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Weak identification of forward-looking
models in monetary economics*

SOPHOCLES MAVROEIDIS

Department of Quantitative Economics, University of Amsterdam, Roetersstraat 11,

1018 WB Amsterdam, The Netherlands (e-mail: s.mavroeidis@uva.nl)

Abstract

Recently, single-equation GMM methods have become popular in the mone-
tary economics literature, for estimating forward-looking models with rational
expectations. We discuss a method for analyzing the empirical identification
of such models that exploits their dynamic structure and the assumption of
rational expectations. This allows us to judge the reliability of the result-
ing GMM estimation and inference and reveals the potential sources of weak
identification. With reference to the New Keynesian Phillips curve of Gaĺı
and Gertler (1999) and the forward-looking Taylor rules of Clarida, Gaĺı, and
Gertler (2000), we demonstrate that the usual ‘weak instruments’ problem can
arise naturally, when the predictable variation in inflation is small relative to
unpredictable future shocks (news). Hence, we conclude that those models
are less reliably estimated over periods when inflation has been under effective
policy control.

JEL classification: C22, E31.
Keywords: New Phillips Curve, Taylor Rule, concentration parameter, Ratio-
nal Expectations, GMM

I Introduction

Forward-looking models are commonly used in monetary economics both by
academics and practitioners, in order to advise on, or assess the efficacy of,
monetary policy. In recent years, small-scale forward-looking macro models
have been increasingly used by central banks around the world to examine
broader issues of monetary policy, especially so relative to the traditional large-
scale macro models of the seventies.

*I would like to thank Adrian Pagan for very helpful comments.
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There are both theoretical and practical reasons for this growing popularity.
On theoretical grounds, first, by explicitly incorporating forward-looking com-
ponents, these models address the Lucas (1976) critique, which reduced-form
models do not. Second, because they are usually built on micro-foundations, it
is argued that they represent underlying economic structure. Moreover, their
so-called ‘structural’ parameters admit interesting economic interpretations,
and thus they are more appealing than the reduced-form models. Third, these
models are based on ‘rational expectations’, which have become an essential
feature of most macroeconomic models.

There is a widespread view that authorities, as well as economic agents,
are forward looking in their behaviour. For instance, the monetary authority
needs to look forward due to lags in the transmission mechanism that mean
monetary policy takes time to have an effect, as seen by the following quote
by a prominent central banker:

‘The challenge of monetary policy is to interpret current data on
the economy [...] with an eye to anticipating future inflation-
ary forces and to countering them by taking action in advance.’
(Alan Greenspan, Chairman of the Federal Reserve Board in his
Humphrey-Hawkins testimony in 1994, cited in Batini and Haldane
1999, p. 157.

This prompted researchers to develop models of the form

Pure: yt = β E(yt+1|Ft) + et
Hybrid: yt = β E(yt+1|Ft) + γ yt−1 + et

(1)

The former is a pure forward-looking model, whereas the latter is a hybrid ver-
sion containing both forward and backward-looking adjustment. These mod-
els have been used to address the following questions that are central to the
current monetary policy debate: (i) Are agents forward-looking? (Are expec-
tations rational?) (ii) How important is forward-looking behaviour compared
to ‘backwardness’?

Two common applications of forward-looking models are found in mon-
etary economics. One comes from the recent literature on monetary policy
rules, where it has become common practice to estimate Taylor-type rules from
historical data, see Taylor (1999) and the papers therein. One approach, pop-
ularized by Clarida, Gaĺı, and Gertler (1998) and Clarida, Gaĺı, and Gertler
(2000), is the estimation of the reaction function parameters from a single
equation of the form:

rt = r̄ + β (E(πt+j|Ft)− π̄) + γ E(xt+i|Ft) + εt (2)

where rt, πt and xt denote the policy rate, inflation and output gap respectively,
r̄ and π̄ denote the equilibrium rate and inflation target respectively, and
E(·|Ft) denotes expectations conditional on the available information, and i, j
are specified.

2



Another important example is the influential paper of Gaĺı and Gertler
(1999), which uses the same econometric methodology in estimating the ‘New
Phillips curve’, a forward-looking model for inflation dynamics:

πt = λst + βE(πt+1|Ft) + γπt−1 (3)

where st is the labour share. Other examples of forward-looking Phillips curves
include the models proposed in Buiter and Jewitt (1989), Fuhrer and Moore
(1995), Batini, Jackson, and Nickell (2000) and Gaĺı, Gertler, and López-Salido
(2001).

In view of the fact that such equations involve unobservable expectations
of variables, researchers proceed as follows. They replace expectations by
actual realizations of the variables and derive orthogonality conditions that
may be used to estimate the parameters of the model with the Generalized
Method of Moments (GMM). These moment conditions are derived based on
the assumption of rational expectations, i.e., that the expectation-induced
‘errors in variables’ must be orthogonal to the information set available to the
agents, denoted Ft at the time the expectations are formed. The nature of the
moment conditions guides the choice of the appropriate weighting matrix for
the GMM estimator, i.e., what type of corrections should be made for serial
correlation or heteroscedasticity of the residuals.

This approach is popular because it is relatively easy to implement. It
apparently obviates the need to model the whole system of variables involved
in the analysis, and in particular those that are thought of as ‘exogenous’; it is
known to be robust to a wider range of Data Generating Processes than FIML
estimators (Hansen (1982)); and in general, it is expected to work well for the
estimation of various types of Euler Equation models under weak conditions.

The robustness of this method arises not only with respect to specification
errors in other equations of the system that one is not estimating. It also
is also robust to another type of mis-specification. Full information methods
require that the RE system be solved to derive the (restricted) reduced form
or ‘observable structure’. This observable structure, and hence the resulting
likelihood, depends on whether the system has a ‘forward’ or ‘backward’ solu-
tion, which cannot be determined a priori, except by assumption, see Pesaran
(1987, chapter 5). An advantage of limited information methods is that they
do not require the solution of the model prior to estimation.

However, it is easy to see why such an approach invites criticism. First, it
is not grounded on prior testing for the lack of feedbacks in the variables. This
is a necessary condition for the absence of information loss in the estimation
and inference on the parameters of interest. In fact, the properties of the non-
modelled variables are crucial for the identification of the model’s parameters,
even when the former are thought to be ‘exogenously’ determined.

Secondly, pathological cases such as ‘weak instruments’, which are common
across the spectrum of applied econometrics, are empirically relevant for those
models, and have been shown to impart serious distortions on the distributions
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of the estimators and test statistics, thus invalidating conventional inference,
see e.g. Hansen, Heaton, and Yaron (1996) and other papers in that issue of
the Journal of Business and Economic Statistics.

In this paper, we discuss a method for analyzing the identifiability of those
models, based on a combination of the relevant economic and statistical the-
ory. By economic theory we mean the application of ‘rational expectations’ to
derive the reduced form of the system of all endogenous and exogenous vari-
ables. Then, the statistical theory provides us with a measure of the ‘strength’
of identification, which can be readily derived from that reduced form. This
is known as the concentration parameter, measuring the predictability of the
(future) endogenous regressors on current information relative to the genuinely
unpredictable innovations.

