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ABSTRACT
This paper proposes a method to quantify anonymity.
Anonymity can be quantified as the probability that each
member of a group can be uniquely identified using a quasi-
identifier: a combination of variables which combined can be
used to identify an individual within a group. Estimating
this uniqueness probability is straightforward when all possi-
ble values of a quasi-identifier are equally likely — i.e., when
the underlying variable distribution is homogenous. In this
paper, we present an approach to estimate anonymity for the
more realistic case where the variables composing a quasi-
identifier follow a non-uniform distribution. We present an
efficient and accurate approximation of the uniqueness prob-
ability using a measure of heterogeneity called the Kullback-
Leibler distance and the group size. The approach is thor-
oughly validated by comparing the approximation with re-
sults from a simulation using real demographic information
from the Netherlands.

Categories and Subject Descriptors
K.4 [Computer and Society]: Public Policy Issues Pri-
vacy

General Terms
re-identification, data anonymity, probability, birthday prob-
lem, Kullback-Leibler distance

1. INTRODUCTION
Large amounts of personal data is collected and stored nowa-
days. Some of it is intended for policy research on, for ex-
ample, finance, health and public administration. In that

scenario it is common, for reasons of privacy protection, to
de-identify the data before disclosing it to the researchers.
The de-identified data often still contains personal attributes
such as age, location and gender. Combinations of those at-
tributes might sometimes allow re-identification of the
anonymized records. A decade ago, Latanya Sweeney estab-
lished that 87% of the US population was uniquely identi-
fiable by a quasi-identifier (QID) composed of three demo-
graphic variables [20, 21]: date of birth, gender and 5-digit
ZIP code. To improve privacy she proposed the k-anonymity
model, where a mandatory rule is applied to a table before
it is disclosed [22]. A table is said to be k-anonymous if each
of the QID values in that table occur at least k times. If the
table does not satisfy the rule, the attributes comprising the
QID are generalized or eliminated from the table, up until
the rule is satisfied. This effectively ensures unlinkability
of records and individuals, by ensuring each record can be
associated with at least k different individuals.

In his short paper revisiting Sweeney’s work, Philippe Golle
mentions a lack of available details about the data collection
and analysis involved Sweeney’s work as a reason for being
unable to explain the big difference between the outcome be-
tween both studies: in Golle’s study of the 2000 U.S. Census
data, only ∼63% of U.S. citizens turned out to be uniquely
identifiable, as opposed to ∼87% that Sweeney determined
by studying the 1990 U.S. Census data [7]. This may be
attributed to inaccuracies in the source data. By using reg-
istry office data we are confident that our results (for the
Dutch population) are likely to be highly accurate.

In an earlier study we analyzed quasi-identifiers in two data
sets containing information about hospital intakes and wel-
fare fraud [11]. The quasi-identifier in the hospital intake
data set consisted of 4-digit postal code, gender, month of
birth and year of birth, and in the welfare fraud data set
it contained the municipality rather than the 4-digit postal
code. The objective of the study was to assess the level
of anonymity enjoyed by persons present in the data sets.
The results were roughly comparable to the results obtained
by Sweeney in the U.S. For example, 67.0% of the sampled
population turned out identifiable by date of birth and four-



digit postal code alone, and 99.4% by date of birth, full
postal code and gender.

One of the common challenges in k-anonymity and its devel-
opments is the recognition of quasi-identifiers. The method
we develop in this paper provides a new way of efficiently
estimating the likeliness that a given set of attributes will
function as a perfect quasi-identifier, i.e,. that each value
of a quasi-identifiers unambiguously identifies an individual.
That quantification may be useful in privacy impact assess-
ments and policy research.

Usually, QIDs are addressed -after- data has been collected,
and each data collection deals with QIDs for itself. In our
scenario, a data collector (perhaps Statistics Netherlands)
collects data and publishes a single number representing the
heterogeneity of the QID distribution over the records in his
table. That number, the Kullback-Leibler distance that will
be introduced shortly, represents the distribution skew in
the prior data collections. Using that number, our method
allows future data collectors to predict properties of QIDs -
before- collecting data – and possibly use that information to
decide on what (not) to collect and possibly to decide what
the impact of combining earlier-collected data may have on
privacy.

For QIDs consisting of attributes that don’t chance too fre-
quently, such as ZIP code and date of birth, the method
introduced in this paper provides an efficient approxima-
tion of the probability that every (QID) value in a group
of people unambiguously identifies an individual. An entity
such as Statistics Netherlands, who have access to enormous
amounts of data, may publish precomputed tables that data
collectors may use to include or exclude specific pieces of
information in their planned data collection.

