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Contingent Deficit Sanctions and Moral Hazard with
a Stability Pact

ROEL BEETSMA, University of Amsterdam and CEPR
HENRIK JENSEN, University of Copenhagen, CEPR and EPRU

Technical Appendices
(not intended for publication)

B. Proof that sum of fines and rebates over all countries is zero in each period

In period 1, the sum of the fine paid by country ¢ and all the rebates it receives from the

fines paid by the other countries is:

n

—¢ (du—di) + 35 Y (dy—dyy).

=1,

Hence, the sum over all countries of the fines paid and the rebates received is:
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where the superscript “a” is used to denote a cross-country average. Similarly, one can

show that the sum of all fines and rebates is zero for period 2.



C. Derivation of Uscp, equation (6)

The CCB attaches a relative weight of 0 < A\ < 1 to its objective under complete inde-
pendence and a relative weight of 1 — A to the average amount of resources available to
the governments in period 2 (i.e., when inflation is decided). Hence, the CCB’s objective

function is given by:

=T
(doj — sz)] }
£i

where v = ¢(1 — A\)/A > 0, and where we have used that the fines and the rebates cancel

Uccp = )\<_%>+(1_)‘)%i[1_(1+7T8_7T)b1i_1/}(d2i_672i>+% i (de_JZj)]
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out in the aggregate. Ignoring the proportionality factor, (1 — A), equation (6) follows.

D. The optimal symmetric equilibrium

Substituting (9), (10) and (7) into (8), using €¢; = €, Vi, and, hence (by uniqueness and
symmetry) using that by; = by, Vi, one obtains a first-period government’s utility as a

function of the common debt choice b;:
- - N2
w(l+e+b) +pu(1-b) = (abi) /(20). (D.1)

This expression is a strictly concave function of by. Hence, each first-period government

would prefer the debt level b; = b} that solves (12).

E. Proofs of Results (i) - (ii)

E.1. Result (i)

Because shock realizations are equal across countries, by; = by, Vi. We focus on b; > 0.

(a) Use (9) and (10) to write the first-order conditions (11) as
o (1 b+ E) (1— ) = pu' (1 - 61) (1—v) +ahi/(¢n), Vi (E.1)

It follows immediately that, in the absence of a pact (¢» = 0) and with € = 0, if p — 1,



then by; = by = 0, Vi. Denote the solution for b; > 0 by 13’{ Implicit differentiation (E.1)
yields

oh v (B)a-v Y

Op  Q(1—1)—a?/(¢n)

with Q = " < ff) + pu” ( f2*> < 0 and where f¥ and f; denote the solutions for public

spending. Next, one has

a_i)l _ a2/ (¢n2) 1%
on Q1 —-v)—a?/(¢n) "

which is positive for a > 0. Finally, one has:

o 2/(n) o
o~ Q=) —a?/ () "

which is negative for a > 0.

(b) Implicit differentiation of (E.1) yields

ob, o (7i) —pv (55)
90~ Q=) - a?/ (én)

Using (11), we rewrite this as:

obi b/ [gn (1 — )]

o Q(l—¢)—a?/(¢n)

This is negative, unless a = 0, in which case oby /Oy = 0.

(c¢) Implicit differentiation of (E.1) yields

R G L

% Q(1—¢)—a?/(sn)

Differentiation of the expression for 9b; /O€, and using that «” = 0, establishes that
9 (azS1 /ae) /on <0 and 9 (ai)l /ae) o > 0.

E.2. Result (ii)

L_d(¢ — ¢;), Vj # i. This manipulation

We vary (€ — ¢;) while assuming that d(€ — ¢;) = ——

keeps € unchanged. Furthermore, we assume that, initially, €; = €.



(a) Total differentiation of country i’s first-order condition, (11), yields

S5 (1 =) —a?/ (¢n)
(v —1)Q(1-19)

w' (fr) (56 - 1)

R

dby, (E.2)

d(E—Gz)‘F

which is evaluated around the initial, symmetric equilibrium. Similarly, total differentia-
tion of countries j’s, Vj # i, first-order condition, while using d(¢ — ¢;) = ——=d(é — ¢;)

and evaluating around the initial equilibrium, implies

Y2 (1 - ¢) — o/ (¢n)
(v -1 Q1 -9¢)

b @, o
g = - € 5 Z,
VTR (my-na o f b

(E.3)
Note that db; = Ldby,; + 1 >_jzidb1; and combine this with (E.2) and (E.3) to imply that

db, = 0. Hence,

8<b1i—l~)1>_u"<ff> (%1&6—1)
dE—e)  (Hy-1)Q

> 0,
when 0 < ¢ < ”T’l
(b)-(c) Differentiation of the expression for 0 <bh- — I~)1> /O (€ — ¢;), while using that
v = 0 readily establishes that 0 [8 (bu = l~)1> /O (€ — 61)] /Oy > 0 and
) {a (bh- - 51) /0 (% — ei)} 196 < 0.

F. Derivation of the outcomes for e;, (21), and by;, (22).

For convenience, we repeat the relevant budget constraints if party F is in power in both

periods:
fo= et etbt (= 1) (b— ) + (s - ) [E—e) + @ —e)] . (ED)

foi=1—10 + (1—2=9) (61 - blz’) ; (F.2)

and the expression for inflation

™ = Oébl. (F3)

In period 1, each government selects debt and effort, knowing its own shock but not
knowing the other countries’ shocks or k’s. Choices are made simultaneously, so we consider
a “Cournotian game” for which we want to characterize the (Bayesian) Nash equilibrium.
Note that the fact that the governments subsequently can observe the sum of e; and ¢;

in all countries is of no importance for the equilibrium outcomes: knowing that you get

4



information about something later is of no use now (by the law of iterated projections).

Government 7 maximizes

Uri = Bk e, [_Uz' (ei) +u(fri) + pu(fa) — 7T2/(2¢)} .

over by; and e;. (Note that the expectations operator now also operates over the unknown

K’s.)
F.1. The equilibrium conditions for a (Bayesian) Nash equilibrium with quadratic
utility

Applying the quadratic specifications (19) and (20) for v; and u, respectively, the first-order

conditions (18) and (17) become, respectively,

Bl =€ —=1) fu] = PErol§— (1) fa] + WQ_ME‘K@Q [bl} , Vi,
€ —hi = E|m76¢ [5 - (5 - 1) fh] (1 - 1/}6) , Vi

Now define p = o2/ [¢n (1 — +)]. Hence, these conditions become:

(1=p) €= (- 1D)Ekq[ful = —p(—1)Exq [f] (F.4)
+ME\M,€¢ |:l~71i| 3 \Vll,
ei— ki = E(1—19) (F.5)

— (5 - 1) (1 - 7/15) E|K~L,€i [fh] , Vi

In the Bayesian Nash equilibrium we consider, each government i’s strategy will be a
function of ¢; and x; and its estimates about other countries’ shocks and preferences,
and estimates about other governments’ estimates about €;, x;, Vj, and so on. In a
n-player game like this one, the algebra would become rather intractable. However, as
we have assumed that all the shocks have zero mean, taking this iterative process into
account becomes particularly simple, because these estimates simply vanish. As a result,
government i’s strategy depends only on the realization of ¢; and k;, but not on the other
shocks.

