the solution itself represents the processing time. 
Colors are varied from yellow to red with all color grades 
in between. Nodes with the lowest processing time are 
yellow and nodes with the highest processing time are 
red. 
In order to easily correlate different visualization methods 
provided in VMODEX with each other, the same 
metaphors are used for showing the objective values and 
solutions. Thus, the designer will not be confused by the 
different representations of the same thing. For instance, 
in all visualizations, the solution P4 in Figure 1 is shown 
like in Figure 2. Since in the DSE tree the costs of 
solutions are shown as separate nodes at the cost level, the 
corresponding cost node is drawn above the 3D rectangle. 

3 Comparing Subspaces 
As we described in the previous section, in VMODEX, 
the design space is modeled as a tree and this kind of 
modeling causes the design space to be divided in several 
subspaces. Each subspace represents a unique instance of 
the architecture platform. On the other hand, solutions 
inside a subspace have exactly the same architecture 
components but the way that the application is mapped 
onto those components is different. We have extended 
VMODEX to allow designers to evaluate and compare the 
interesting subspaces from various perspectives. In the 
following subsections, we explain the techniques 
VMODEX provides for analyzing and comparing the 
properties of discovered design points in different 
subspaces. 

3.1 Distance from the Global Pareto        
Optimal Solutions 

A subspace containing local Pareto optimal solutions, 
which are closer to the global Pareto optimal set, is more 
preferable. The distance can be measured in two ways: 1) 
the number of solutions in a local Pareto optimal set 
which are also in the global Pareto optimal set, and 2) the 
average of Euclidian distances (in the objective space) 
between the solutions in a local Pareto optimal set and the 
nearest member of the global Pareto optimal set. 
In the DSE tree, both distance measures can simply be 
evaluated. Just by looking at the tree, one can easily 
recognize which solutions of a local Pareto optimal set are 
in the global Pareto optimal set as well. For those 
solutions, their parents (in the tree) are Pareto optimal 
nodes; otherwise they become children of a relation node. 
For example, in Figure 1, all solutions in set S3 are 
globally Pareto optimal. However, in set S1, only one 
solution (out of four) is in the global Pareto optimal set. 
For the set S2 the situation is the worst, none of the local 
Pareto points in this set is member of the global Pareto 
optimal set. 
The second distance measure can be seen directly in the 
DSE tree as well. The color and thickness of edges show 
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Figure 1. Visualization of multi-objective design space exploration by VMODEX 
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the distance from the nearest main Pareto optimal 
solutions. The edges in the path from the root to the main 
Pareto optimal solutions are the thickest and darkest since 
the distance is zero. As the distance increases the edges 
become thinner and lighter. The value of the average 
distance between solutions in a local Pareto optimal set 
and global Pareto optimal set is shown at the bottom of 
the local Pareto set (denoted byd) If the designer is 
interested to know the exact value of the distance measure 
for a particular solution, then the distance value is shown 
by clicking the corresponding edge. For example, in 
Figure 1, the average distance for S3 is zero, since all 
solutions in this set are globally Pareto optimal. However, 
the solutions in set S2 are relatively far from the global 
Pareto optimal set since their edges are thin and light and 
the average distance is 0.24. 

3.2 Coverage of Local Pareto Sets 
Ziztler and Thiele [6] introduced the Coverage (C) metric, 
which directly compares two Pareto optimal sets with 
each other. The metric C (S1, S2) calculates the proportion 
of solutions in S2 which are dominated at least by one 
solution in S1:         

 
Where ≤ is the dominance relationship. For two solutions 
s and sʹ′ it is said that “s dominates sʹ′ ”, if s is not worse 
than sʹ′ in all objectives and is strictly better in at least one 
objective. In fact, the function C maps the ordered pair 
(S1, S2) to the interval [0, 1]. The value C (S1, S2)=1 means 
that all members of S2 are dominated by S1 and C (S1, 
S2)=0 represents the situation where none of the solutions 
in S2 are dominated by S1. Since the domination operator 
is not symmetric, C (S1, S2) is not necessarily equal to      
1-C (S2, S1) and thus both directions C (S1, S2) and C (S2, 
S1) have to be considered to understand how many 
solutions of S1 are covered by S2 and vice versa. 
The C metric compares only two sets with each other. 
Thus, for comparing more than two sets, we propose a 
new metric called Total Coverage (TC), as follows: 