The structure of the paper is as follows. Section II reviews the relevant
theory of weak instruments. Section III discusses the weak identification for
the New Keynesian Phillips curve and forward-looking monetary policy rules.
Finally, section IV concludes. Algebraic derivations are given in the appendix.

II Weak identification

The devastating implications of weak identification for GMM estimation and
inference have been well-documented in a growing theoretical and applied lit-
erature in the 1990s, see Stock, Wright, and Yogo (2002) for a review. The
important lesson from that literature is that the usual rank condition for iden-
tification of structural models (e.g. simultaneous equations or IV regressions)
is not sufficient to guarantee reliable inference using GMM in finite samples.
How informative any given sample is for the parameters of interest can be
judged by the expected bias and size distortions of conventional GMM esti-
mators and test statistics.

Traditionally, large distortions have been attributed to problems of ‘small
samples’. However, the weak instruments literature has shown that such dis-
tortions are not necessarily a small sample problem. Rather, they depend on
the amount of information that is present in the data for the parameters of
interest. As shown by Stock, Wright, and Yogo (2002), this information is to
some (large) extent characterized by the so-called concentration parameter,
which will be introduced below. This is a unitless measure of the ‘quality’ of
the instruments, akin to a signal-noise ratio in the first-stage regression of the
endogenous variables on the instruments.

Before proceeding, it is important to define the terms partial or under-
identification, weak identification and weak instruments. Consider a paramet-
ric model specified in terms of a set of orthogonality conditions. The true
value of the parameters is defined as the point in the parameter space where
the orthogonality conditions vanish. A parameter is unidentified on a given in-
formation set if the resulting orthogonality conditions vanish for more than one
value of this parameter. The structural model is partially or under -identified
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if any function or subset of its parameters is un-identified.
To distinguish between the general case in which the rank condition for

identification is satisfied, and the more specific case when GMM is reliable we
will adopt the terminology of Johansen and Juselius (1994, p.10). We refer to
the former as generic identification. This includes both the case when GMM is
reliable, which will be referred to as empirical or ‘strong’ identification, and the
case when GMM is not reliable, which is commonly called weak identification.1

In linear models estimated using instrumental variables, weak identifica-
tion is known as the ‘weak instruments’ problem, see Stock, Wright, and Yogo
(2002), Stock and Wright (2000) and Wright (2003). Stock, Wright, and Yogo
(2002) use the more general term ‘weak identification’ to describe weak in-
struments problems in the context of nonlinear GMM estimation or when the
errors are heteroscedastic and/or serially correlated. Since forward-looking
models estimated by GMM involve at least serially correlated errors, we will
use the term weak identification in accordance with the above convention.

To illustrate the main implications of weak identification, we offer a simple
exposition of this issue in the context of a univariate linear IV regression with
fixed instruments. In this case, the analytics are simple and provide a useful
insight into the more general asymptotic theory given in the literature, as well
as a benchmark for interpreting the results of Monte Carlo experiments on the
finite sample properties of GMM estimators.

A primer on weak instruments

Consider the IV estimator of a parameter θ in the model (4):

y = Y θ + u (4)

Y = Z Π+ v (5)

where (y, Y ) is a T × (1 + p) matrix of endogenous variables, Z is a non-
stochastic (T × k) matrix of instrumental variables, such that E[Ztut] = 0,
limT→∞ T−1Z ′Z = ΣZZ , with rank(ΣZZ) = rank(Z ′Z) = k for all T , and
U = (u, v) ∼ N(0, ΣUU ⊗ IT ). The quantity λ = Σ−1

vv Σvu measures the
‘endogeneity’ of Y and determines the bias of the OLS estimator of θ. It is
more common to characterize this endogeneity by the correlation coefficient
between u and v, namely ρ = Σ

1/2
vv λσ−1

u .
The IV estimator of θ is:

θ̂IV =
(
Y ′Z (Z ′Z)

−1
Z ′ Y

)−1

Y ′ Z (Z ′ Z)
−1

Z ′ y =
(
Π̂′ (Z ′ Z) Π̂

)−1

Π̂′Z ′ y.

(6)

where Π̂ is the OLS estimator of Π in the ‘first-stage’ regression (5). When

rank(Π) = p, the limiting distribution of θ̂IV follows from standard asymptotic

1The concept of weak identification is not specific to GMM. In likelihood inference, it
refers to a situation in which the expected value of the likelihood function is flat around the
true parameter, i.e. the information matrix at the true parameter is near singular.
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theory:

√
T
(
θ̂ − θ0

)
=

(
Π̂′
(
Z Z

T

)
Π̂

)−1
1√
T
Π̂′Z ′u

D→ N

[
0, σ2

u (Π
′ΣZZΠ)

−1
]
. (7)

However, when rank(Π) < p, this approximation breaks down, see Phillips
(1989). Moreover, the approximation becomes unreliable when Π is ‘close’ to
being of reduced rank, in a sense that will be made precise below.

Lack of identification It is easier to see what happens first in the univariate
un-identified case with one instrument, where p = k = 1, with Π = 0. Defining
et = (ut− v′t λ), such that E(etvt) = 0, with variance σ2

u.v = σ2
u(1− ρ2), the IV

estimator can be written as:

θ̂IV = θ0 +
Z ′u

Z ′v
= θ0 + λ+

Z ′e

Z ′v
∼ (θ0 + λ) +

σu.v
σv

t1

where t1 follows a Student’s t-distribution with 1 degree of freedom (also known
as the Cauchy distribution) and σ2

v = Σvv has been introduced for notational
simplicity in this special case.2 This distributional result holds approximately
(for large T ), but also exactly (for any T ), under the normality assumption for
(u, v) and the non-randomness of the instruments. Thus, we see that in the
un-identified case, the IV estimator is far from normal and exhibits a ‘double’
inconsistency: it is Op(1) (i.e., its variability does not fall with T ), and centered
on the plim of the OLS estimator, which is (θ0 + λ).

Next, we look at what happens when we add more irrelevant instruments,
i.e., k > 1 and still Π = 0. This time, the distribution of the IV estimator
becomes:

θ̂IV − θ0 = λ+
v′ PZ e

v′ PZ v
∼ λ+

σu.v

σv
√
k
tk

where PZ = Z (Z ′Z)−1Z ′ and tk is distributed as Student’s t with k degrees of
freedom. We notice that the IV estimator now has moments up to the degree
of over-identification, k − 1, and that its variance is falling linearly with the
number of instruments.

Weak identification Building on the above discussion, we wish to inves-
tigate what happens when identification is ‘weak’, i.e., Π 6= 0 but ‘close’ to
zero. One approach is to develop higher order asymptotic approximations to
the finite-sample distribution of the estimator, along the lines of Rothenberg
(1984). Another approach, proposed by Staiger and Stock (1997), is to derive
an alternative first-order asymptotic theory by linking the key parameter Π to
the sample size.