Therefore, we conjecture the following set of equilibrium strategies:

bii = B — Bee; — Byky,
€ = D — DGGZ' -+ D,iliz'. (F?)



If this conjecture is correct, the realizations of cross-country average debt and effort will

be given by, respectively,
by = B — B — B, (F.8)

¢ =D — D¢+ D.k. (F.9)
Hence, the realizations of public consumption are given by
fii = 1+4é+D —Deé+ Dyik+ B — Bé — Bk (F.10)
— (%Q/J — 1) (BGE — BGEZ' + Bﬁ/% — BKKIZ')
+ (#1/1(5 - 1) [E — €+ (_DGE + De€; + Dyk — Dm"’%)] )
foi =1—[B — Be& — Buii| — (1 — 27¢) (Be& — Be€; + Bk — Beky) . (F.11)

To verify the conjectured strategies and to solve for its coefficients, we need to compute
the expectations of these expressions, conditional upon government ¢’s information set.

From (F.10) we find:

Epnelfil] = 1+i¢+D—D.te;+ Dtk + B — Ble;— Boir;
- (#Qp — ].) (BG%EZ' + BK%HZ' — B,ilii — Beez’)
+ (%1/15 - 1) [%62 — € — Deiﬁi + Dn%ﬁi — Dyk; + Deez’} )

and thus
B [f1il = 1+B+D+ (M> €i+M Ki (%1/1— 1) (BnnT_lF&i‘FBenT_lEi)
= 1+B+D+(M)ei (- (2 11/1—1) 2=1) Bk + 2ok
+ (21 — 1) B2 e — (2596 — 1) [=2 (1 — Do) €; + D=Lk,
= 1+B+D+(M)ei—(l—zp)Bmﬁ%ni
+(G5Y - 1) B — (5v6 — 1) [%57 (1 - Do & + De "3k
= 1—|—B+D—(1—1/1)B,€/<ai—|—(1—1/16)Dm2~
+ [ 4 (Y - 1) B - (e - 1) 25 (1= Do) &,
and thus

Ejici [fi] = 1+ B+ D — (1 —)Byer; + (1 —16) Dy (F.12)



+[(1— D) (1 =16) — B (1 — )] €.
Similarly, we find the expected public consumption in period two by use of (F.11):

Eje [fa] = 1- [B - Be%@' - B,@%m]
- (1 - ﬁl/}) (Be%(fz' + Bn%ﬁz’ - Bnﬁi - Beei) )

and thus
Eiie [fo] =1 = B+ (1 — ) Bewi + (1 — ) Bees. (F.13)

Finally, we need to find government i’s expectation of average debt. This follows by use
of (F.8) as
Ei |bi] = B= Bei— Butne (F.14)

F.2. Verification of conjectures and solution

Insert the expressions for Ei., ¢, [fis], Ejx, e, [foi] and Ey, o, [51] into the first-order condi-

i i

tions. This yields [also using the conjecture for ¢;, equation (F.7)]:

(1=p) &= (-1 [1+B+D—(1—-1)Bgki+ (1 —1p6) Dyr;
+[(1 = D) (1 = v6) = B (1 — )] i
= —pE—1[1 =B+ (1—-¢)Buki+ B (1 - ¢)el
+u [B— B.te; — Botri], (F.15)

and

D + Dyk; — Dee; — K4
= 1 =90 = (=D A=8) [l + B+ D — (1 =) Beki + (1 = 96) Dy,
+{(1 = Do) (1 = 96) = Be (1= 9)]e]. (F.16)

F.2.1. Solution for shock coefficients

As (F.15) and (F.16) must hold for all values of €;, we have that the following must hold:
—(E=D[1=D)(1-98) = B(1=9)]=—p(E—1) B (1 =¢) — uBey,  (F.17)

Do = (€~ 1) (1 - 6) [(1— D) (1 —v8) — B (1 —v)]. (F.18)



Observe that (F.17) can be rewritten as expression (A.4) in Appendix A. FExpressions
(F.17) and (F.18) uniquely identify coefficients B, and D.. By inserting (F.18)’s implied
value for (1 — D,) (1 — ¥8) — B. (1 — ) into (F.17), we get

— 25 =P~ 1) B.(1—-4) — pB2,
leading to a value of D,, given B,
D¢ = B (1 —¢0) [p(é’—l)(l—?/})+u%]‘ (F.19)

Inserting this value back into (F.17) then gives

(-1 [(1=B (1 =98 [p(=1) A=)+ pz]) (1 =8 — B (1 —9)]
= =B [p(-1)(1—1)+ pz]

We isolate B, on the left-hand-side to get:
—Be [ [(6 =) (1 =96 +1] [p(€ 1) (1 —¢) + p2] = (€ =1 (1 =¢)] = (£ = 1) (1 —5).

Hence, the solution is

— (E=1)(1—9)
Be= [(6-1)(1—46)*+1] [p(e—1) (1—4)+u L |[+(E-1)(1—) > 0. (F.20)

Combined with (F.19), we then recover the expression for D.:

(- D(A-98)?[p(E-1)(1-v)+uz]

De = [(6—1)(1—46)*+1] [p(6—1)(1—4)+u L |[+(6-1)(1—¥) -

0. (F.21)

F.2.2. Solution for average effort and debt

Now, with B, and D, given by (F.20) and (F.21), respectively, (F.15) and (F.16) reduce

to
(1=p)§—(—1)[1+B+D—(1—-v)Buki+ (1L —1p6) Dyry]
= —p(—1)[1— B+ (1—9) Bk +p [B—B,i%/@}, (F.22)
and
D+ Dykii — ks



= E1—-96)— (-1 (1 =481+ B+ D — (1 —1)Bgk; + (1 — 8) Dyry] .

We now want to determine B, D, B.k; and Dk;. For this purpose we note that the two
equations must hold for all x;, including x; = 0. For the computation of B and D, we thus

have the following two conditions:
1-p)§—(E-1)A+B+D)=-p((—-1)(1—-B)+uB, (F.23)
and
D=¢(1—-¢6)—(E-1)(1—-vd)(1+B+D). (F.24)

These equations identify B and D. From (F.24) we obtain the following solution for
D:
D =

§A—-9é) - (-1 (A -6 (1+B)
. F.25
NS 2
We then plug the solution for D from (F.25) back into (F.23) so as to identify B:

A -96) - (-1 (A -ys)(1+ B)
L+ (€= 1) (1 —0)

L-pe-c-D|1+B+
— (-1 B+ .