 
Where n is the number of comparing sets. TC>0 means 
that the dominating rate is higher than the dominated rate 
and the TC<0 implies that the solutions are more 
dominated by the other sets than they dominate solutions 
in the other sets. Therefore, a set with a bigger TC value is 
better.  
In VMODEX, the designer is able to select the interesting 
local Pareto sets and compare them using the TC metric. 
For better understanding the dominance relations between 
sets, we visualize this metric. A directed weighted graph 
is used for visualizing the TC metric. Each comparing set 
is shown as a node in the TC graph. For each two sets S1 
and S2, if C (S1, S2) ≠ 0 then an edge is drawn from S1 to 
S2, of which the weight is equal to the C value. For each 
node, the TC value is calculated by the sum of the weights 
of outgoing edges minus the sum of the weights of  

 
Figure 3. Visualization of TC metric 

incoming edges. The size of the nodes in the graph 
indicates the TC value. Therefore, nodes with higher TC 
values are bigger. Nodes with TC>0 (more dominating) 
are shown in blue while nodes with TC<0 (more 
dominated) are shown in red. Figure 3 shows the 
visualization of the TC metric for sets S1 to S4 shown in 
Figure 1. As can be seen in this figure, solutions in S2 are 
dominated by all the other comparing sets (there are three 
incoming edge from S1, S3 and S4), while there is no 
solution in S2 that dominates a solution in the other sets 
(S2 does not have any outgoing edge). Furthermore, we 
can understand that solutions in S3 dominate more than 
half of the solutions in both sets S1 and S2. As a result, S3 
has the best TC value and therefore is the biggest node in 
the TC graph. 
If the designer is interested to know more about the 
dominance relation between each two sets, such as which 
solutions in one set dominate which solutions in the other 
set, it is possible to select those sets to see more details. 
To this end, we visualize the dominance relation between 
two sets as follows. Solutions in both sets A and B are 
shown in two different rows. If a solution in A dominates 
a solution in B, an arrow is drawn between them coming 
out from the solution in A to the solution in B. 
Furthermore, a cross is displayed at the dominated 
solution in B to show that this solution is dominated by 
another one. Figure 4 shows the visualization of the 
dominance relation between two local Pareto sets S1 and 
S2. From this figure, we can understand that solution 
“LP1” in set S1 dominates all the solutions in S2 and 
therefore S1 is absolutely better than S2. The architectural 
components of each local Pareto set are shown on the left 
side of each set. As can be seen in Figure 4, both local 
Pareto sets S1 and S2 have exactly the same components 
except that S2 has one more DRAM memory. Adding one 
DRAM is not beneficial since it increases the cost but 
does not yield a better processing time or a better energy 
consumption.  
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3.3 Size of the Dominated Region 
In [6], the Hypervolume metric is proposed, which 
measures how much of the objective space is dominated 
by a given non-dominated set. A set with a larger 
hypervolume is desirable. We use this metric to compare 
the local Pareto optimal sets in different subspaces of the 
design space. Moreover, we visualize this metric to 
clearly show which area of the objective space is 
dominated by solutions in a local Pareto set. Figure 5 
represents the visual from of the hypervolume metric for 
two local Pareto sets S2 and S3 shown in Figure 1. For 
better vision, each side of the cube (which shows one 
objective) is colored with the corresponding color scheme 
in the DSE tree. As can be seen in Figure 5, in both sets, 
only a small portion of the objective space is covered by 
the solutions in the local Pareto set. However, the size of 
the dominated space in S3 is larger than S2 (nearly five 
times). 

3.4 Frequency Distribution of Objective 
Values 

By using the color-coding technique in the DSE tree, the 
designer can generally see the objective values of design 
points in each subspace. However, for detailed analysis of 
the distribution of objective values in each subspace and 
also for easier comparison between different subspaces 
we propose a new visualization approach to show the 
frequency of objective values in a subspace. Since all 
solutions in a subspace have the same architecture cost, 
the frequency distribution is not applicable for this 
objective and should only be considered for the other two 
objectives: processing time and energy consumption. 
For each objective, a horizontal axis from 0 to 1 is drawn 
and colored like the color-coding technique used for 
showing that objective in the DSE tree. For example, in 
our case, colors from yellow to red are used for 
representing the processing time and therefore, this color 
scheme is used for coloring the corresponding axis in the 
frequency distribution visualization. The height of each 
color bar in the (color-coded) objective axis indicates the 
number of design points with the objective value inside 
that range. Figure 6 shows the visualization of the 
frequency distribution for two subspaces. In Figure 6(a), 

the frequency distribution of all solutions in the subspace 
that contains two ASICs, one mC, one mP, one DRAM 
and one SRAM is shown. This subspace is indicated as S3 
in Figure 1. As can be seen in this figure, there is no 
design point with the best neither processing time nor 
energy consumption. However, for all design points, both 
the processing time and energy consumption is relatively 
good (less than 0.5). Therefore, for this particular 
architecture, with different mappings we can get 
approximately good design points. So can flexibly deal 
with different mappings, this architecture is a good 
solution. The subspace in Figure 6(b) consists of one 
ASIP, one mC, one mP, one DRAM and one SRAM, 
which is denoted as S1 in Figure 1. In this subspace, the 
processing time is varying from the best to almost the 
worst. However, most of the design points have 
approximately good processing time. But, the energy 
consumption of most design points is quite high. 
Therefore, this architecture is not appropriate for 
obtaining low energy but if the designer is interested in 
performance, he should take care about the mapping 
because a wrong mapping decision can make the 
difference between the best or the worst processing time. 