As a follow up to [11] and related papers of a fully empirical
nature, the primary question the current paper addresses
is: ‘Can we develop a methodology to determine the proba-
bility that all persons in a group can be uniquely identified
by quasi-identifier X? This can be used as a measure of
anonymity.The main contribution of our work is that we
provide a sound technique to accurately approximate this
probability. The idea is to translate our question in terms
of a birthday problem, and then to rely on probabilistic tech-
niques.

The main problem is that, unlike in the classical birthday
problem [17], the probability distribution for many variables
and thus for many QID’s is non-uniform, i.e., not all pos-
sible values occur with equal frequency. This heterogene-
ity is dealt with by adjusting the outcome of the homoge-
neous birthday problem (in which all outcomes are equally
likely) by a measure of heterogeneity, the Kullback-Leibler
distance [12]. As mentioned, the techniques used are of a
probabilistic nature; more specifically, we borrow elements
from large-deviations theory [5, 16].

It is emphasized that the stated question is of interest both
to adversary (‘which quasi-identifiers should I want?’) and
the anonymous subject (‘which quasi-identifiers should I
avoid?’). Our method will be demonstrated using demo-
graphic data from the Netherlands, but the approach can

be applied to any population.

This paper is organized as follows. In Section 2 we formally
describe the problem in terms of a birthday problem with
unequal probabilities. Section 3 presents an approximation
for the uniqueness probability under heterogeneity, where
the deviation from the uniform situation is captured by the
Kullback-Leibler distance. In Section 4 we validate the ap-
proximation, and use the approximation to perform a num-
ber of experiments. In Section 5 we describe related work
- not any more. Then the paper is concluded, in Section 6,
by a discussion and outlook.

2. PROBLEM
The problems we come across in this paper can be regarded
as generalized birthday problems. In the ‘classical’ birth-
day problem [6, 23] there are k individuals, each of whom
is assigned (uniformly, independently) a value from the set
{1, . . . , N}. It is a straightforward exercise in probability
theory to check that the probability that all values (‘birth-
days’) are unique is given by

πu(k,N) =
N

N

N − 1

N
· · · N − k + 1

N
=

N !

(N − k)!Nk
.

However, things complicate tremendously in case the out-
comes {1, . . . , N} are not equally likely. To study this sit-
uation, suppose that Fi outcomes have probability αi/N ,
for i = 1, . . . , d (that is, there are d groups, within which
the probabilities are again uniform). Here it is assumed
that F1 + . . . Fd = N (each outcome is a member of one
group) and F1α1 + . . . Fdαd = N (the total probability is
1). For this generalized birthday problem, it is not possible
to write down a clean expression for the uniqueness prob-
ability (although it can be evaluated numerically in quite
an efficient way [10]). However, as we will show in this
paper, we succeeded in developing an accurate approxima-
tion. This approximation is based on the Kullback-Leibler
distance, which is a measure for heterogeneity within the
population. It turns out that the more heterogeneous the
population is, the lower the uniqueness probability. In ad-
dition, it is shown that assuming all outcomes are equally
likely (so that the above explicit formula can be applied)
leads to quite substantial estimation errors.

To simplify the exposition, we use a very simple quasi-identifier
in our examples: age. We experimentally assessed the qual-
ity of our approximation using real data about the Dutch
population: the distribution of age in all Dutch municipali-
ties, which vary in size (1k–750k citizens). In contrast to a
previous study [11], the data we use here is publicly avail-
able from Statistics Netherlands for others to reproduce our
results1.

3. METHODOLOGICAL FRAMEWORK:
BIRTHDAY PROBLEMS

As mentioned above, the uniqueness probability can be cal-
culated straightforward in case all outcomes are equally likely.
In this section we present an approximation for the situa-
tion where this is not the case, that is, the situation in which
probabilities of the outcomes 1, . . . , N differ from 1/N.

1Statistics Netherlands, StatLine: http://statline.cbs.nl



3.1 Approximations for the
general birthday problem

In this subsection we describe a way to find an approxi-
mation for the uniqueness probability in the non-uniform
scenario. The approximation relies heavily on the idea of
‘Poissonization’.