Both of these approaches can be motivated by re-writing the IV estimator
θ̂ as a function of some pivotal statistics (that is, statistics whose distribution

2For more general treatments, see Phillips (1989) or Staiger and Stock (1997).
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is free from any parameters). This is straightforward in the univariate case,
p = 1. Define the two independent standard normal variates:

z =

(
ze
zv

)
=

(
(Z ′Z)−1/2Z ′e/σe
(Z ′Z)−1/2Z ′v/σv

)
∼ N(0, I2k),

and their linear combination zu = (Z ′Z)−1/2Z ′u/σu = ze
√

1− ρ2 + zvρ. Also,
let

µT = (Z ′Z)1/2Π/σv. (8)

This quantity is known as the concentration parameter (Anderson 1977).
Then, dropping the subscript of µT for simplicity, the IV estimator (6) in
the one-parameter case can be written as:

θ̂IV − θ0 =
(zv + µ)′ zu σu/σv

(zv + µ)′ (zv + µ)
=

(zv + µ)′ (ze
σu.v

σv
+ zv λ)

(zv + µ)′ (zv + µ)
. (9)

The above expression highlights the dependence of the finite sample distribu-
tion of the IV estimator on nuisance parameters, as well as its departure from
normality. Since the random vectors zv and ze are independent, the distri-
bution is a location-scale mixture of normals, and in special cases it can be
represented as a doubly non-central t-distribution, see Phillips (1984). Evi-

dently, the variability of θ̂IV and its departure from normality depend on the
modulus of µ. When we let ||µ|| → ∞, the normalized IV estimator becomes:

√
µ′µ

(
θ̂ − θ0

)
d→ N

(
0,

σ2
u

σ2
v

)

Expression (9) also allows us to make statements about the finite-sample
bias of the IV estimator of θ. This clearly depends on λ, µ and the number of
instruments k, but when µ′µ/k is large, it is (approximately) inversely related
to µ′µ/k:

BIV = E(θ̂−θ0) = E

[
(zv + µ)′zvλ

(zv + µ)′(zv + µ)

]
≈ E [(zv + µ)′zvλ]

E [(zv + µ)′(zv + µ)]
=

λ

1 + µ′µ/k
.

Similar calculations would show the approximate OLS bias to be BOLS ≈
λ

1+µ′µ/T
, which is intuitive, since OLS can be thought of as IV with as many

instruments as there are observations.
Finally, since the standard error of θ̂ is the most commonly used measure of

its precision and similarly the t-statistic is the most popular method of infer-
ence in the regression context, it is useful to look more closely into their finite
sample properties. Though it is straightforward to derive these expressions
directly, application of Staiger and Stock (1997, Theorem 1) yields:

σ̂2
u = σ2

u +
(
θ̂IV − θ0

) [(
θ̂IV − θ0

)
− 2λ

]
σ2
v (10)

s.e.(θ̂) = σ̂u(Π̂
′Z ′ZΠ̂)−1/2 =

σ̂u/σv
[(zv + µ)′(zv + µ)]1/2

(11)
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Figure 1: Mean biases of IV estimators of θ (relative to OLS bias), σu and s.e.(θ̂)
(relative to their true values), and the actual Null Rejection Probability (NRP) of a
5% level t-test on θ0. The number of instruments is k = 10. µ′µ is the concentration
parameter (see eq. (12)), which is a scalar here and thus coincides with its minimum
eigenvalue, µ2

min. (Logarithmic scale on the x-axis).

The t-statistic is simply t = θ̂IV −θ0
s.e.(θ̂)

. We see from (10) that the structural

variance is under-estimated whenever the IV estimator lies between 0 and
twice the OLS bias. Exact calculation of E(σ̂u) using (10) reveals that this
happens more often than not, namely σ̂u is biased downwards in finite samples.
From (11) we expect the estimate of the standard error also to be below its
true asymptotic value of σu/

√
Π′ΣZZΠ. Finally, with regards to the t-statistic,

we expect it to dominate its assumed t-distribution, due to a positive non-
centrality in the numerator (arising from the finite sample bias of θ̂IV ) and an
under-estimated denominator. Hence, we expect the t-test to over-reject the
null hypothesis H0 : θ = θ0.

In Figure 1, we plot BIV /BOLS, σ̂u/σu, s.e.(θ̂)/(σu/
√
Π′ΣZZΠ) and the

actual null rejection probability (NRP) of a nominal 5% level t-test on θ0,
against µ′µ/k. We do this for two benchmark levels of endogeneity, ρ = 0.5
and ρ = 0.99, following the convention in the literature. Our intuition is
corroborated by the graphs. The relative bias is falling in µ′µ/k, and is un-
affected by the degree of endogeneity. For small values of µ′µ/k we observe
large biases in the variance estimators too, and considerable over-rejection of
the t-test. These effects are more pronounced the higher the endogeneity ρ.

Before concluding this section, we point out the most remarkable feature
of the above results: namely, the sample size T does not enter explicitly in the
distribution of any of the above statistics, except through the concentration
parameter µT (we dropped its dependence on T earlier, for convenience). That
is, ‘small sample’ problems arise when ||µT || is small, and not necessarily when
T itself is small. Of course, the above analysis was highly stylized, based
on unrealistic assumptions, such as the strong exogeneity of the instruments,
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and the conditional normality of the endogenous variables, none of which is
satisfied in practice. This analysis is usually justified as an approximation,
in which case an explicit dependence on the sample size arises directly (e.g.,
by approximating covariance matrices by their empirical counterparts). But
the important message is that when the sample size is large enough for the
intuition of this analysis to be relevant, it is the concentration parameter that
determines how informative the data is for our parameters of interest.

More regressors The presence of exogenous regressors X, say, in the struc-
tural equation (4) doesn’t pose any additional challenge. The above analysis
holds exactly if we replace W = (y, Y, Z) by the residuals of their projec-
tion onto X, namely, W⊥ = (I − X(X ′X)−1X ′)W . However, the exogenous
coefficient estimators will be affected by partial or weak identification of the
endogenous parameters, and can even be inconsistent when X correlates with
Y (except through Z), see Choi and Phillips (1992) and Staiger and Stock
(1997).

When the number of endogenous regressors is p > 1, the concentration
parameter (8) is a matrix of dimension p:

µ′µ = T Σ−1/2
vv Π′ΣZZ ΠΣ−1/2

vv . (12)

Thus, partial identification arises whenever rank(µ) = rank(Π) < p, or equiv-
alently, when some of its eigenvalues are zero (Phillips 1989). Moreover, the
eigenvectors corresponding to the non-zero eigenvalues give the linear combi-
nations of the structural parameters that are identified, see examples below.

In contrast, generic identification corresponds to the situation rank(µ) = p.
In this case, the minimum eigenvalue of the concentration parameter, denoted
µ2
min or simply µ2 when p = 1, could serve as an index of the strength of

identification (Stock and Yogo 2003). In particular, empirical identification
arises when µ2

min is large, e.g., in the sense of Stock and Yogo (2003), while a
small µ2

min implies weak identification. Again, a singular value decomposition
of µ will reveal the parameter combinations that are well-identified and those
that are weakly identified.

Checking identification

The above analysis demonstrated why the usual rank condition for identifi-
cation is not sufficient for reliable estimation and inference in finite samples.
This emphasizes the need to check identification prior to GMM estimation.

Several procedures are available for testing the null hypothesis of under-
identification against the alternative of generic identification. These proce-
dures amount to testing for rank deficiency in the coefficient matrix Π in the
first-stage regression (5), or in the matrix µ directly. In models, with one
endogenous variable (p = 1), this can be done with a simple F-test of joint sig-
nificance in the first-stage regression of the instruments that are additional to
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any exogenous regressors. When p > 1, the hypothesis of under-identification
can be tested using the reduced rank regression technique, developed by An-
derson and Rubin (1950).