4 Multi-Objective Decision Making 
As we mentioned before, in multi-objective optimization 
with conflicting objectives, there is no single optimum 
solution that simultaneously optimizes all objectives. 
Instead, a set of Pareto optimal solutions has to be found 
in which no improvement can be obtained in any of the 
objectives without causing a simultaneous degradation in 
at least one other objective. Usually, there can be a lot of 
Pareto optimal solutions, which need to be considered for 
the final decision. It is an issue to know how a decision 
maker chooses the ‘best’ solution from the set of Pareto 
optimal solutions. Therefore, some decision-making 
methods are provided in VMODEX to assist the designer 
in making better decisions. 
The aim of Multi-Objective Decision Making (MODM) is 
to help decision makers to comprehensively understand 
the trade-offs between different criteria and guide them 
towards the most preferred decision. The decision-making 
methods allow decision makers to apply their preferences 
to a decision problem in a logical and mathematical 

LP1:	  PT=0.10,	  EC=0.59	  
LP2:	  PT=0.12,	  EC=0.56	  
LP3:	  PT=0.16,	  EC=0.51	  
Cost=0.9	  
	  

LP1: PT=0.11, EC=0.32 
LP2: PT=0.16, EC=0.27 
LP3: PT=0.36, EC=0.19 
LP4: PT=0.38, EC=0.18 
Cost=0.9 
  HV (S2) = 0.0437 

Figure 5. Visualization of the Hypervolume metric 
HV (S3) = 0.212 

	   	  

Figure 6. Visualization of frequency distribution of objective values 

(a) Subspace consisting of: 2×ASICS, 1×mC, 1×mP, 1×DRAM, 1×SRAM 
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approach. The final recommendation in MODM may take 
different forms, according to the manner in which a 
problem is formulated. Three basic problem formulations 
are as follows: 
The choice problem that aims to select a subset of Pareto 
optimal set, which contains the most satisfying solutions. 
The clustering problem that intends to assign Pareto 
optimal solutions to different categories. 
The ranking problem that aids to order the Pareto optimal 
points from the best to the worst, with respect to the 
designer’s preferences.  
In the following subsections, we explain some decision-
making methods for each problem formulation. 

4.1 Choice Problem 
In VMODEX, we provide two approaches for selecting a 
set of best Pareto optimal solutions: Filtering and a fuzzy 
scheme. 

4.1.1 Filtering 
VMODEX enables designers to filter solutions in the 
Pareto optimal set based on either objective values or 
design parameters or both of them. The designer can 
determine his preference objective values by setting the 
upper and lower limits on each objective. Then those Pareto 
optimal points with objective values inside the selected 
ranges are chosen as most preferred solutions. Therefore, the 
designer has the ability to eliminate the non-preferred points 
from the Pareto optimal set and consider only solutions, 
which satisfy the preferences with respect to the objective 
values. 
The designer is also able to determine his preferences on 
design parameters and consider only the Pareto optimal 
points with preferred parameters. For instance, in our case 
study, the designer may preferred the points, which have 
an ASIC in their underlying architecture. Therefore, by 
applying the filtering option, the points without an ASIC 
will be eliminated from the Pareto optimal set. 
Establishing the preferences on combination of objective 
values and design parameters is provided as well. 