Isolating the B part gives:

(&1
e P -1 - u] B

= —(-pe+r -1 1+ mds] -pe-1)

(-1
& |-t —pE-D-n|B

_ (-1)(14€(1—5))
= P&+ a0

and thereby

p- €+ [l
- [t —pe- 0 —u
E-pA+E-DA-¢d)) - (-1 A+ —¢d))
E=D+@E-1)+p) 1+ E-1)1-10))
_ €—P—(€—1)(1+P(1—¢5)) (F26)
E=D+@E-D)+p) 1+ (E-1)1—-vd)) '




Inserting this value of B back into (F.25) then provides the solution for D:

_ () o EDlep- =) (1p(1—y8))]
D=1tenaam | (5—1)+(p<s—1>+u><1+(s—1><1—w6>>]' (F.27)

F.2.3. Solution for country-specific effort and debt

Having derived these averages, we can now go back to each government i’s optimality

conditions and find the response coefficients to the government types. Let us repeat the

conditions:
1=p) - (E-1[1+B+D—(1-1)Beki+ (1 =) Dkl
= —p(—1)[1—B+(1—v)Buki]+p[B— Beini], (F.28)
and
D + Dyki — K (F.29)

= §0=98) = (=1 (A =v6)[1+B+D—(1=1)Beri+ (1 —6) Deri] .
From this system of equations we subtract (F.23)-(F.24), to yield:
(€= [(1 =) Buki — (1 = 8) Dpkis] = —p (€ — 1) Butsi (1 — ) — pBuyrs,  (F.30)

and
Duki — ki = (£ —1) (1 —90) [(1 — ) Beki — (1 — ¥6) Dyky] - (F.31)

From (F.30) we then immediately find

(1 —i—p) BHHJZ' (1 — ¢) = (1 — 1/)6) DHHJZ' — E,%Bn%ﬁi;

and thus
- 1 — N
S T T e E AT R (52
(1-vo) (-1

E DU 1p) a5

This is then inserted back into (F.31) to solve for Dyk;:

Doy = g = (6 = 1) (1 = 6) | (1 ) rryrrmsyiagmey Duis — (1 = 6) Do

10



1—
& Dukii — ki = (€ = 1) (1 = 96)° [(1 w<1+p>fu/[n(s my Drti _DH’“’]

— 2 1—
& Dowi = i = (€= 1) (1 08)° | gy — 1) Dok

2 (1) (1) (14p) /(€ ~1)
© Dyki [1 = (€ =D (1 = 98) —a=arprea e } i

1— n 1
& Dyk; [1 + (£ —1) (1 — 96)? (1(wdli;fli/%£( )] )]] = K,

and therefore

(1 n(E—1 -1
D = [L+(€- 11— 08 ity (F.33)
_ (1=9) (1+p)+p/[n(€=1)]
(1=9)+[1+(€-1)(A1—6)|[(1-v)p+p/[n(€~1)]]
_ (E-D)A—)(A+p)tu/n >0
(E—1)(1—9)+[1+(E- 1) (1—6)?|[(€—1) A—y)p+1/7]

Inserted back into (F.32) we then solve for By:

(E=1D)(1-v¢) <0
T @ DI H[IHE-DA—v8][(E-DA—b)pta/nl

K

Finally, using (F.1), (F.2), (F.6) and (F.7), we obtain

fri = T4E+E+bi+ (9 — 1) [Belei =) + Bu (ki — 7))
+ (7246 — 1) [(De = 1) (6 — &) — Dy (ki — )]
= 1+e+é+b
+ (5% — 1) Be+ (32796 = 1) (De = 1)] (e — &)
+ (259 — 1) Ba+ (1 = 2596) Dy] (ki — &)
= l4e+é+b+File—8)+ Fi (i —F),

and

fa = 1=bi+ (1= 3259) [Be (6 = &) + By (ki — 7))
= 1—bi+ (1-2%9) B (e — &) + (1 — =2%) By (ki — &)
= ]_—El—I—FQE(GZ'_E)"_FZH(Ri_’%)?

11



where,

Fie = (25¢—1)Be+ (2596 —1) (D — 1)
(6-1)(1-8) gt (1- 72508 (€= ) (1=t /m)
(E-1)A—p)+[1+(e- 1)(1 —6)2|[(E-1)A—y)p+u/n] =

Fo = (1-35¢)B
(6-1)(1—) (1-279) (1—5)
(=1 (1=9)*+[(€=1)(1—4)*p+a?/ (¢n?) | [14+(6—1) (1—25)?]

>0,

Fi. = (25¢—1)B.+ (1 - 225¢6) D,
(€ 1)(727w-1) 1-vo)+(1- 727v8) [(€- 1) (1) (1+p)+u/n]
(E-1D)(A-9)+[1+(E- 1) (1-98)*] (€~ 1)(A—)p+u/n]
(6 1)(1-8) g0+ (1 708 (€ 1) (A )pa/n)

[
= == >
(E—D A=)+ [14+(E—1) 1—96)*|[(6-1)(A—4)p+1/n] Fre 20,
and
Fo = (1-35¢) B
_ (6-1)(1—yo) (1-"7v) >0

€ D)(A—p) 1+ (=) (1—v0)| [(e-)(1—p)pta/n]

We can see immediately that, if (¢,6) = ("T’l, 1), then Fi, = Fl. = Foe = F5,. = 0.

G. Proof of result (iii)

(a) One can rewrite

B=(l- —p[1+(6=1)(1=y?)]
1

1
2 (1=9)(E—D{1+p[1+(§-1)(1=98)] }(a? /pn) [1+(§—1)(1—2o)] *

Hence, using (here and in the sequel) the symbol  to indicate that the right-hand side

has the same sign as the left-hand side,

0B

— x p(—-1v¢

- 9 (€= D{L+p[+(E 1) (1 - vo)l}

(1-
+p (€= 1) 9 (a?/én) [L+ (= 1) (1 — ¢0)]
+H[A =) (E-DpE -1+ (a?/én) (€= 1) ¢ {1 —p[1+(E—1) (1 -]}

12



o p{l=9) (=D {1+p[L+(E—-1)A—vd)}+ (o?/¢n) [1+ (& —1) (1 — 9]}
+[(1=9)(E=Dp+ (a?/on)][ {1 —p[L+ (£ —1)(1— 6]}

= pA=9)(E-D{l+p[l+(§—-1)(1—vd)]}

+[A=¥) (€= 1)p+ (a?/dn)]

—(1=9)(E-1)p 1+ (1) (1 - 95)

= p(1=9)(E-D+p"(1-¥)(E—-1)[1+(—1)(1— o)
+H[A =) € -1)p+ (a¥/dn)] = (1 =) (€= 1)p* [L+ (£~ 1) (1 - ¥0)]

= p1-¥) -1+ 1 —-9) (€~ 1)p+ (a?/¢n)

> 0.