Approximations for the uniform case. We briefly describe
a classical approximation for the uniform case (i.e., d = 1),
and show that this approximation is exact in a particular
asymptotic regime. To this end, observe that

πu(k,N) = exp

(
k−1∑
i=0

log

(
1− i

N

))

≈ exp

(
− 1

N

k−1∑
i=0

i

)
≈ exp

(
− k2

2N

)
. (1)

This approximation can be formally justified if k scales like√
N : applying ‘Stirling’,

πu(a
√
N,N) =

N !

(N − k)!Nk

∼ e−a
√
N

(
1− a√

N

)N−a√N
→ e−

a2

2 , (2)

where the convergence is due to Lemma 1.(i) (see appendix A).

Plugging in a := k/
√
N indeed gives approximation (1).

Poissonization for the uniform case. We show that assuming
that k is not given but drawn from a Poisson distribution
with mean k yields, remarkably enough, the same asymp-
totic (2).

To this end, suppose that the sample size is Poisson dis-
tributed with mean k. An elementary conditioning argu-
ment yields that this gives the uniqueness probability

πPois, u(k,N) =

N∑
i=0

e−k
ki

i!

N !

(N − i)!N i
= e−k

(
1 +

k

N

)N
.

As before an approximation of the type exp(−k2/(2N)) can
be justified, because

πPois, u(a
√
N,N) = e−a

√
N

(
1 +

a√
N

)N
→ e−

a2

2 ,

applying Lemma 1.(ii). In other words, even though we
randomize the number of samples, we obtain the same ap-
proximation.

The non-uniform case. We now consider the situation where
Fi (for i = 1, . . . , d) of the outcomes have probability αi/N ,
with F1 + . . . Fd = N and F1α1 + . . . Fdαd = N . As argued
earlier, if the αi are not uniform, then computing the unique-
ness probability π(k,N) is not straightforward. The idea of
Poissonization does ease this task considerably, though, as
we will show.

It is first observed that, when sampling k times according to
the mechanism described above, the number of these sam-
ples that are from group i (with i = 1, . . . , d) has a multi-
nomial distribution with parameters k and (probability vec-
tor) (α1F1/N, . . . , αdFd/N)′. Suppose instead the number
of samples from group i is Poisson distributed with mean
(αiFi/N) · k (rather than the described multinomial distri-
bution). Then the uniqueness probability essentially reduces
to the product of the uniqueness probabilities within each of
the d groups (use independence!). Therefore, in self-evident
notation,

πPois(k,N) =

d∏
i=1

πPois, u

(
αiFi ·

k

N
, Fi

)

≈ exp

(
− k2

2N2

d∑
i=1

α2
iFi

)
, (3)

and then the idea is to approximate π(k,N) by πPois(k,N),
as we did in the uniform case. In [2, Thm. 4] this approxima-
tion was made precise, in the sense that, with fi := Fi/N
being the fraction of all individuals that is of type i, as
N →∞,

π(a
√
N,N)→ exp

(
−a

2

2

d∑
i=1

α2
i fi

)
.

3.2 Impact of non-uniformity
A, perhaps näıve, idea could be to ignore the heterogene-
ity and to simply use the ‘homogeneous formula’ (1). In
this subsection we show that such an approach could lead to
highly inaccurate estimates — evidently, the more heteroge-
neous the population is, the less accurate such an approx-
imation. To study this effect, we further asses the impact
non-uniformity has on the uniqueness probability.

Uniform distribution maximizes uniqueness probability. The
approximation of the uniqueness probability for the non-
uniform case is majorized by the approximation for the uni-
form case. This can be see as follows. First observe that
we need to prove that

∑d
i=1 α

2
i fi ≥ 1, given that

∑d
i=1 fi =∑d

i=1 αifi = 1 (where it is noted that the minimum value 1
is attained when all αi coincide). Let the random variable
A have the value αi with probability fi. As variances are
non-negative, we evidently have

d∑
i=1

α2
i fi = EA2 ≥ (EA)2 = 1,

which proves our claim. The fact that the uniform distribu-
tion actually maximizes the uniqueness probability has been
observed before, cf. [9, 19]. In more concrete terms, it means
that all perturbations from the uniform distribution reduce
the uniqueness probability.

Distances between distributions. Observing that

exp(−a
2

2
)

exp(−a2
2

∑d
i=1 α

2
i fi)

= exp

(
a2

2

d∑
i=1

(α2
i fi − 1)

)
,



we conclude that

1

2

d∑
i=1

(α2
i fi − 1)

is a measure for discrepancy between the uniform distribu-
tion and the non-uniform distribution under consideration.
There are several distance measures between distributions,
the most prominent perhaps being the Kullback-Leibler dis-
tance [12]. Below we argue that, for small perturbations
at least, our discrepancy metric essentially reduces to the
Kullback-Leibler distance.