4.1.2 Fuzzy Scheme 
Fuzzy logic is a superset of conventional (Boolean) logic 
that has been extended to handle the concept of partial 
truth, being values that lie between "absolutely true" and 
"absolutely false". Boolean logic deals with situations that 
can be true or false. Fuzzy logic allows degrees of truth 
(expressed as a membership function) in the range of zero 
to one. A degree of zero means absolutely false and a 
degree of one means absolutely true. In a simple example, 
consider the set of “tall” men. The conventional method 
requires establishing a height threshold (e.g. 170 cm) and 
any person with the height more than the threshold is 
declared as a “tall” man and with the height less than the 
threshold as “not tall”. So, a man with 171 cm is “tall” 
(degree of membership is one) and a man with 169 cm is 
“not tall” (degree of membership is zero). Therefore, in 
Boolean logic, a person is either a member of tall set or is 
not a member. Figure 7(a) shows the “tall” function in 
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Boolean logic. However, using the fuzzy logic approach, 
membership in the set of “tall” men is a number between 
zero and one. An example of fuzzy membership function 
for “tall” set is shown in Figure 7(b). The degree of 
membership for men with 171 cm height is one and for 
men with 169 cm is 0.95. Therefore, if person “a” has 
higher degree of membership in “tall” set than person “b”; 
this means that “a” is taller than “b”. 
We can use fuzzy logic to extend the notion of the 
dominance relation between two solutions. Therefore, 
instead of saying “a dominates b” or “a does not dominate 
b”, we can say that “a dominates b by degree µ”. This 
fuzzy approach enables us to compare non-dominated 
solutions with each other and quantify the goodness of 
each solution within a Pareto optimal set. 
Fuzzy Dominance 
For computing the dominance degree of solution a over 
solution b, we should consider for each objective, in 
which degree solution a is better than or equal to solution 
b. An example of definition of fuzzy sets for “better” and 
“equal” functions is shown in Figure 8(a). Here we 
consider a minimization problem that means all objectives 
are to be minimized and therefore smaller objective 
values are better. In Figure 8(a), two parameters ε and γ 
should be determined by the decision maker who is 
familiar with the problem. The value of these parameters 
may be different for each objective. εi indicates the 
interval within which an improvement or degradation on 
objective i is meaningless. γi defines the relevant but not a 
significant improvement for objective i. In Figure 8(a), 

€ 

µb
i  indicates the degree of “betterness” and

€ 

µe
i  denotes 

the degree of “equality” on the ith objective. The fuzzy 
dominance relation can be expressed as follows:  
It is said that solution a dominates solution b by degree   
µd (a, b) with: 

Where M is the number of objectives and fi is the ith 
objective function. µd (b, a) shows the dominance degree 
of b over a or, on the other hand, it indicates in which 
degree solution a is dominated by solution b. Note that 
the fuzzy dominance relation is not symmetric and 
therefore “dominating by degree µ” and “being dominated 
by degree µʹ′ ” have different fuzzy values. 
For clarifying the fuzzy dominance relation described 
above, we are going to give a numerical example. In this 
example, we calculate the dominance degrees for two 
solutions a=(0.1,0.5,0.3) and b=(0.6,0.4,0.57). The fuzzy 
membership functions for “better” and “equal” are the 

	  

	  
Figure 7. Tall membership function 

	  

(a) Boolean logic 
	  

(b) Fuzzy logic 
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same as ones shown in Figure 8(a). For all objectives 
ε=0.1 and γ=0.3. Figure 8(b) shows the values of µb and 
µe for all objectives. The dominance degree of a over b is 
computed as follows: 

         
 

In the same way we can calculate the dominance degree 
of b over a, µd (b, a), which is 0.19. Therefore a 
dominates b by degree 0.79 and is dominated by b by 
degree 0.19. Thus solution a is more preferred than b. 
We define the goodness of solution si in a Pareto optimal 
set S as the average of dominance degrees of that solution 
over other solutions in the set, as follows: 

 
Where N is the number of solutions in the Pareto optimal 
set S. The solutions with the highest G values are 
considered as the most appropriate solutions. 
In VMODEX there are two ways for selecting most 
preferred solutions using the fuzzy scheme: 

1. The decision maker can set a threshold for the G 
value and then all the solutions with a G value 
higher than the threshold are selected. 

2. The decision maker can determine the desirable 
number of selected solutions (n). Then the 
solutions with the n highest G values are selected. 

For better analysis of the fuzzy dominance relations 
between non-dominated solutions in a Pareto optimal set, 
we visualize their relations in a directed graph called 
Fuzzy Dominance Graph (FDG). This graph shows more 
detailed information about the dominance degrees and can 
be used to compare the solutions. Figure 9 represents the 
fuzzy dominance graph for our case study. Each solution 
is shown as a node in the FDG. The size of the node 
indicates its G value. The bigger the node means the 
greater G value and therefore a more preferred solution. 
The decision maker should define a threshold (θ) for 
connecting the nodes. If the dominance degree of a over b 
is greater than the threshold (µd (a, b)> θ) then a directed 
edge is established from a to b. Therefore, a node with 
more outgoing edges means that it dominates more 
solutions with the degree higher than θ and a node with 
more incoming edges means it is dominated by more 