Further,

oD
- Y (e 1—9pé d[1-(¢-1)B]
95 [HE-DA—o)? [1-(€-1)B]+ [1+(§—1)(1-¢5)} 95 :

Because 1 — (£ — 1) B > 0 (this is easy to ShOW) the first term on the right-hand side is
negative. In addition, from the result that B~ (), it follows that the second term on the
right-hand side is also negative. Hence, %? < 0.

(b) One can write B, as:

where
Y% = (E=11=9)"(1+p)+a/¢n® >0,
o= (€= -9’ p+ad/en®] (€ -1) >0
Hence,

G — (61 (1-v) |22

Yo+71%2)

Hence, 2 85 < 0 is equivalent to v, > 7,2, which is equivalent to:

(E=1)(1—)* (1+p)+a?/¢n? > [(E— 1) (1—¥)*p+a?/on?] (€ —1) (1 —6)°.

Because ¢ < 2, this condition is fulfilled.

13



Furthermore, we can write:

_ v
Yo+719%’

€

An increase in 6 reduces y and, hence, the result follows.

(c¢) From the expression of D, we see immediately that 0D,,/06 > 0. Because B, = B,

. . . 8qu
it follows immediately that <2

< 0.

H. Proof of Proposition 2

Government ¢’s equilibrium expected utility as a function of the stability pact parameters

and conditional on k; is given by:
S\ 2
Vi (6,8) = B, | = (e = 10)” 24+ (fu) + pu (f2r) — (b /<2¢>] ,

where u is defined by (20) and where fi; and fy; are understood to be evaluated for the
equilibrium outcomes. In the sequel of this appendix all expressions are understood to be
evaluated at 0* = (¢,0) = (==, 1). Differentiating Vp; (1,) with respect to 6 and thus

evaluating at 0" yields:

OVE; € i i [
Do) — By, | (e — m) %+ o (Fu) 3o+ pul (o) 2 — 0%
where, using (16) and (10), respectively,

0f1; e b ~ ~ 0fo; b
%:%4‘%4‘[(6—@)4‘(@—61)], %:—%-

Vel — (e — ki) G+ (fui) |55 + G T E—e) + (6 —e)
—pu (fm)% - _bl by

Hence, using government i’s first-order conditions for by; and e;:

8‘/5(;() = T1 —|—T2 + T3 —|—T4 + T5 + Tﬁ,

where

Th = E\m{—E\m,q [u,(flz>]%%_} T, = E|m [U/(fli)a—ﬂ;
Ty = Bk {u(fi)lE—ea)+(E—e)l},
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86
Ts = —pEm {[U'(fzz) - Em eiu/(fQi)] 8—5,51} )
1= g { - (b)) %)

We can now work out all these terms one by one, starting with 7;. Note that
U (fr)) =1—(E—~1)[E+ D+ B~ (D, + B)é+ (D, — By) ],
using that, at 6, F;. = F}, = 0. Hence,
Epoe, [0/ (fu)] =1=(6=1)[D+ B+ (1 — D — Be) €; + (D — Bi) 214] .

Hence,

Tl = E|n1 {_E|m,ei [ul(.flz)] %%?
. { [1—(=1)(D+B+(1-D, - BJ)tei+(Dy — By) 1r,)] }
= —Ej,

*; [%_?_aa% mLaDK Z]

= (1= (€= 1) (D4 Bt (D, — Bo) 4r,)] [22 + 2o
~1(e 1) (1~ D, — B) %1o

n 06 n €

Next, we work out:

T2 = E|m [ul(fh)_ﬂ
1)

1-(¢-1)(D+B+(1—D.—B.) e+ (D, — By) k)]
= B *[%1; aD~ ODN]
= [ - D@+ B[+ 4
(€= 1) (Do = B,) % [nF + 220
+(€—-1)(1— D — B) 2152,

Then, we work out:

T3 = Ep {u'(f10) [(€ — &) + (€ — e}

. {[1—(g—1)(D+B+(1—DE—BG)H(DK—BH)R)]}
" #[(1= D) (£ — &) + Da (2 — )]
= —[1=(=1)(D+ B) Dk

15



— (6= 1) (Dx = By) D5 (07 — 7).
Further,

T = B { () ~ B! (£)] 2
= (€= DB { [~ B (1] %}
= —(E-1)E, { (1= De = B.) (8= zei) + (D — By) (& — 54| }

0B 0B ~ OBy =
*[%‘W TS ’f}
= (£-1)(1—D.— B.) %=1 (21) o7
1

+ (€= 1) (Ds = Bi) S5 (57) o

Next,
T5 = —pE, {[u,(f%) - Elm,eiu/(fm)] 8_51}
= p('f )E|n {[.sz E\n € (sz)} 6b1}
B (e~ ) + B (i~ )]
= —1)E,
R il

= —p(— 1) B (55) o —p (6~ 1) B (5) o

Finally,

Ty = —%QEW { [131 — B e <Bl)} %_551}

R sl
- |K; -
8? 8(;?56 85;,%]

0
— SR (2) ! B AL (1) 2

Using the previous results, we have:

T = [ (=) (D+ B+ (De— B gri)] [ 52 + Beni]
_%(5_1)(1_13 B)a,snag
1—(-1)(D+ B)] [55 + 5 %=r]

— (£ = 1) (D — Bp) =1 [147 + 2=102)
—

+

96 n Lln'vi

£-1)(1—-D,— B,) 2152

[
+( 96 nc

1-(£=1)(D+ B)] De" ki
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_(5_1)(Dm_Bn)Dnnn;2(ai_“?
+(§_1)(1_ 6_36)65%%(%)03
+(E—1) (D 0=l (=) o7
—p(§—1) BEEL (21) 62 —p (6 — 1) B2 (22) o2
S () o~ D5 () o
Hence,
i) 10— (¢-1)(D+B+(Dy— By) r))] [22 + DLe,]
+[1—=(£=1)(D+ B)| [%2 + £%5=k;i — D" k)]
— (€~ >( >[8£“z[ ki +22or] + Detst (o — K]) = s (5) o)
+[e-1 — (1+p) B) - 5B 42 (52) o
+ (€~ 1)(1—D — B,) %= (1) o2
[%+P }Bnaa%”; =) on
Hence,

Wesl) — m=l[} — (¢ —1)(D+ B)| [22

06

6 D0~ 5[50+ o~ ) (52) (D1 11+ ) ]
+|E=1) (=D~ (1L4+p) B) - £B| %4 (22) o
+(€—1) (1= D, — B) 21 (1) o2 (H.1)

Observe that

1-D.—(1+p) B

Hence,

-1 -De—

_ o2
—(1+p)B€+(£1)(1§+#B€
o?/¢
2l0p, > 0,

(1+p)B) - %B. =0,

and, hence, the third line of (H.1) becomes zero. Further, observe that

ELl- (-1 (D+B)][F

— Dyks) <0,

if k; > 0, and that o disappears from expression (H.1) if 02 = 0 (hence, given that all x’s

17



are drawn from a mean-zero distribution, x; = 0 for all 7). Hence, we have the following

results: in the absence of uncertainty about the government types, M < 0. Further,

if n — oo, then, for all governments ¢ with x; > 0, WF 12 < 0 (by continuity of all the

functions involved, this also holds for n sufficiently large).