In forward-looking models where autocorrelated errors typically arise by
construction, and heteroscedasticity of the residuals cannot be ruled out a
priori, the standard likelihood ratio ‘trace statistic’ for reduced rank cannot
be used, and one must resort to more robust methods, e.g., Cragg and Donald
(1997), Robin and Smith (2000) or Kleibergen and Paap (2003).3

However, it must be emphasized that none of these tests can distinguish
between weak and strong identification, but they have power even in situations
where empirical identification is still weak (Staiger and Stock 1997). There are
two alternative diagnostic tools that offer a solution to this problem. One is
the Hahn and Hausman (2002) test, which is a Hausman-type test of the null
hypothesis of strong identification. The other is the approach of Stock and
Yogo (2003), which is based on the minimum eigenvalue of the concentration
parameter µ2

min. Given a practical criterion for judging empirical identification,
such as maximum tolerable bias of an estimator, or size of a given test, one
may derive a critical region for µ2

min, in which identification will be deemed
weak. Then, weak identification can be checked by testing that µ2

min is in
that region (rather than exactly 0).4 Unfortunately, those tests only apply to
the case of the linear IV model with homoscedastic and serially uncorrelated
residuals. Hence, they are not applicable to forward-looking RE models.5

A related approach is to compute an empirical estimate of the concen-
tration parameter, µ̂, say, by replacing population moments in (12) by their
empirical counterparts. Of course, it should be pointed out that the concen-
tration parameter is not consistently estimable, in the sense that there is no
estimator with the property µ̂ − µ

p→ 0. Instead, µ̂ − µ = Op(1), but can
be asymptotically unbiased, meaning that as the sample size grows, µ̂ − µ
approaches a mean-zero non-degenerate distribution. For instance, under the
assumptions of section II, µ̂− µ = zv + op(1)

a∼ N(0, Ikp).
In the context of forward-looking models, an important drawback of the

above identifiability pre-tests that focus on the correlation between endoge-
nous regressors and instruments is that they cannot distinguish between iden-
tification and mis-specification of a model. Mavroeidis (2003) shows how
identification of a forward-looking model can be achieved through dynamic
mis-specification. In order to separate the identification analysis from mis-

3In the notation of section II, the limiting variance of T−1Z ′[u, v], V (θ) say, no longer
has the convenient Kroneker form ΣUU ⊗ ΣZZ . Under standard regularity conditions,
Avar(T−1Z ′v) = V22 is consistently estimable by a HAC estimator, and that can be used
to form an identification test, see Mavroeidis (2002, section 2.3) for more discussion.

4The above-mentioned test statistics for reduced rank can be used for this more general
hypothesis, at the expense of yielding conservative inference (i.e., they are biased towards
diagnosing weak identification too often). Nevertheless, Stock and Yogo (2003) argue that
their approach is informative.

5Extension of the Stock and Yogo (2003) approach to the linear GMM framework is
possible, but still in progress.
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specification, one needs to utilize the dynamic structure and the rational ex-
pectations condition of the model, in the style of Pesaran (1987).

However, the identification analysis of Pesaran (1987) is confined to the
conditions for generic identification. This helps uncover pathological situa-
tions in which the rank condition fails, but is not sufficient to discuss empirical
identification. This can be done by deriving a measure of identification which
is conditional on the correct specification of the model, e.g., replacing ΣZZ ,Σvv

and Π in (12) by estimators that are restricted by the time-series structure
of the driving variables and the requirement that the forward-looking model
(1) be correctly specified. When the resulting measure of the minimum eigen-
value of the concentration parameter, µ̂2

min, is very small (e.g. less than 1)
while the number of instruments is large, we may conclude that the model is
weakly identified (with the caveat of estimation uncertainty). If this contra-
dicts the conclusions drawn from statistical pre-tests of identifiability, then it
has potential implications for the specification of the model.

III Forward-looking models

When estimated by GMM, forward-looking rational expectations models of
the form (1) are a special case of the generic structural model (4), where the
endogenous regressors Y include leads of the endogenous variables, and the
instrument set Z contains lags of the endogenous and the driving variables
(et).

However, there are some important differences with the stylized example
in the previous section, which need to be pointed out. First, forward-looking
models are dynamic, and impose more structure on the reduced form param-
eters, Π, which are typically linked to the parameters of interest θ. Second,
the instruments are not strongly exogenous. And third, both the structural as
well as the reduced-form errors u and v, are autocorrelated by construction.

Despite these differences, the intuition of the static analysis of the previous
section offers considerable insights into the finite sample properties of GMM
estimators in forward-looking models.6 In those models too, the rank con-
dition for identification is not sufficient for reliable estimation and inference.
Therefore, the identification analysis proposed in Pesaran (1987, chapter 6)
can only serve as a starting point.

In this section, we will offer some illustration of the implications of partial
and weak identification on the estimates of a forward-looking parameter in an
equation of the form (1).

6See Mavroeidis (2002) for some relevant asymptotic theory and extensive Monte Carlo
evidence.
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Identification analysis

The identification analysis of a forward-looking rational expectation model
(1) requires knowledge of the second moments of the data. These cannot be
derived from the structural equation (1) alone, since it is an incomplete de-
scription of the local DGP. Instead, we need to provide a completing model
for the forcing variables et, and then solve the system using rational expecta-
tions. Pesaran (1987) showed that the factors governing the rank condition of
identification are: (a) the specification of the information set Ft; (b) the type
of solution to the rational expectations model (‘forward’ or ‘backward’); and
(c) the dynamics of the driving process et.

Concerning the information set, we follow the convention in the literature
and assume that it includes at least all contemporaneous and past information
on the endogenous and forcing variables (Binder and Pesaran 1995).

The conditions for existence and uniqueness of non-explosive solutions to
rational expectations models were provided by Blanchard and Kahn (1980).
In short, when (without loss of generality) the forcing variables et are not
Granger-caused by the endogenous variables yt, a non-explosive solution to
model (1) exists when the number of explosive roots in the lag polynomial
I−βL−1−γL, does not exceed the number of endogenous variables. In a single-
equation partial adjustment model, this amounts to at most one explosive root.
When there is exactly one explosive root, the solution is unique, and this is
sometimes referred to as the ‘forward’ solution. When there are no explosive
roots, the ‘backward’ solution is non-unique and takes the generic form:

yt =
1

β
yt−1 −

γ

β
yt−2 −

1

β
et−1 + ξt (13)

where ξt is an arbitrary Martingale Difference Sequence with respect to Ft−1

satisfying E(ξt|Ft−1) = 0.7 It can be shown that the unique forward solution
is always nested within the class of backward solutions, i.e. it can be derived
by parametric restrictions on (13).8

The conditions for the (generic) identification of the parameters of the
structural equation (1) will depend on the type of solution, so we analyze each
case separately.