solutions with the degree higher than θ. In Figure 9, the 
threshold is 0.6 and as can be seen in this figure solution 
P5 has the greatest G value since the size of its 
corresponding node in the graph is the biggest and it 
dominates 10 (out of 14) solutions with degree higher 
than θ as it has 10 outgoing edges. Furthermore, there is 
no solution that dominates P5 with a degree higher than θ 
as there is no incoming edge. However, P3 is the most 
inappropriate solution since its node size is the smallest 
and half of the solutions (7 out of 14) dominate it with 
degree higher than θ. In Figure 9, the five solutions with 
the highest goodness values are highlighted by a blue 
background color, which are P5, P2, P11, P8, and P7 
respectively.  
If the decision maker wants to know more about the 
dominance degrees of one specific solution with respect 
to the other solutions, it is possible to select that particular 
solution and see more detailed information. In Figure 10 
the dominance relations between P5 and all the other 
solutions are shown. For each solution, the length of the 
blue bar represents the dominating degree of P5 over that 
solution and the length of the red bar shows the degree in 
which P5 is dominated by that specific solution. As can 
be seen in this figure, except P2, the dominance degree of 
P5 over each solution (blue bar) is higher than the degree 
in which P5 is dominated by that solution (red bar). 
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Figure	  9.	  Visualization	  of	  fuzzy	  dominance	  relations	  

	  

	  

Figure 10. Visualization of fuzzy dominance relations between P5 and 
all the other solutions 

	  

	  
Figure 8. An example of fuzzy membership functions 

for better and equal  

	  

(a) Fuzzy sets for the ith objective 
	  

(b) Fuzzy sets and membership 
values for the numerical example 
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4.2 Clustering Problem 
The goal of clustering is to organize a collection of 
objects into several groups (clusters), such that objects 
within the same cluster are similar (in some way), while 
objects belonging to different clusters are dissimilar. 
Cluster analysis enables us to look at the properties of 
clusters instead of individual objects and provides 
simplification of data with minimal loss of information. 
The clustering methods can be broadly classified into two 
types: exclusive and hierarchical. In the exclusive 
clustering, data are grouped into a set of disjoint clusters. 
Therefore, if an object is a member of a certain cluster 
then it cannot be included in another cluster. Instead, the 
hierarchical clustering is based on the union between the 
two nearest clusters. At the beginning each object is in a 
separate cluster and then pairs of clusters are successively 
merged until all clusters have been merged into a single 
cluster that contains all objects.  
VMODEX allows a decision maker to cluster Pareto 
optimal solutions with both exclusive and hierarchical 
methods. The similarity measure between the Pareto 
optimal points is the Euclidian distance in the objective 
space. The smaller distance indicates higher similarity. 

4.2.1 Exclusive Clustering 
The Leader-Follower algorithm [2] is one of the most 
popular exclusive methods. It is simple and efficient for 
clustering data sets. The decision maker must specify a 
threshold for the distance. Then for each solution, the 
nearest cluster center is found. If the distance is less than 
the threshold, the solution becomes a member of that 
cluster and the cluster center should be updated. 
Otherwise, if no current cluster is sufficiently close to the 
solution, a new cluster is created. We define the cluster 
center to be the average of all points in the cluster. For 
instance, if the ith cluster contains one solution s1=(4,3,5) 
and during the clustering procedure another solution such 
as s2=(4,1,7) needs to be added to the ith cluster, then its 
new center is calculated as: 

 
The Distance threshold should be chosen carefully, since 
it implicitly specifies the number of clusters obtained at 
the end. A large threshold leads to a small number of 
large clusters, which contain solutions with less 
similarity. While with a small threshold the probability of 
creation of new clusters is higher and therefore it will 
produce a large number of small clusters, which is 
somewhat contradictory with the aim of clustering. 
For each cluster, the closest solution to the cluster center 
is chosen as a representative solution. These 
representative solutions can be considered as the most 
promising solutions for the final decision. Therefore, by 
applying the proposed clustering, the Pareto optimal set 
can be reduced to a smaller subset of representative 
solutions, which are the most preferred solutions. 
To better understand the result of the clustering, we 
propose a visualization method showing how the 
solutions are grouped in different clusters.  Figure 11 
shows the visualization of Leader-Follower clustering for 