Indeed, if αi is not too different from 1, the Kullback-Leibler
distance with respect to the uniform distribution, say κ, can
be evaluated as follows. First observe that

κ =

d∑
i=1

(
Nfi

αi
N

)
log

NfiαiN
Nfi

1

N

 =

d∑
i=1

αifi logαi.

Now let αi equal 1 + βiε for ε small;
∑d
i=1 αifi = 1 then

entails that
∑d
i=1 βifi = 0. Using the Taylor expansion

log(1 + x) = x− x2/2 +O(x3), it follows that

κ =

d∑
i=1

(1 + βiε)fi log(1 + βiε)

=

d∑
i=1

(1 + βiε)fi

(
βiε−

1

2
β2
i ε

2

)
+O(ε3)

=
1

2

d∑
i=1

fiβ
2
i ε

2 +O(ε3).

Now replacing βiε by αi − 1, and using
∑d
i=1 αifi = 1, we

arrive at the approximation, for ε small:

κ ≈ 1

2

d∑
i=1

(α2
i fi − 1).

In other words,

πu(k,N)

π(k,N)
≈

exp
(
−k2/2N

)
exp

(
−k2/2N ·

∑d
i=1 α

2
i fi
) ≈ exp

(
k2

N
· κ
)
.

As a consequence, we obtain the following elegant approxi-
mation for the uniqueness probability in the heterogeneous
case:

π(k,N) ≈ πu(k,N) · e−k
2/N·κ ≈ e−( 1

2
+κ)k2/N .

In other words: to approximate the uniqueness probability
for the non-uniform case, we have to take the uniqueness
probability for the uniform case, and raise it to the power κ.
This κ, the Kullback-Leibler distance, measures the discrep-
ancy of the distribution relative to the uniform distribution.
More specifically: the larger κ, the more heterogeneous the
distribution is, the smaller the uniqueness probability. It is
noticed that the approximation formula is consistent with
the one for the uniform case; then κ = 0.

4. EXPERIMENTS WITH
DEMOGRAPHIC DATA

In this section we perform two sets of experiments: (i) ex-
periments in which we validate our approximation formula,
as was deduced in the previous section; (ii) experiments in
which we assess the impact of heterogeneity, where all com-
putations are based on our approximation formula.

4.1 Validation of the approximation formula
In our validation experiment we have considered the follow-
ing setup, focusing on the level of anonymity one has after
revealing her or his age. Supposing that a group of k in-
dividuals is considered, our objective is to determine the
probability that each of them has a unique age.

Now the key observation is that the distribution of age is
in general not uniform: some ages evidently have a higher
frequency within the population than others (obviously the
higher ages do not occur so frequently). It means that we
are in the heterogeneous setup of the previous section.

Our experiments are based on the age distribution of all 428
Dutch municipalities. For each of them we computed the
Kullback-Leibler distance κ; let κj be the Kullback-Leibler
distance of municipality j. More specifically, with ϕij the
fraction of the population with age i (for i ranging between
0 and the maximum age, say M) in municipality j (where

obviously
∑M
i=0 ϕij = 1 for all j), we have

κj =

M∑
i=0

ϕij log
ϕij

1/(M + 1)
;

the 1/(M + 1) is the uniform density on {0, . . . ,M}. In our
experiments we took M = 94 (thus neglecting a tiny fraction
of the population).

In our experiments we took k = 29, such that under unifor-
mity we would have a uniqueness probability πu(29, 95) =
0.84%. The approximation of the uniqueness probability pj

for municipality j is therefore 0.84 ·10−2 ·e−k
2/N·κj . The ac-

curacy of this approximation for municipality j can be vali-
dated by sampling (independently) n+ groups of size k from
the age distribution (ϕ0j , . . . , ϕMj), and to check for each
of these samples whether all individuals included are unique
(if yes, then increase counter n). Then the uniqueness prob-
ability of municipality j can be estimated by p̂ := n/n+.
To guarantee that this estimate is sufficiently reliable, we
should have that the ratio of confidence interval’s half-width
and the estimate (known as the relative efficiency) is below
some predefined number r, say, 10%, which means that

tασ(p̂)

p̂
< r,

where σ(p̂) is the standard error of the estimate, which
roughly equals √

p̂(1− p̂)
n+

≈

√
p̂

n+
,

and tα is the t-value corresponding to confidence α (1.96
for α = 0.95). An easy computation shows that the num-
ber n+ of experiments needed to make sure that the relative
efficiency is below r, is t2α/(r