I. Proof of Proposition 3

For given 0 < ¢ < 2=1, we evaluate OV, (1, 6)/06 at 6 = 0, where

Vi (6,6) = B, | (e = k)" 2 (i) 4 pula) = (e 20)]

is government 7 ’s equilibrium expected utility as a function of the stability pact parameters
(f1: and fo; are understood to be evaluated for the equilibrium outcomes), conditional on
ki, and where u is defined by (20). In the sequel of this appendix, all expressions are
understood to be evaluated at 6 = 0. Differentiating Vp; (¢, §) with respect to 6 and, thus,
evaluating at 6 = 0 yields:

Vri() — E\ﬁi . (ei o K,i) %a? + U,(flz)afh + pu (f Z)aggl _ —bl by , (Il)

¢

where, using (16) and (10), respectively,

G o= VR (- ) G+ - a) @),

Ofs b Aby;
%= S (- ) B
Substitute these expressions into (I.1), which can then be written as:

Weld = T4 + Ty + T3 + T, (1.2)

where

T = B {l- (61 — /fw) tu (fh)] de;
Ty = —E, [ blabl} ,
Ty = B {u'(fu)[(—a)+(€—e)l} 257

a6 )

We work out these terms one-by-one.

18



Regarding 77, we have by use of (17),

Because

hence,

i

Further,

Hence,

T = B (e w0 + o) 2
= B {[v/ (1) = Be et/ (F10)] 5 }
= —(£-1) Ejx, { [flz — Exie (flz)] W

fh:1+E—|—é—|—61+F1€(62—E)+F15(KZ—I%),

— E|m,€¢ (flz) = (E - %61) + (é - Em eé) (51 - E|M,€¢l~)1)

R (ba-9) + Fu (b )
= (€= 36) + De (& =€) = D (s = &)

B (26— ) + By (b — ) + Fu (36—
= (=14 D+ B+ F) (26, — ¢)

+(=Dy + B + Fii) (2K — &) .

+F1h2(n z'_'%

note that,
Oe; oD 0D, 0D,
6 = 90 06 € T 5 Hir
Ty = —(§—1)(—Dyx+ Be+ Fin) Bps, (25: — ) (22 + 2B=5)

Regarding T5, we have by use of (18):

T, = B {0 (h) - o/ ()] |50 % + (1 250) %5] )
oby;

= B {[(fi) = Bt/ ()] [2508 + (1 - 5250) 2
~pBy { [0/ (fo) = Bt ()] [ 72505 + (1 - 25
B, { B |ttt | [ 72505 + (1 — 7250) 22

= = €= VB {[f — B, ()] 2502 + (1
(€= DB { [~ B ()] [250% + (1 -

19

)

) B}

}

2y o)}
2oy 2]}



B, { B [t | [0 % + (1 - 240) 2]

We will now compute each of these three components of T5. But before that, we need to

work out:
by 8 9B, 9B,
Be o e,
ob ) 0Be> _ 0By ;.
T = 55— GrE-GER
Hence,
o + (1 - ) S
OB  9B. 8B,i n
= % — 5 [ave+ (1 - 5¢) a] — 5= [vR+ (1 - 3259) K]
Further,
for = 1—51+F2e(€z'—g)+F2m(/ﬂ—/~€)
= 1— B+ B+ Bii+ Fo (6, — €) + Fo, (ks — R) .
Hence,

foi = Ejgye (foi) = Be (E - lez’) + By (/?6 - %K'z)
+F2€( €; ) +F2,i (lliz—l%)

n

= (=B + Fy) ( € — 6) (=B + Fyy) (%Iiz — f%) )
We can now work out the components of 75, starting with

— (€= DB { [~ B (h0)] [0+ (1 - 2250) 2]}
[ [(-1+D.+B +F16)(%i—g)] \
+(=Dy + By + Fiy) (25; — 7)
*[%—?—%[ET/’GJF(l——l ) € ]
| L R+ (- ) s |
= (=B [(-1+ D+ B+ Fro) (e — ) G 2250
+ (€ = 1) Epy, [(—Di + Bi+ Fri) (55 — &) S0k
= —2(6-1)(~1+ Dc + B + F.) Zeepo?
—L(¢ 1) (=Dy + B, + Fi,) Zeyjo?,

= - ('f - 1) E‘M

20



where we have used that k; is observable to government i. The first term after the final

equality sign is positive, because

D€+B€+Fle - De"‘Be_(1_%w)Be+(1_%w6)(l_De)
= 1+ ¢B.>1,

while the second term is also positive, because

B+ Fin = Be+ (25% —1) Be+ (1 — 2596) Dy,
= 759Be+ (1-7598) Ds
> D,.

Next, we work out the second component of T5:

P& = 1) B, { [ = Bpeoe, ()] [0 % + (1-
[(—=Bc+ Fa) (26 — €) + (—Bx + )(
% — % v+ (1-
—8835” [m¢ + (1= ¢ )“
= p(E—1) (=B + Fa) 250 (— %) By, [(2e; — €) €]
+0 (€ = 1) (=Br + Fo) 359 (= %) Bi: [(5ri — &) ]
= Lp(E—1)(-Bc+ F)p (L) o? + Lp(e - )(—BH+F25>¢(8£“)0?

Because 0B, /06 < 0 and Fy.— B, = —-"5¢ B, < 0, the first term in the last line is positive.
The second term is also positive, because Fy; — B, = ——59 B, <0.

For the final component of T, we have that

B { B |t | [0 % + (1 - 279)
[m (B— 1B, — le)}

% — B [ve+ (- 59) e ]
—655” [ml/’“ + (1 - 25Y) kil

= 2 (B~ le,) +3

06

= E|Ii1

dB. 12
—* B — lw—a

¢n(1-v) ( )€ 96
=9 w)Beaai (1—25¢) oi + (i w)Bﬂaalis TRk
ot B (1 —ﬁP) %H?

— Wiw) (B — 1Byr;i) + e )Beaa% (1— ) Lo?
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8B, 2
+¢n(1 7 Be e (1 = ) 557

3=

Because none of the terms B, B, B, 835 and aB“

go to minus or plus infinity as o — 0,
this expression can be brought arbltrarlly close to zero, by making a small enough.

We now work out

Ty =B, [ b abl}

— B, [%(B—Bez By7) (—_%~_%;€)]

96 D6 96
2 1 OB OB 1 2
= 2 (B—1iBwi) L + S BYeLo?
_a? 9B, o 1,2 n-1_2
¢n 06 [B'%l BK (nK/i + n f‘i>} )
0B  9B.

Because none of the terms B, B, B and 2B« % go to minus or plus infinity as

© 957 06
a — 0, this expression can be brought arbitrarily close to zero, by making o small enough.