Backward solutions Provided there are no common factors in the lag struc-
ture of yt and that of (et−1+ξt) in the solution equation (13) that would reduce
it to the forward solution (see below), the rank condition for identification of
β (and γ) will always be satisfied, irrespective of the dynamics of et. This is
most easily seen in the pure forward-looking model (1), with γ = 0. As an

7This shock may correlate with the innovation in the forcing variable, e.g., ξt =
a (et − E(et|Ft−1)) + ςt. The orthogonal part ςt is referred to as a ‘sunspot shock’. This
shock cannot, in general, be identified without strong assumptions, such as the requirement
that the rational expectations model be ‘exact’, (Hansen and Sargent 1991).

8Pesaran (1987, pp. 143-144).
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example, consider the New Phillips curve model, with et = λ st. The GMM
estimating equation is:

πt = β πt+1 + λ st + ut

where ut = −β [πt+1 − E(πt+1|Ft)], and, when |β| > 1 the reduced-form solu-
tion (13) is:

πt =
1

β
πt−1 −

λ

β
st−1 + ξt.

Using the instruments (st, st−1, πt−1), the first-stage regression for the endoge-
nous regressor πt+1 is:

πt+1 =
1

β2
πt−1 −

λ

β
st −

λ

β2
st−1 + vt

with vt = ξt+1 + β−1 ξt. Since st is effectively an ‘exogenous’ regressor, the
identification analysis can be carried out by orthogonalizing the remaining
variables to st, namely:9

π⊥t+1 =
1

β2
π⊥t−1 −

λ

β2
s⊥t−1 + vt

where w⊥t means wt − E[wt| st]. In the standard IV notation of section II,
Π = 1

β2 (1, −λ) 6= 0, so that we can conclude that the parameters (β, λ) are
generically identified irrespective of the process generating st.

However, as we argued above, the question of empirical identification can
be answered by looking at the concentration parameter. In this case, this is
the ratio of the predictable ( 1

β2π
⊥
t−1− λ

β2 s
⊥
t−1) relative to the unpredictable (vt)

variation in π⊥t+1. This will, in turn, depend on the variance of the sunspot
shock, albeit in a rather complicated manner. The variance of ξ is positively
related to the noise (var(vt)), but also to the signal, since it increases the
variance of the instrument π⊥t−1. It seems impossible to be more precise without
specifying a completing model for st.

10 Thus, we see that even in the case where
generic identification is guaranteed, the specification of the completing process
will generally be informative about the extent of empirical identification.

Another reason for concern is the qualification we made earlier, namely
that there should be no common factors in the lag polynomials in the solution
equation (13) that would reduce it to the forward solution. This is the case
we turn to next.

9In writing v⊥t = vt we have implicitly assumed that ξt is a pure sunspot shock, and hence
orthogonal to (st, st−1, . . .). If we relax that assumption, we introduce the possibility of an
even higher degree of over-identification (more lags of st, πt being relevant instruments),
see Mavroeidis (2002, section 4.2.1). We do not discuss this for clarity, and also since the
emphasis is on pathological cases of weak identification.

10For instance, when st ∼ iid(0, σ2
s) and orthogonal to ξt, then we can derive µ2

min =
1

β2(β2−1)

(
1 + λ2 σ

2

s

σ2

ξ

)
, showing that the strength of identification is falling with the variability

of the sunspot shock. Also, identification is stronger the closer β is to 1.
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Forward solution The rational expectations model (1) has a unique solu-
tion when the polynomial βz−γz−1 = 1 has exactly one explosive root. Let the
stationary root be δ = 1−

√
1−4βγ
2β

< 1 so that the explosive root is γ/(βδ) > 1.

Then, the unique solution to (1) is given by (see, for instance, Pesaran 1987,
pp.108–109)

yt = δ yt−1 +
δ

γ

∞∑

j=0

(
δβ

γ

)j

E(et+j|Ft). (14)

In the pure forward-looking case, γ = 0 implies δ = 0 and δ/γ = 1 (by
l’Hopital).

Suppose the forcing variable is of the form et = λ(L)xt + εt, where λ(L)
is a lag polynomial of order p, and xt is a covariance stationary process, not
Granger-caused by y, that admits an AR(q) representation, and εt is a mean
innovation process w.r.t. xt, yt.

11 Then, a sufficient condition for the identi-
fication of the forward-looking parameter β (and also γ if present, as well as
the λ’s), using GMM with at least p+2 lags of xt as instruments, is q > p+1
(Pesaran 1987, Proposition 6.2). In other words, the forcing variables must
have more dynamics than what is already included in the structural model.

Another way of putting the above result is that the unique solution to the
structural model, which would be of the form yt = δ yt−1+α(L)xt, must not be
nested within that model, yt = β yt+1+γ yt−1+λ(L)xt. If the polynomials α(L)
and λ(L) were of the same order, and their coefficients were unrestricted, then
there would be more structural parameters (β, γ, λi) than estimable reduced-
form parameters (δ, αi), so the former would be un-identified (on the order
condition).

As an example, consider a pure forward-looking version of the New Phillips
Curve (3) with γ = 0 and et = λ st + εt, where εt is an exogenous inflation
innovation. The theoretical framework of Gaĺı and Gertler (1999) provides an
economic interpretation to the parameters (β, λ). The former is a discount
factor and therefore it is restricted to lie between 0 and 1. When β is strictly
less than 1, the model has a unique forward solution, and hence the rank
condition for identification is satisfied if st has at least second-order dynamics.
Of course, empirical identification depends on the nature of the dynamics of
st, as well as its relation to the endogenous variable πt.

Consider, for instance, the complete rational expectations model:

πt = βE(πt+1|Ft) + λst + εt (15)

st = ρ1st−1 + ρ2st−2 + ζt (16)

Uniqueness of the solution (|β| < 1) would imply that the first-stage regression

11This represents information known to the agents when forming their decisions, but not
to the econometrician, i.e. a measure of the incompleteness of the structural equation. Such
a process is always empirically plausible. Otherwise, the absence of εt together with the
forward solution (14) would imply that the joint distribution of yt and xt is stochastically
singular.
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for πt+1 would be of the form:

πt+1 = α1 st + α2 st−1 + vt, (17)

with vt = εt+1 + α1 ζt+1, and (α1, α2) are given in the appendix. So, the only
relevant instrument in this case (beyond st which is included as an exoge-
nous regressor) is st−1, or better, the residual of its projection onto st, s

⊥
t−1.

Therefore, the concentration parameter is (see appendix)

µ2 =
α2

2 var(s
⊥
t−1)

var(vt)
=

α2
2 σ

2
ζ

(1− ρ2
2)
(
α2

1 σ
2
ζ + 2α1 σεζ + σ2

ε

) . (18)

This expression reveals clearly that a ‘statistically significant’ second order
dynamic adjustment in st is by no means sufficient to guarantee empirical
identification. It is true that the strength of identification is increasing in
|ρ2|, other things equal.12 It is unambiguously increasing in σ2

ζ , too, since
the latter contributes more to the signal than to the noise. But, importantly,
identification is decreasing in the exogenous variability in inflation. This is
particularly relevant for the identifiability of monetary models like (2) and
(3), as we argue below.