2p̂). In the setting of this exper-
iment, with r = 0.1 and a uniqueness probability of roughly
one percent, and choosing α = 0.95, it turns out that we
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Figure 1: For all Dutch municipalities: the
Kullback-Leibler distance and the estimated
uniqueness probability, when revealing age.
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Figure 2: For all Dutch municipalities: the
Kullback-Leibler distance and the estimated
uniqueness probability, when revealing age and
gender.

have to sample until the number of ‘unique samples’ (that
is, the n+) is about 400. This procedure gives us reliable es-
timates for the uniqueness probabilities of all municipalities;
we call these p̂1 up to p̂428.

The question is to what extent the approximation

pj = 0.84 · 10−2 · e−k
2/N·κj

is valid, and to this end we can now compare the 0.84 ·10−2 ·
e−k

2/N·κj with the p̂j , for j = 1 up to 428. If these numbers
would exactly match, then we would have that log(0.84 ·
10−2) − k2/N · κj = log pj , or, in other words, that the
logarithm of the uniqueness probability depends linearly on
the Kullback-Leibler distance. To study the validity of this
relation, we plotted in Figure 1 the value of κj against log p̂j ;
each dot represents one municipality j.

The main conclusion from Figure 1 is that there is a re-
markably good fit, in that the cloud resembles a straight
line quite well. The line drawn represents the least squares
fitting. The percentage of variance that can be explained by
the estimator, usually denoted by R2, provides a measure
of the quality of the fit; we obtained R2 ≈ 0.72 (popularly:

the estimator explained 72% of the variance). We performed
the same experiment but then for target probabilities in the
order of 10−3 and 10−4 (rather than the 0.83% of the above
experiment); these yield values of the R2 of even 0.79 and
0.82, respectively.

Another general conclusion is that the use of πu(k,N) with-
out correction by e−κ would lead to substantially overes-
timating the uniqueness probability. Noting that e−5.8 =
3.0 · 10−3 (where −5.8 is a typical value for log pj , as seen
in Figure 1) indicates that the näıve estimate πu(29, 95) =
8.4 · 10−3 is usually off by a factor of about 3, due to the
heterogeneity that was not taken into account.

We performed the same experiments for the combination age
and gender (that is, M = 95 × 2 = 190). We took k = 41,
where it is noted that πu(41, 190) = 0.95%. Figure 2 shows
that the same effects apply as in the situation in which just
age was considered.

4.2 Additional experiments
In this section we report the outcomes of a number of ad-
ditional experiments; in the numerics we rely on the ap-
proximation formula that was developed in Section 3.1, and
validated in Section 4.1.

In a first experiment we study the effect of the group size
k; we return to our example of Section 4.1, in which the
individuals reveal their ages. For clarity of exposition, we
chose two municipalities (Laren and Urk) that differ sub-
stantially in Kullback-Leibler distance κ (Laren has a κ of
0.0914, Urk has 0.4011). This difference is reflected clearly
in the uniqueness probability, as displayed in Figure 3. We
approximately have

π(k,N) ≈ exp

(
−
(

1

2
+ κ

)
k2

N

)
.

If we would have assumed uniformity, we have to insert κ =
0; the resulting graph has been displayed as well.

Our next experiment is inspired by the fact that quite of-
ten the data available is relatively coarse-grained and ag-
gregated. For example, in the context of Figure 2 we had
information on the number of individuals that were of any
given (age, gender)-pair (there were 95×2 = 190 such pairs).
Suppose, however, that we have less information: we only
know the number of males and females, and per age the
number of individuals (that is, just 97 numbers, where of
course the sum over all ages should match with the sum of
the male and female). For this situation the same questions
can be posed; notice that the machinery developed in this
paper does not immediately apply.

Figure 4 provides an indication of the effect that aggregated
statistics of age have on the Kullback-Leibler distance for
age. The figure shows the Kullback-Leibler at the level of
individual ages (i.e., not grouped), at the level of age groups
of 2 (‘age 0-1’, ‘age 2-3’, ‘age 4-5’, etc.) and age groups
of 5 (‘age 0-4’, ‘age 5-9’, ‘age 10-14’, etc.). The x-axis is
a meaningless index of the municipalities, which for clarity
of exposition were ordered by Kullback-Leibler distances for
the non-grouped scenario.
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Figure 3: For two Dutch municipalities: the
uniqueness probability as a function of the
group size k; also the curve under uniformity
has been added.