We finally need to work out Tj:

(14 -8 (F+e+h+ Fle— 8+ Pl — 7))

#[(1 = De) (€ — &) + D (F — Ki)] 3259
B+D+(1—D,— B)é+ (D, — Bp)
+F1€(ei—é)+F (ki — F)

% [(1 = De) (€ =€)+ Dy (R — k)] 2=
= —¢Duki+ P (§— 1) (B + D) Dyr
(1-D.—B)é+ (D, — By)R
+F (6, — €) + Fi (ki — R)
*[(1 = D.) (€ =€)+ Dy (R — K;)]

T, = B,

= —YDik; + (1 - f) E\M

+(1-¢) 725VE,

= —¢[1—=(£—-1)(B+ D)] Dyr;
+ (€= 1) 259 Fi (1= D) By, [(E — )]
+ (1= &) ¢ (Dy — Bx) Dyt (07, — 17)
+ (&= 1)YDFi [L (0 — K7) + k7]

This can be worked out further to give:
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_M{ 1= (€= 1) (B+ D) — (€~ 1) Fios? }
+(1=€) (Bs+ Fi — Dy) £ (0% — #2)
+(E= D) ¢F(1- D) o?
_ wﬁ{ (<14 (€= 1) (B+ D+ Fieri)] s, }
+ (&= 1) 9B, (02 — K?)
+(E-1)yF.(1-D,)o?.

Note that the final line of the last expression is positive. Suppose that « — 0 (and use
that 6 = 0). Then,

~14+(£-1)(B+ D+ Fy)

= —1+(E-1)¢(1+B)+ (1) Ry
= —f[1+(Q =B+ (~1) Ry
2p +ﬁ¢+(1_¢)p
1+&p  (1—9)(1+¢&p)

L —(1—9)p .
(11_ IR <0, ify < p——i-l/}(?n—l)'

Hence, if k; < 1 (which seems reasonable given the initial size of the resources) —1 +
(E—1)(B+D+ Fiuki)) < =14+ ((—-1)(B+ D+ Fi,) < 0. Further, if x; = 0, then
Ty =Dy (§ — 1) =59 Beo2+ (£ — 1) ¢YFi (1 — D.) o2. The first (and second) term of this
expression is positive.

Adding T}, T, T3 and Ty, we conclude the following: if « is sufficiently small and

k; = 0, then Wg—g(‘) > 0. If a and o? are sufficiently small and n is sufficiently large, then

if k; >0, ng(') < 0 (n sufficiently large ensures that all terms involving o2 or x? become

sufficiently small).

J. Variation (I): General functions

Now, v; and u are of the more general format, where v/ > 0 and v}(e;) = 0 for some
e; = k; S 0 and v fulfills the assumptions made in Section 2. We assume that ¢ and l~71
converge to constants (i.e., become non-stochastic) as n — oo. This is a weak assumption,
because all possible shock combinations are independent. Further, we assume that all
expectations taken in the sequel exist. We impose the restriction that v; = v, if k; = &,

Vi. In this case, we limit ourselves to equilibria in which the governments’ strategies as
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functions of shocks are symmetric.

J.1. Moral hazard results

The relevant first-order conditions are given by (17) and (18). Let n — co. Hence, under
the assumptions made above, the terms within the E, ., [.] operator only depend on ¢;

and k;, so that the first-order conditions become:

U;(ei) = u/(flz') (1_1/}6)7 Vi, (Jl)
u(fu) = pu'(fa), Vi (J.2)

The effects of shocks on the policy outcomes will generally be nonlinear. Therefore, we
investigate only the impact of a change in ¢ on effort when all shock realizations are zero
(i.e., ¢, =0 and k; = 0, Vj). Focussing on symmetric equilibria, the first-order conditions

of government ¢ can then be written as:

v(e;) = W (1+e+by)(1—1v06), Vi,
u’(l +e; + blz) = pu'(l - bh'), V.

To explore the impact of a change in ¢, differentiate both equations with respect to ¢:

U”(ei)%? = ”(flz) (%eg 6b“) (1 - ¢5) T/Jul(fu), (J-3)
u'(fu) (55 + %) = —pu(fai) G- (J.4)
Rewriting (J.4), we have:
Oby . Ww'(fi)  de
o6 u” (fra)+pu” (f2i) 06"

Substitute this into (J.3), to give:

V(60 = " (fu) [l | (1= 08) e — ol ().
Hence,
! (F1)u” (f23)(1 ) e
17(c) - =] B2 = )
Hence, 2 < 0 and, hence, 24t > 0, thereby confirming Result (iii)(a) for effort.
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J.2. Proof that full insurance is suboptimal

Government ¢’s expected equilibrium utility as a function of the stability pact parameters

is given by:

Vi (6:8) = By, [ (e + )+ pu ) — (o) 29)].

where Vg, (1,0) is the expected equilibrium utility as a function of the stability pact
parameters and fy;, fo; and b, are the equilibrium outcomes. In the sequel of this proof
all expressions are understood to be evaluated at 6" = (¢,6) = (==, 1). Differentiating

Vi (¥, 6) with respect to 6 and thus evaluating at 6* yields:

Wal) = By [—ofle) 5+ (F) % + o ()8 — 5. %]
where, using (16) and (10), respectively,
0f1; e b ~ ~ 0fo; b
O = 22 L O 4 [(e—¢)+ (E—e)],  22=_20

Hence,

V() —vj(e)Ge +u'(fri) |55 + G +E—e) + (€ —e)
_pu (f21>8b1 _ a bl 8b1

Hence, using government ¢’s first-order conditions for by; and e;:

8VF1( )

=T +T+T5+ Ty +T5 + Tg,

where

Ti = Ep, {—Epe, W/ (f1:)] 1%
Ty = B {u(fu)[E+E—ea)+(E—e)l},
T, = E {[u’( Fii) = Ep et (fri)] L } ,

T, = —pEy, {[u/(fm) — Bl et (fai)] %} ,

T, — —%ZEW{{bl B, (bl)}%}.

Let n — oo. Hence, T} — 0. Further, ¢ — 0, almost surely. Hence, in the limit,

fu=1+¢ée+ b, and foi = 1— b, are constant and, hence, u'(f1;) — Ejx, e (f1) and
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U (f2i) = Bjg, e, (f2:), almost surely. Hence, 75 — 0, Ty — 0 and 75 — 0. Hence, we have

that:

Weil) By o (fu) [£ + (6— e) — €]}

again using that € and b; are constant in the limit. From (J.1) evaluated at §* with n — oo,

we have that e; = k;, Vi. Hence, ¢ = k — 0.

oé

We still need to determine 26 The first-order condition for e; when n — oo can be

written as:

v; (€;) = u'(f1i) (1 — 90).