0.291 0.366 0.328 

0.622 

0.584 

the Pareto optimal solutions in our case study. Each 
cluster is shown by a different color. In Figure 11 the 
distance threshold is 0.3, which leads to the six clusters. 
Each solution is connected to the center of the cluster to 
which it belongs. The length of the connected link 
indicates the distance from the center. A shorter edge 
means closer to the center. In a cluster with only one 
solution, a dashed line is used for connecting the solution 
to the cluster center since the distance is zero (like C1 in 
Figure 11). The cluster C4 in Figure 11 is the biggest 
cluster containing 5 solutions. In each cluster, the 
representative solution is highlighted by a yellow border 
such as solution P12 in cluster C6.  
To understand the relative position of clusters in the 
objective space, i.e., which clusters are closer to each 
other and which ones are far away and to know in which 
parts of the objective space more Pareto optimal solutions 
are found, we visualize the relative position of clusters. 
First a fully connected weighted graph G is created in 
such a way that each cluster is considered as a node in the 
graph and the edge weight between two nodes is the 
Euclidian distance between the corresponding cluster 
centers. Then a Minimum Spanning Tree (MST) is 
created for the graph G. The constructed MST is used to 
show the distances between clusters. In Figure 11 the way 
that the cluster centers are connected together is the same 
as the connections in its corresponding MST. The length 
of the edge between two cluster centers represents the 
distance between them. The longer the edge implies a 
larger distance. The distance value between two 
connecting clusters is written above the corresponding 
edge. In Figure 11, clusters C3, C4, C5 and C6 are 
relatively close to each other and contain more than 75% 
(11 out of 14) of discovered Pareto optimal points. 
Therefore we can see that in a subspace of objective 
space, which has relatively good processing time but a 
higher cost, there are more Pareto optimal solutions.   

4.2.2 Hierarchical clustering 
The Leader-Follower clustering algorithm is efficient and 
conceptually simple, but it has some drawbacks. It 
requires a specific distance threshold as input, which has a 
major effect on the clustering results. Furthermore, the 
output is nondeterministic and strongly depends on the 
order of the processed solutions. Hierarchical clustering 
does not require any predetermined parameter and is 
deterministic. However, the complexity of hierarchical 

	  

Figure 11. Visualization of Leader-Follower clustering 
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clustering increases at least quadratic with the number of 
data points. The process of hierarchical clustering is as 
follows: 
1. Assign each solution to a separate cluster. Therefore 

the number of clusters in this step is equal to the 
number of solutions in the Pareto optimal set. 

2. Find the two closest (most similar) clusters and merge 
them into a single cluster. This new cluster replaces 
the two old clusters. 

3. Repeat step 2 until only one cluster is left, which 
contains all the solutions. 

The similarity of two clusters can be measured in three 
ways: single-linkage, complete-linkage and average-
linkage. In single-linkage clustering, the shortest distance 
from any member of one cluster to any member of 
another cluster is considered as the similarity between two 
clusters. In the complete-linkage method, the greatest 
distance between any two solutions in the different 
clusters determines the distance between two clusters. In 
average-linkage clustering, the distance between two 
clusters is computed as the average of distances between 
all pairs of solutions, in which one solution is in the first 
cluster and another solution is in the second cluster. A 
hierarchical clustering is typically visualized as a binary 
tree (called dendrogram), which represents the 
hierarchical, pair-wise clustering of the items in the data 
set. Figure 12 shows the dendrogram obtained from the 
hierarchical clustering (single-linkage) of the Pareto 
optimal solutions in our case study. The individual 
solutions are placed at the bottom of the dendrogram and 
construct the leaf nodes. Each merge is represented by an 
internal node that connects the two joining clusters. The 
y-coordinate of the internal node shows the distance 
between two merging clusters. Each internal node has 
exactly two subtrees of clustered solutions (a right and a 
left subtree). Moving from the bottom to the top of the 
dendrogram shows the history of merges during the 
clustering process. For example, we can see that in Figure 
12, the two solutions P9 and P10 are merged first, and at 
the last merge the solution P1 is added to a cluster 
consisting of all the other solutions. To understand in 
each merging step, which solutions are considered for the 
similarity among the two joining clusters, the name of the 
two closest/ furthest solutions are written at the bottom of 
the corresponding internal node (this is applicable for 
only the single and complete linkage strategies).  
Once the complete hierarchical dendrogram is 
constructed, depending on the type of decision, different 
cutting policy can be applied on it, as follows: 
• Cutting at a specific level of dissimilarity. In this case 

we get clusters of which the distance between the 
solutions inside the same cluster is less than the 
determined dissimilarity threshold. For example, in 
Figure 12 cutting the dendrogram at 0.35 yields 3 
clusters: one large cluster containing 11 solutions 
(black lines), one cluster consisting of P2 and P5 (blue 
lines), and one cluster including only P1 (red line).  