Based on the original data and results reported by Gaĺı and Gertler (1999),
the estimated value of (18) is of the order 10−4, lending support to the view
that the New Keynesian Phillips curve of Gaĺı and Gertler (1999) is weakly
identified on their information set, see Mavroeidis (2003). However, this con-
clusion is conditional on the model (15) being correctly specified and having a
unique forward solution, as their reported parameter estimates suggest. Other-
wise, identification may arise through omitted dynamics in (15), see Mavroeidis
(2003) for details.

In sum, the main sources of weak identification in forward-looking models
like (1) are that: (i) the forcing variables have limited dynamics, and/or (ii)
the un-predictable variation in future endogenous variables is large relative to
what is predictable on the available instruments. Additionally, when the model
admits a backward solution, while its forward solution is such that it would
be under-identified, weak identification can result when the lag polynomials
in the solution of the model are close to having a common factor.

Forward-looking Taylor rules

Empirical estimates of forward-looking Taylor rules of the form (2) also allow
for additional dynamics in the interest rate, because lags of the interest rate
appear to be statistically significant. This generalization is referred to as

12In the appendix, we show that α1 and α2 depend on ρ1 and ρ2 as well as the structural
parameters (β, λ). So, identification will also depend on the true values of the structural
parameters. If instead of keeping (α1, α2) fixed at their true values, we choose to talk about
identification of a particular (β0, λ0), then the comparative statics in equation (18) will be
slightly more involved.
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‘interest rate smoothing’. Here, we focus on the econometric specification of
Clarida, Gaĺı, and Gertler (2000):

rt = ρ rt−1 + (1− ρ) [β E(πt+1|Ft) + γ E(xt+1|Ft)] + εt (19)

where rt and πt are understood to be in deviations from their neutral level
and target values respectively. Gathering the target variables in a vector
wt = (πt, xt), and letting θ = (1− ρ)(β, γ)′, we may re-write (19) as:

rt = ρ rt−1 + θ′E(wt+1|Ft) + εt (20)

Equation (19) is cast into a GMM regression

rt = ρ rt−1 + θ′wt+1 + ut (21)

with ut = εt − θ′ (wt+1 − E(wt+1|Ft)). Then, (β, γ, ρ) can be estimated using
instruments in the t-dated information set, which should, in principle, include
contemporaneous values of πt and xt. In practice, researchers only use lagged
information, presumably due to measurement lags. In our identification anal-
ysis, we will conform with this common practice.

To discuss identification, we look at the concentration parameter, as before.
This, in turn, requires knowledge of the reduced form of the model. To derive
this, we need to provide a completing model for inflation and the output gap
(the monetary transmission mechanism).

There are two ways we can proceed. One is to use a backward-looking com-
pleting model of the transmission mechanism, such as a Vector Autoregressive
Distributed lag model (VAD) for wt given the interest rate rt and any addi-
tional variables that might be used as instruments.This system will only serve
to derive the first-stage regression, and therefore it need not have any structural
interpretation. One objection to this approach is that a constant-parameter
VAD is an unrealistic econometric model for inflation and the output gap over
any long period of time, because it does not address the Lucas (1976) critique.

An alternative approach would be to embed equation (19) in a complete
forward-looking model for the three variables of interest (πt, xt, rt). The solu-
tion of that system would be the restricted reduced form that would be used
to conduct the identification analysis. Not only does this approach address
the Lucas critique, but it also makes the analysis of identification of equation
(19) consistent with the theoretical framework that is used to justify it, see
Clarida, Gaĺı, and Gertler (2000, Section 4).

However, we notice that, even when we postulate a forward-looking model
for inflation and the gap, provided this model is a linear multivariate rational
expectations model, any solution to the system will be a particular restricted
reduced-form model for (w′t, rt)

′. Hence, for the purposes of empirical identifi-
cation analysis, it suffices to look at the unrestricted reduced form for wt as a
completing model.
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Identification analysis using a backward-looking completing model

We assume that the Taylor rule is an accurate description of interest rate
dynamics, and that the unrestricted reduced form of the endogenous variables
can be represented by a Vector Autoregressive Distributed lag model of orders
n,m, say:

wt =
n∑

i=1

Aiwt−i +
m∑

j=1

bj rt−j + ηt. (22)

Ai are 2× 2 matrices, bj are 2× 1 vectors, and ηt are iid innovations that can
be assumed to be uncorrelated to the (exogenous) policy shock εt.

To compute the concentration parameter (12), we shall derive the first-
stage regression, in the prototype form (5). We also need to account for the
exogenous regressor rt−1 in the structural equation, by orthogonalizing the
remaining instruments to it, as discussed on p. 9. From equation (22) and
(20) we can derive the forecasting regression of wt+1 on the information set
Ft−1 (see appendix)

wt+1 = (I + δb1θ
′)

(
n∑

i=1

(A1Ai + Ai+1)wt−i +
m∑

j=2

(A1bj + bj+1)rt−j

)

+(I + δb1θ
′)(A1b1 + b2 + b1ρ)rt−1

+ηt+1 + (I + δb1θ
′)A1 ηt + δb1εt (23)

where δ = 1/(1− θ′b1), and we have assumed that θ′b1 6= 1.13

Next, define the vector of all relevant instruments Zt = (w′t−1, . . . , w
′
t−n,

rt−2, . . . , rt−m)
′. The first stage regression residual can be seen from equation

(23) to be vt = ηt+1 + (I + δb1θ
′)A1 ηt + δb1εt. Thus, the first-stage regression

coefficient, Π, and the variance of vt are given by

Π′ = (I + δb1θ
′)(A2

1 + A2, . . . , A1An−1 + An, A1An, (24)

A1b2 + b3, . . . , A1bm−1 + bm, A1bm)

Σvv = [I + (I + δb1θ
′)A1]Σηη[I + (I + δb1θ

′)A1]
′ + δ2b1b

′
1σ

2
ε . (25)

The final ingredient to compute the concentration parameter is the vari-
ance of the instruments, Zt, corrected for the exogenous regressor Xt = rt−1.
Using the notation Z⊥t = Zt − E(Zt|Xt) as before, define Σ⊥ZZ = var(Z⊥t ) =
var(Zt|Xt) = ΣZZ − ΣZXΣ

−1
XXΣ

′
ZX . Hence, Σ⊥ZZ is simply a function of the

unconditional second moments of the data. Those can be readily derived from
the reduced form of the entire system, which is a VAR of order max(n,m), as
shown in the appendix.

13If θ′b1 = 1, no solution to the policy rule (20) exists under Rational Expectations. This
degenerate case is rather implausible, since typically θ > 0 and b1 < 0, as real interest rates
should correlate negatively with future inflation and output in well-specified models of the
transmission mechanism.
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Unlike the example of the New Keynesian Phillips curve in the previous
section, an analytical treatment of the concentration matrix and its minimum
eigenvalue µ2

min is intractable. Instead, we can study the benchmark cases
of under-identification, in order to characterize the pathological subset of the
parameter space where identification is lost.

Let Ω denote the parameter space, containing all the possible values the pa-
rameters β, γ, ρ, σε, {Ai}ni=1, {bj}mj=1 and Σηη can take. The non-identification
region Ω0 is a subset of Ω that contains all the values of the parameters for
which µ2

min = 0.
There are two potential sources of under-identification. The classic one is

when Π is of reduced rank. Another possibility, which is often overlooked or
assumed away, is that the exogenous regressor rt−1 is perfectly collinear with
the optimal instruments Π′Zt. We will argue that such a degenerate case is,
in fact, not implausible in the context of monetary policy.