Differentiate this equation with respect to 6 to give
vl ()% = ' (fi) (2 + % + 2 — (e + e)]) (1 06) — (o)

Evaluate this at 8* and, again, use that n — oo:

Oe; oé
Y T < 0.

Suppose that o2 = 0, so that x; = 0 for all j. Hence, é— Ej.,e; = 0. Hence, (Wg—g(') < 0.

Hence < 0 and, hence

This completes the proof of the analogue to Proposition 2(a), if n — co. Now, let o2 > 0.

If the x; > 0, then é— Eje; < 0. Hence, Wg—g(') < 0. This completes the proof of the

analogue to Proposition 2(b).

J.3. Is some contingency welfare improving?

For given 0 < ¢ < ”T’l, we evaluate OVp;(1),6)/00|5_,, where

Vi (¥,6) = B, | —vile:) +u (fu) + pu(fa) — (0451>2/(2¢)] >

is government 7 ’s equilibrium expected utility as a function of the stability pact parameters,

conditional on ;. In sequel of this proof, all expressions are understood to be evaluated
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at 6 = 0. Differentiating this expression with respect to 6 and thus evaluating at 6 = 0
yields:

Weil) = By, [—viles) % + o' (fui) 22 + pu (for) 22 — y b1 by | (J.5)

where, using (16) and (10), respectively,

Go= G (- ) B+ B e[ e) + (e - e,

% - 1/}% - ( 1¢) 8bh'

Substitute these expressions into (J.5), which can then be written as:

[/ (f1i) — vi(e;)] % + ' (fu) [(E— &) + (6 —e)] 250
8‘/53 =B, + [/ (f1s) — pu'(f2i)] {n 11/;8‘)1 (1— 1) %] 7

_o?p oby

which, using the first-order conditions for e; and by;, can be written as:

([ [W(f15) — Bt ()] 2 + <f>[<e—ez>+<é—ei>1ﬁ¢‘
+ [0(fu) = Bpe et qun T+ (1- 2259) B
P [4() B (1) [0 + ( =0Ed
~Sh %+ B (b)) [0 + (- 7v) %]

Now, letting o — 0, we have:

[/ (1) = Byt (f1)] 52 + ' (f) [(E = &) + (€ — e)] 3259
260 B [0~ B (0] [ 270% + (1 27) %]
—-p [u,(f%) - E|m,eiu/(f2i)] [n 17/1(%1 ( 1?/1) 8bhi|

Let n — oo. Hence, € — 0, while ¢ and b, are constant in the limit. Hence, by the first
order conditions, in the limit, all uncertainty in fi; and fo; arises from ¢; and ;. Hence,

U (f1i) = By (f1:) and v/ (fo;) — Ejx, ¢,/ (f2:), almost surely. Hence, if n — oo,

PED B {d/ (i) [6) 9 — o/ (i) (6 + @) )
= B, [v'(fu) (€)Y — B, [u'(fra) (e +e:)] ¢
= By, [W/(f1)] B, [E] Y — Ep, [/ (f1) (€ + €)] ¥
= By, [W/(f11)] [€ — Ep, (e5)] ¥ — Covy, [W/(f1) (€; + €:)] .
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Here, we have used the assumption that, as n — oo, € becomes constant. We now consider
two cases:

Case 1: Suppose that the government of country ¢ expects to exert the same amount

Vri()
06

between v’ (f1;) and (e; + ¢;) is negative. This completes the proof of the analogue of

> 0 if the correlation

of effort as the average in the union, i.e., E., (e;) = €. Then,

Proposition 3(a).

The question is under what circumstances this negative correlation is likely to be the
case. To explore this issue, write out government ¢’s first-order conditions evaluated at
0 = 0, realizing that ¢; is observed by government i and using that average variables

become non-stochastic when n — oo:

vi(e) = [1+ei+ei+bu—w(bu—l~)l)},
pu’ [1—bu+w(bu—51>} = [1+ei+ei+b1¢—w(bu—51>}.

Differentiating these two equations with respect to ¢;, we have:
o (e) 3 = u'(fi) [1+ 52+ (1-v) %], (3.6)
pu(Fa) (0 = D) = (i) [1+ 92+ (1— ) 2] (3.7)
Combining these two equations we find that

by vi'(ei) e,
(1 o Q,D) 8_611 T pu!(f2) O¢;

Use this expression to substitute away 86%1: from either (J.6) or (J.7) and rewrite the

resulting expression to give:

Oei pu” (fri)u” (f2:) <0
O¢; pu' (faq)v} (eq)+u’’ (fri)v) (es)—pu (fra)u” (f2:)

Hence, % < 0. Further,

e pu (fai)vi (ea)+u"" (f1:)vy (es)

Q

8(%-&-6@) . .
e, = 1t 8e = s ot (vl e —pu (hywr () = O
Further,
Afri _ de; . Ob1; pu’’ (f2i)v) (es)
b = L+ e T (1 =9) 538 = vt e oG T > O

In other words ¢; + e¢; and f1; move up and down together in response to the shock ¢;,
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which makes it likely that €; + e; and «'(f1;) are negatively correlated.

Case 2: Now, suppose that o> — 0. Hence,
V(. .
Vgﬁ() — EW [u/(flz)] [e — E|,€i (62)} (I

where we have used that u/(f1;) — Ej, [/ (f1:)]."® Hence, if Ej., (e;) > €, the government

type of country ¢ is worse off. This completes the proof of the analogue of Proposition

3(b).
K. Variation II: Re-election probability depends on effort

Government ¢ now optimizes over by; and e; the following function:

VFi W, 6) = E\Gz [u (fh) +p (6@) u (.fZl) - 7T2/ (2¢)} )

subject to (16), (10) and (7), with the expectation E, taken over all €;, j # i. The re-
election probability depends on the degree of effort. It is not immediately clear whether
p should depend in a positive or negative way on ¢;. On the one hand, more structural
reform may result in more support from the part of society that benefits from it. On the
other hand, more reform may reduce the constituency of the party in power and, thereby,
lead to less political support. If p’ > 0, more reform is always better for the government
and no equilibrium exists. Therefore, and in accordance with the main text, we assume
that p’ < 0, which captures that reform has political costs in terms of reducing the re-
election probability. To keep matters tractable, we assume that there is no difference in
government types.

In the sequel we consider only interior equilibria, implicitly assuming that the resulting
choices of effort imply that 0 < p < 1. Furthermore, we assume that € and by converge to
constants (i.e., become non-stochastic) as n — oco. This is a weak assumption, because all
possible shock combinations are independent. We also assume that all expectations taken
in the sequel exist. Finally, we limit ourselves to equilibria in which the governments’
strategies as functions of shocks are symmetric.