• Cutting in such a way that a certain number of clusters 
remain. For organizing solutions in k cluster, the k-1 
links from the top should be removed. 
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4.3 Ranking Problem 
In the ranking approach, Pareto optimal solutions are 
systematically compared to one another, taking into 
account all objectives. The comparisons between the 
solutions lead to numerical results that somehow reflect 
the preference values of solutions. Then solutions are 
sorted by their preference values. The decision maker 
expresses his preferences among different criteria by 
assigning a weight to each criterion. These weights 
represent the relative importance of objectives. Before 
applying a ranking method, we normalize objective values 
to make them scale independent. At the end of 
normalization, all solutions get a value in the range [0,1] 
for their objective values. In the literature, several 
methods have been proposed for ranking the Pareto 
optimal solutions. Here we explain three ranking 
methods, which are provided in VMODEX. The main 
difference between these ranking methods is the way that 
they compute the aggregation of the normalized objective 
values and their weights for obtaining an overall 
preference value for each solution.  
For describing the ranking methods, we consider a Pareto 
optimal set of n solutions Si (i=1,2,…,n) in which their 
objective values are normalized. These solutions are to be 
evaluated with respect to a set of m criteria Cj 
(j=1,2,…,m), which should be minimized. Vij denotes the 
value of the ith solution in terms of the jth objective. A 
weighting vector W=(W1,W2,…,Wm) represents weights of 
n objectives. PVi indicates the overall preference value for 
solution i. 

4.3.1 TOPSIS 
TOPSIS (Technique for Order Preference by Similarity to 
Ideal solution) [4] is based on the concept that the most 
preferred solution should have the shortest distance from 
the positive ideal solution (IS+) and the longest distance 
from the negative ideal solution (IS-). TOPSIS ranks the 
solutions according to these two distances. IS+ and IS- are 
obtained from the weighted objective values in the Pareto 
optimal set. IS+ is found by constructing a vector of best 
values and IS- is calculated by constructing a vector of 
worst values as follows: 
 

Figure 12. Visualization of hierarchical clustering 
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For each solution, the Euclidian distance from the positive 
ideal solution (D+) and negative ideal solution (D-) is 
computed and then the overall preference value for each 
solution (PVi) is calculated as follows: 

 
PVi indicates the relative closeness of the ith solution to 
the positive ideal solution. Therefore, a greater value 
means that the solution is closer to IS+ and thus is more 
preferred. For ranking, solutions are sorted in descending 
order of their PV values. To compare different solutions 
in a Pareto optimal set in terms of their distances from the 
IS+ and IS- and their PV values, we visualize this 
information such as shown in Figure 13. The length of the 
blue bar represents the distance between the 
corresponding solution and IS+ (D+). A longer bar 
indicates that the solution is further away from IS+. 
Therefore, a smaller blue bar is desirable. Similarly, the 
length of the red bar shows the distance from IS- (D-). 
Thus, a longer red bar is more favorable. The length of 
the green bar indicates the relative closeness to IS+ (PV 
value). The longer the bar denotes the solution is closer to 
the IS+ and thus is more preferred. In Figure 13, the 
solutions are sorted by their PV values in descending 
order. Therefore, the position of each solution is the same 
as its rank in the TOPSIS method. For each solution, 
besides the distance values (D+ and D-), the amount of 
difference between their objective values can be seen 
(color coding). Therefore, it is easy to find out which 
objective value(s) have a high impact on the distance 
values. For example, P2 has the same energy consumption 
as the IS+ (the color and size of the third dimension of 
their representing nodes are the same) and the difference 
between their costs is small. However, they are 
significantly different in the processing time (node color) 
and thus this objective has the highest impact on the 
distance value. In Figure 13, except P12 and P3, all the 
other solutions are closer to IS+ than IS- (D+<D-) since 
their blue bars are shorter than their red bars. 

4.3.2 PROMETHEE 
Instead of comparing the distances from ideal solutions, 
the PROMETHEE (Preference Ranking Organization 
METHod for Enrichment Evaluations) [5] is based on the 

pairwise comparisons of solutions along each objective. 
For each solution, it calculates positive and negative 
preference flows. The positive flow expresses how much 
a solution is dominating the other solutions and the 
negative flow indicates how much it is dominated by the 
other ones. Based on the balance of these two preference 
flows, the PROMETHEE ranks the solutions in a Pareto 
optimal set. The procedure of PROMETHEE 
methodology can be summarized as follows: 

1. Solutions are compared pairwise for each objective. 
For example, the difference between two solutions 
S1 and S2 on objective j is indicated as dj (S1, S2). 
Afterwards, the amount of difference is mapped to a 
value in the preference range [0, 1] and denoted as   
Pj (S1, S2). This preference value indicates the degree 
of preference associated to the better solution on the 
jth objective. For small deviations, a small preference 
value is allocated to the better solution and even 
possibly 0 if the deviation is negligible. The larger 
the deviation, the larger the preference value.  