Consider first the rank of Π, given by (25). Note that the condition θ′b1 6= 1
implies that the matrix (I + δb1θ

′) is non-singular (see appendix). Hence, the
rank of Π depends only on the parameters {Ai}ni=1, {bj}mj=2. In particular, a
necessary condition for generic identification is

rank(A2
1 +A2, . . . , A1An−1 +An, A1An, A1b2 + b3, . . . , A1bm−1 + bm, A1bm) = 2.

(26)
In general, under-identification occurs if there exists a linear combination of
the two endogenous regressors wt+1 that is not predictable on Ft−1 beyond
rt−1, e.g., d ∈ <2 such that d′w⊥t+1 = d′vt. This happens if all the matrices
{A1Ai +Ai+1}n−1

i=1 , A1An, {A1bj + bj+1}m−1
j=2 and A1bm have common and non-

empty kernels. All the values of Ai and bj that satisfy this condition lie in the
non-identification region.

A particular example is when there exists a linear combination of inflation
and the gap that has no dynamics beyond the first and second lag of rt, i.e.
d′Ai = 0 for all i and d′bj = 0 for j > 2 in (22). It is straightforward to verify
that the necessary condition (26) fails in this case. However, such degeneracy
is not necessary for (26) to fail. This can happen even when A1 is non-singular,
for instance.

Partial identification can also occur if the exogenous regressor rt−1 is per-
fectly collinear with the optimal instruments.The restrictions on the param-
eters that would induce such collinearity can be derived from (23) and (20).
Lag (20) one period, substitute for E(wt|Ft−1) from (22) and re-arrange to get
rt−1 as a function of Zt. Noting that (I + δb1θ

′) is non-singular, the optimal
instruments can be derived from (23) as Zopt

t = (I + δb1θ
′)−1Π′Zt. The two

equations are

rt−1 =
n∑

i=1

δθ′Aiwt−i + δ(ρ+ θ′b2) rt−2 +
m∑

j=3

δθ′bj rt−j + εt−1 (27)

Zopt
t =

n∑

i=1

(A1Ai + Ai+1)wt−i +
m∑

j=2

(A1bj + bj+1)rt−j (28)

18



Perfect collinearity means there is a linear combination of Zopt
t that is

identically equal to rt−1 for all t, or, alternatively, that the first canonical
correlation between Zopt

t and rt−1 is unity. Let the linear combination d′Zopt
t

denote the first canonical variate of Zopt
t with rt−1. To derive the necessary

restrictions on the parameters for perfectly collinearity, premultiply (28) by d′

and equate the resulting right-hand side coefficients with those of (27). Upon
re-arrangement, the restrictions can be written recursively as follows:

d′Ai+1 = (δθ′ − d′A1)Ai, i = 1, . . . , n− 1,
(δθ′ − d′A1)An = 0,

d′b3 = (δθ′ − d′A1)b2 + δρ,
d′bj+1 = (δθ′ − d′A1)bj, j = 3, . . . ,m− 1,

(δθ′ − d′A1)bm = 0.

(29)

Note also the necessity of εt = 0 for all t, that is, the absence of a ‘monetary
policy shock’. This is interesting because it suggests that, in certain cases, the
presence of such a shock will help identify an otherwise un-identified model.
Suppose, for instance, the transmission mechanism is such that a policy rule
like (21) would be optimal (in the sense of minimizing a particular loss function
that penalizes deviations of inflation and output from target), but could not
be identified. In that case, the policy shock, if it is truly unrelated to contem-
poraneous economic conditions, could be interpreted as a ‘policy experiment’
to help identify the optimal policy.

The significance of (29) is that it highlights the fact that the rank condition
for generic identification does not depend only on the dynamics of the targets,
through condition (26), but also on the actual value of the structural param-
eters (θ, ρ, σε). Hence, the non-identification region is larger than would have
been implied by (26) alone. This is in contrast to the standard IV regression
model, of section II, where the concentration parameter is independent of the
structural parameters.

Weak identification By continuity, we expect identification to be weak for
all values of the parameters close to the non-identification region Ω0. It seems
impossible to offer more precise remarks unless we consider specific cases.

For example, the effect of σ2
ε and Σηη on the concentration parameter µ2

min

is uncertain. From (25) we observe that Σvv is unambiguously increasing in
σ2
ε and Σηη, thus affecting µ2

min negatively. But σ2
ε and Σηη also affect µ2

min

positively through the signal in the first-stage regression, Σ⊥ZZ . So the overall
effect is ambiguous.

Nevertheless, some limited understanding of the relationship between σε
and Σηη and µ

2
min can be gained by looking at a specific example. The example

we looked at contains a univariate target, inflation, say, such that Σηη = σ2
η

and θ = β(1 − ρ) are scalars. The transmission mechanism (22) is set to
ARDL(1,1), with a1 = 0.9 and b1 = −0.2, implying inflation persistence as well
as a negative effect of the lagged real interest rate. The structural parameters
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are varied in the range ρ ∈ [0, 0.9] and β ∈ [1, 3]. In this setting, µ2 is found to
be strictly monotonically increasing in σ2

ε and decreasing in σ2
η for all values of

the structural parameters. That is, identification is stronger when the variance
of the policy shock is higher and the variance of the inflation shock is lower.

Next, we observe that µ2
min is decreasing in the maximal canonical cor-

relation between rt−1 and the optimal instruments. In the simple exam-
ple of the previous paragraph, where wt = πt, substitution in (23) yields

Π′Zt =
a2

1

1−b1β(1−ρ)πt−1, so the only relevant instrument is πt−1. The correlation
between that and the exogenous regressor rt−1 is then decreasing in the degree
of smoothing |ρ|, i.e. as ρ→ 0 identification weakens. When ρ = 0 and σε = 0,
rt−1 and πt−1 are perfectly collinear and, consequently, µ2 = 0.

Identification analysis using a structural completing model

In the last section of their paper, Clarida, Gaĺı, and Gertler (2000) use a fairly
standard forward-looking business cycle model for inflation and the output
gap to discuss the macro-economic implications of an interest rate rule like
(19). Here, we comment on the implications of that business cycle model for
the identification of the parameters of the interest rate rule.

The model consists of the equations:

πt = δ E(πt+1|Ft) + λxt
xt = E(xt+1|Ft)− ϕ−1 [rt − E(πt+1|Ft)]

(30)

which, together with the interest rate rule equation (19) constitute a complete
business cycle model for yt = (πt, xt, rt)

′. This system can be written in the
form (1):

B0 yt = B1 E(yt+1|Ft) +B−1 yt−1 + et (31)

where the matrices Bi, i = −1, 0, 1 depend on the model’s parameters (β, γ,
ρ, δ, λ, ϕ) and the vector of forcing variables et contain the policy shock εt as
well as any inflation and output shocks (which are omitted from (30)).