5. RELATED WORK
In this section we refer to related work. The concept of
quasi-identifiers was introduced in [4]; k-anonymity was in-
troduced in [22]. Considering a de-identified data set con-
taining sensitive attributes and quasi-identifiers, the data
set is said to be k-anonymous if each quasi-identifier value
occurs zero or at least k times within that data set. The
concept is intuitive, but it remains unclear how to determine
the right k for practical situations considering the disadvan-
tages of information loss involved in the perturbations (gen-
eralization and suppression) needed to obtain k-anonymity.
k-Anonymity protects against the ‘oblivious‘ adversary tar-
geting anyone (re-identifying anything he can, hoping to get
lucky) as well as the adversary targeting a specific individual.
One of the limitations of the original k-anonymity model is
that it does not take into account the situation where the
sensitive attribute has the same value for all k rows and is
revealed anyway. l-Diversity was introduced to address this
by requiring that, for each group of k-anonymous records in
the data set, at least l different values occur for the sensitive
column [15]. Further developments included t-closeness, m-
invariance, δ-presence and p-sensitivity [13, 26, 18, 3]. Ap-
plications of k-anonymity to communication protocols have
been explored in [25, 24].

[14] provides a probabilistic notion of k-anonymity: a dataset
is said to be probabilistically (1 − β, k)-anonymous along
a quasi-identifier set Q, if each row matches with at least
k rows in the universal table U along Q with probability
greater than (1− β). The authors also found a relation be-
tween whether a set of columns forms a quasi-identifier and
the number of distinct values assumed by the combination
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Figure 4: For all Dutch municipalities: the ef-
fect of aggregated (age) statistics on the KL-
distance.

of the columns. (1− β, k)-anonymity is obtained by solving
1-dimensional k-anonymity problems, avoiding the ‘curse of
dimensionality‘ associated with k-anonymity [1]. (1− β, k)-
Anonymity protects against the oblivious adversary, but is
insufficient against the adversary targeting a specific indi-
vidual.

[8] reflects on k-anonymity by introducing the M -score mea-
sure, or ‘misuseability weight‘, representing the sensitivity
level of the data of each table an individual is exposed to —
and, by extension, the harm that misuse of that data can
cause to an organization if leaked by employees, subcontrac-
tors and partners.

One of the common challenges in k-anonymity and its devel-
opments is the recognition of quasi-identifiers. The method
we develop in this paper provides a new way of efficiently
estimating the likeliness that given set of attributes will
function as a perfect quasi-identifier, i.e. that each value
of a quasi-identifier unambiguously identifies an individual.
That quantification may be useful in privacy impact assess-
ments and policy research.

6. DISCUSSION AND FUTURE WORK
The main contribution of this paper is an approximation for
the uniqueness probability when sampling k objects from a
population of N , for the situation where the N outcomes are
not equally likely. The deviation with respect to the uniform
distribution is captured by the Kullback-Leibler distance.
The approximation clearly shows how the heterogeneity af-
fects the anonymity: the more heterogeneous the popula-
tion is, the lower the uniqueness probability. In terms of
k-anonymity: the more heterogeneous the population is, the



lower the probability that every record in a table will unam-
biguously identify an individual through the approximated
QID.

We emphasize that the anonymity metric used in this pa-
per (that is, the uniqueness probability) does not unambigu-
ously reflect the effect for an individual. For instance, if the
individual has an age that is relatively rare within the pop-
ulation (the person is relatively old, for instance), then of
course he or she is more likely to reveal his or her identity.

While the approximation formula is of great practical use
–allowing data collectors and privacy watchdogs to make
predictions about future data collection, allowing individu-
als to predict what information (not) to disclose at the end
of a survey– there are still a number of challenging open
questions. For example, age and gender (as in Figure 2) are
roughly independent of each other, which makes all com-
putations easier, but quite often when considering multiple
quasi-identifiers such a property does not hold. Consider for
instance age and marital status: in the Netherlands there
will be no married people below 18, while being a widow at
a young age is highly unlikely. The question is how these
dependencies should be dealt with.
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APPENDIX
A. APPENDIX: A USEFUL LEMMA
Below we present a lemma that is of use when deriving our
approximation for the uniqueness probability. Its proof is a
matter of elementary algebra.

Lemma 1. (i) As t→∞,

−at− (t2 − at) log
(

1− a

t

)
→ −a

2

2
.

(ii) As t→∞,

−at+ t2 log
(

1 +
a

t

)
→ −a

2

2
.