2. The overall preference index of solution S1 over S2 
for all objectives is computed as follows: 

 
3. For each solution Si, the positive flow (φ+) and the 

negative flow (φ-) are defined as: 

 
4. For each solution Si, the net flow φ (Si) is considered 

as: 

 
The net flow is the balance between the positive and 
negative flows. The higher the net flow means the better 
the solution. φ (Si) >0 means that the solution is more 
dominating all the other solutions on all objectives and    
φ (Si) <0 indicates it is more dominated. The complete 
ranking of all solutions from the best to the worst is 
obtained by sorting their φ values in descending order. 
φj (Si) is the single objective net flow for solution Si when 
only the jth objective is considered and can be defined as 
follows: 

 
It expresses how a solution Si is dominating (φj (Si)>0) or 
dominated (φj (Si)<0) by all the other solutions on the jth 
objective. φj (Si) is not dependent on the weights of the 
objectives but the degrees of preference are taken into 
account. It is particularly useful for analyzing the 
“quality” of solutions on each specific objective 
separately. For comparing the various Pareto optimal 
solutions based on their amount of domination on each 
objective, we visualize the φj (Si) values, such as shown in 
Figure 14 (the data are captured from our case study 
results explained in section 3). In this figure, each 
solution is shown as an axis. The axes start from the same 
point, have the same length and are equi –angular. Since 
the φj (Si) values are in the range [-1, 1], the center of the 
chart indicates -1 and the endpoints of axes denote 1. For 

	  

	  

	  

	  
	  

	  

Figure 13. Visualization of TOPSIS ranking method 
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each objective, a radar plot is drawn with a specific color. 
The points constructing a radar plot are the corresponding 
φj (Si) values. Because the values greater than zero (means 
more dominating) or less than zero (means more 
dominated) have completely opposite meaning, the zero 
axis is highlighted. In this figure, the order of solutions 
(clockwise) is the same as their position in the 
PROMETHEE ranking method, which is based on the 
sorted φ values in descending order. In Figure 14, the 
filled radar plot shows the total φ values (considering all 
objectives). As can be seen in Figure 14, the cost net flow 
for solution P1, φCost (P1), is 1, which means it dominates 
all the other solutions in terms of the cost. While the φPT 
(P1) is -1 which indicates that P1 is dominated by all the 
other solutions with respect to the processing time. Its net 
flow for energy consumption is less than zero (φEC 
(P1)<0), which denotes that P1 is more dominated by all 
the other solutions in terms of energy consumption. As a 
result, its total net flow φTotal (P1), which considers all the 
objectives is small and it is on the three worst solutions 
according to the PROMATHEE ranking method. 

4.3.3 Showing ranking results 
The outcomes of different ranking methods (described 
above) may not be the same since they use different 
procedures for ordering the Pareto optimal solutions. For 
comparing the results of different ranking methods and 
investigating the rank of a specific solution with respect 
to the different ranking methods, we propose a 
visualization approach shown in Figure 15. This figure 
represents the results of ranking the Pareto optimal 
solutions obtained from our case study by applying three 
ranking methods: SWO (Sum of Weighted Objectives), 
TOPSIS and PROMETHEE. In the SWO method, the 
weighted sum of objective values over all objectives is 
considered as overall preference value. Since we consider 
the minimization problem, a smaller value indicates the 
more preferred solution. Each ranking method is shown 
with a specific color. Assume there are n solutions in the 
Pareto optimal set. The circle is divided to n equal parts, 
where each part represents one solution. The number of 
nested circles is also n; each one denotes a rank position. 

 

 
The innermost one indicates the worst rank and the 
outermost one shows the best rank. For example, in 
Figure 15, the solutions P2 and P5 are in the top two for 
all ranking methods. Therefore these solutions can be a 
good choice for the final decision. However, the solution 
P3 is ranked as the worst solution by all the ranking 
methods. So, this solution is probably not appropriate as a 
final decision. Furthermore, from this figure we can see 
that all the solutions have almost the same rank in 
different ranking methods. 

5 Conclusion 
In this paper we extend our visualization tool, VMODEX, 
which is developed for the analysis of multi-objective 
design space exploration for embedded systems. In the 
extended version of VMODEX, we have provided several 
methods and visualization approaches for evaluating and 
comparing the properties of discovered design points in 
different subspaces of the explored design space. 
Furthermore, we have included various multi-objective 
decision making techniques to help the designer analyze 
the trade-offs between Pareto optimal design points and 
select the most appropriate one for system 
implementation. Moreover, several visualization schemes 
are proposed for better understanding and detailed 
analysis of the results of multi-objective decision making 
techniques. 
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Figure 15. Visualization of ranking results 

	  
Figure 14. Visualization of φ values 
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