The existence and uniqueness of a non-explosive solution to this system
depend on the roots of the polynomial B(L) =

∑1
i=−1 B−i L

i. For existence,
there must be at most 3 explosive roots. When this condition is satisfied with
equality, and assuming E(et|Ft−1) = 0, the unique solution of the system (31)
will be of the form:

yt = C yt−1 +Qet (32)

More specifically, the exclusion restrictions in (30) imply that C yt−1 = c rt−1,
for some given 3 × 1 vector of coefficients c. This corresponds to the case
where Ai = 0 and bj = 0 for all i, j in (22), which is precisely one of the
cases in which the Taylor rule parameters (β, γ, ρ) are partially identified. In
fact, since Π = 0 in (25), the entire concentration parameter is 0, not just its
minimum eigenvalue, and hence the degree of under-identification is 2.

When the parameters are such that there are infinite backward solutions
to (31), the conclusions about identification may be different. Clarida, Gaĺı,
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and Gertler (2000) map the space of the Taylor rule parameters (β, γ, ρ) for
which the solution is unique, for plausible values of the remaining parameters
(δ, λ, ϕ). They find that β > 1 will always lead to a unique solution, while
β < 0.97 will always lead to non-uniqueness and sunspot equilibria. In those
cases, the presence of sunspot shocks can induce additional fluctuations in
inflation and the output gap, beyond what is implied by fundamental shocks.
Thus, rules with β > 1 are deemed stabilizing.

Therefore, we may conclude that if the above real business cycle framework
is considered to be a reasonable approximation to reality, then stabilizing
policy rules are expected to be weakly identified.

Additional comments

The main message of the analysis of the Taylor rule example was that identifi-
cation problems arise when (but not exclusively) inflation and the output gap,
or any linear combination of them, has very little dynamics. We acknowledge
that such a situation may appear empirically implausible, in view of the large
persistence evident in those macroeconomic time series. However, we wish to
emphasize one important source of weak identification that may be empirically
relevant.

Given some (possibly limited) knowledge of the transmission mechanism,
the problem facing the policy maker can be decomposed in two steps. First, to
align the interest rate with the predictable variation in inflation. Economet-
rically, that would be interpreted as making the interest rate correlate highly
with the remaining determinants of inflation. This would weaken the identifi-
cation of the Taylor rule (19) due to the collinearity between instruments and
exogenous regressors that we discussed above.

The second step would be to make that correlation perfectly negative,
so that the entire predictable variation in inflation disappears, and inflation
becomes primarily driven by unanticipated shocks. In the words of a prominent
central banker, active inflation targeting had precisely that effect:

‘[A]fter just a couple of years of [inflation] targeting, [...] expecta-
tions over a 2-year horizon [...] tended to be affected little by what
was happening to current inflation rates. This was in marked con-
trast to earlier periods in Canadian history, in which expectations
for the future had been fairly tightly linked to recently observed
inflation rates.’ (David Dodge, Governor of the Bank of Canada,
Speech at the AEA annual meeting, Atlanta 2002).

In other words, the more successful the policy, the more inflation forecasts
converge to the actual inflation target, and the less they depend on current
and past data, which is a necessary condition for a forward-looking Taylor rule
to be empirically identified.

To sum up, the source of weak identification in the forward-looking Taylor
rule (19) lies in its theoretical underpinnings. When the monetary authority
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is effective in controlling inflation, future inflation must correlate little with
current economic conditions, and the bulk of its fluctuation must be due to
(unpredictable) future shocks. This is precisely what leads to a low value for
the concentration parameter. Thus we see that forward-looking policy rules
will be least identified in periods when monetary policy has been most effective
in controlling inflation. So, how can such equations be useful in providing reli-
able evidence that monetary policy has been effective in controlling inflation?

IV Conclusion

In this paper, we analyzed the problem of weak identification of forward-
looking models estimated with GMM, focusing on applications from the mon-
etary economics literature. We discussed the various sources of weak identifi-
cation, and a relevant measure with which to diagnose identification problems,
the concentration parameter.

Our analysis showed that weak identification cannot be ruled out a priori
for the estimation of either forward-looking Phillips curves or forward-looking
monetary policy rules. Thus the existing empirical analyses of such models
should be treated with caution. In the light of this criticism, it would be
useful to re-evaluate the conclusions of the existing literature using inferential
methods that are robust to weak identification, such as the conditional score
and likelihood ratio tests proposed by Kleibergen (2002) and Moreira (2003).
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Appendix

Coefficients in equation (17)

α1 =
λ(ρ1 + β ρ2)

1− β ρ1 − β2 ρ2
and α2 =

λ ρ2

1− β ρ1 − β2 ρ2
.

Derivation of (18) Under stationarity, the variance of s⊥t−1 is derived from:

var(s⊥t−1) = var(st)
[
1− corr(st, st−1)

2
]
=

1− ρ2

1 + ρ2

σ2
ζ

(1− ρ2)2 − ρ2
1

[
1− ρ2

1

(1− ρ2)2

]
.
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Derivation of equation (23) Leading equation (22) one period and taking
expectations conditional on Ft, we have

wt+1|t = A1wt +
n∑

i=1

Ai+1 wt−i + b1rt +
m∑

j=1

bj+1 rt−j

=
n∑

i=1

(A1Ai +Ai+1)wt−i +
m∑

j=1

(A1bj + bj+1)rt−j +A1 ηt + b1rt

=
n∑

i=1

(A1Ai +Ai+1)wt−i +
m∑

j=1

(A1bj + bj+1)rt−j +A1 ηt

+b1(ρrt−1 + θ′wt+1|t + εt).

Hence

(I − b1θ
′)wt+1|t =

n∑

i=1

(A1Ai +Ai+1)wt−i +
m∑

j=1

(A1bj + bj+1)rt−j + ρb1rt−1

+A1ηt + b1εt.

We observe that (I − b1θ
′) is invertible if and only if θ′b1 6= 0. Proof: (if

part) suppose (I − b1θ
′) is singular s.t. (I − b1θ

′)x = 0, for some x ∈ <2. Then
x = b1(θ

′x) ∈ Col(b1), and θ′b1 = 1; (only if part) if θ′b1 = 1, then θ′(I − b1θ
′) = 0.

Thus, when θ′b1 6= 1, define δ = 1/(1−θ′b1) and note that (I−b1θ′)−1 = I+δb1θ
′

and (I − b1θ
′)−1b1 = δb1. So, the last equation simplifies to

wt+1|t = (I + δb1θ
′)




n∑

i=1

(A1Ai +Ai+1)wt−i +
m∑

j=1

(A1bj + bj+1)rt−j




+δb1ρ rt−1 + (I + δb1θ
′)A1 ηt + δb1εt. (33)

Equation (23) then follows by substituting wt+1 − ηt+1 for wt+1|t.

The restricted reduced form Noting that δθ′b1 = δ − 1 and θ′(I + δb1θ
′) =

(1+δθ′b1)θ′ = δθ′, and substituting for wt+1|t from (33) into (20), yields the reduced
form equation for rt:

rt = δρ rt−1 +
n∑

i=1

δθ′(A1Ai +Ai+1)wt−i +
m∑

j=1

δθ′(A1bj + bj+1)rt−j + δθ′A1ηt + δεt.

Hence, the reduced form for the entire system yt = (w′t, rt)
′ = (πt, xt, rt)

′ is a VAR
of order k = max(n,m), with reduced form residuals ut = (η′t, η

′
tA
′
1θδ + δεt)

′.
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