The government’s necessary first-order conditions with respect to by; and e; are given

18Because the aggregate variables & and b, become constant when n — oo, the policy outcomes for
country i only depend on €; and k;, as the first-order conditions for country i show. Hence, if 02 — 0,
u'(f1i), given k;, becomes constant.
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by, respectively:

B [(f)] (1= ) = p(e) Bie [0 (2] (1= ) + By 0B/ (6n)] Vi,
B (/i) (1= 06) = —f (e) By, [u(fo)], Vi

The second-order conditions are, respectively,

Ble, [w"(f1)] (1 = 9)° + p(e) By, 0" (fa)] (1 = 9)° = Ei [0/ (¢0%)] <0, Vi, (K1)

{Ble, [ (f10)) (1 = ¢)* +p (&) By, [u" (for)] (1 = ) = By, [@*/ (07)] }

s {Bie, [w”(£10)] (1= 96)* + 9" (e:) B, [u(f)] }

—{B, [0 (1)) (1 =) (1= 16) = ' (e5) Bre, [/ ()] (1 — ) }
> 0, Vi, (K.2)

2

where the last one implies that
Ble, [u"(f1)] (1= 96)" +p" (e5) Bie, [u(fai)] <0,
must hold.

K.1. Moral hazard results

It is difficult to analyze the model in its most general format. Therefore, we let n — oo.
Because € — 0, almost surely, and € and by converge to constants, the only remaining
source of uncertainty in fi; and fo; is ¢;. Hence, the first-order conditions can be written

as:

u(fii) = ple)u(f), Vi (K.3)
' (f1i) (1 —8) = —p'(e)ulfa), Vi (K.4)

The second-order conditions then become:

u"(f1i) +p(e;) u”(fo) <0, (K.5)

[u”(.flz') (1-— ?/1)2 +p(e;) u’(fz) (1 — ?/1)2} (K.6)
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* [U”(fu) (1- 1[15)2 +p" (es) U(f%ﬂ
— [ (i) (1 =) (1 — ¥8) — p (€)' (fai) (1 — )]

> 0.

The last inequality can be simplified to

[ (fra) +p () u" (fai)] [u" (Fri) (1 = 8)" + " (&) ulfai)]
= [u"(fra) (L = 98) = o/ (er) o' (for))”

> 0

[ (f1:)]? (1 = 96)* + p (&) u (fri)u" (for) (1 — ¥6)°
+p" (e:) u” (fri)u(fai) +p(e:) p” (ei) u” (fai)ul( fai)
— (W (f1o)) (1= 96)* = [ (&))" [/ (o)) + 20 () ' (fua)d (for) (1 — 6)

> 0,

and thus

p (&) u”(fr)u (far) (1 — 6)* + p" (e3) u” (fra)u(for) + p (e1) " () u (for)ul fos)
— [0 (&) [/ (fos)]* + 20 (e5) " (fai )t (foi) (1 — 6)
> 0. (K.7)

The effects of shocks on the policy outcomes will generally be nonlinear. Therefore, we
investigate only the impact of a change in 6 on effort when all shock realizations are
zero (ie., ¢, = 0, Vj). Focussing on symmetric equilibria, the first-order conditions of

government ¢ can then be written as:

u(1+e +by) = ple)u(1—by),
w(l+e +bu)(1—v0) = —p (e)u(l—by).

To explore the impact of a change in 6, differentiate both equations with respect to é:

() (G + %) = 0 (o) G (fas) — p (en) o (o) B, (K8)
u(fui) (% + ) (1= 06) — v/ (fri) = =" (&) Srulfor) + ' (e:) ' (for) B (K.9)
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Rewriting (K.8), we have:

Oby {p' () w'(f2:) — U"(flz’)} Oei (K.10)

06 | ple)u(fu) +u'(fri)] 06

Substitute this into (K.9) and rewrite to give:

U”(flz') (1 B wé) |:p (62) u”(f%) _|_p/ (ez) ul(fm)} de.

p(ei) w’(foi) +u"(f1s) 06
Je; ' (ei)]2 [Ul(f2z')]2 —p' (e;) W (fai)u"(fri) | Oei
06 p(es) w’(foi) +u"(f1s) 96"

= Pu'(fu) — p" (&) mou(fa) +

Hence,

{p (e) u"(fra)u"(fai) (A = 6) + p' () u" (f1)u' (f2i) (1 — 96)
p(e) u”(fai) + ' (f10)
+p (e:) " (e) u" (foi)u(fai) + P" (es) " (fra)u( f2:)
p(ei) u”(foi) + o' (f10)
P e [ () — P () U"(fu)U’(fzz-)] de;
p(es) u"(fas) + v f10) a6

= ?/Jul(fu)-
Hence,

p (&) u"(fr)u" (f2i) (1 — 90) + p' () v (fra)u'(f2i) (2 — 96)
p(e:) u”(f2i) + u"(f1i)
p(e:) p" (i) u" (fai)u(foi) + p" (€:) w'(fro)u(fai) — [pf (ei)]z [u'(fm)]Q] %
p () v’ (f2) +u"(f1i) 06
= u'(fui). (K.11)

+

Since

p (&) u" (fr)u" (fai) (1 — 9p6) + p' (es) u”(fra)u'(f2:) (2 — ¥6)

+p (e:) p" (&) u"(fai)ulfor) + 1" (e5) u"(fra)u(for) — [P/ (eé)]Q [Ul(fzz')]z

p(e) " (fra)u" (fa) (1= 06)* +p" (es) " (fro)ulfai) + p (e:) p” (e) 0" (fai)ul fas)
— [P ()] [t (for))” + 20 (e0) " (fra)td (fa) (1 — 6)

> 0,

v

[where the first inequality follows from the facts that (1 — 6) > (1 — 1/15)2 and (2 — ) >
2 (1 — 46), and the second inequality follows from the second-order condition (K.7)], and
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since p (e;) v’ (f2) + v’ (f1;) < 0 [by (K.5)], it follows from (K.11) that de;/d6 < 0. This
confirms Result (ii)(a) for effort in this variation of the model.

Note that raising 6 will have ambiguous implications for debt; cf. (K.10). ILe., if
P (€) u'(fo;) — u”(f1i) > 0, then 9by; /05 > 0, whereas if p’ (e;) v/ (fo;) — u”(f1:) < 0, then
0by;/06 < 0. This is not surprising: all things equal, as effort goes down with 8, for fized
re-election probability one would have debt go up because resources in the first period
shrink. However, in the case in which the decline in effort raises the election probability
(i.e., p' (e;) < 0), period 2 consumption gets more weight, and period 1 debt may fall so as
to free up more resources for period 2. This case is indeed the relevant one when p’ (e;) < 0
is relatively large in absolute value, i.e., when p’ (¢;) u'(f2;) — w”(f1;) < 0. On the other
hand, when p’ (e;) is small in absolute value, the response of debt is mainly driven by the

loss of resources in period 1; hence, debt increases with 6.

K.2. Is some contingency welfare improving?

We investigate now whether indexing the reference deficit level to the observed economic
situation (e + e;) is beneficial for government i. Hence, we evaluate OVi;(1,6)/00]_,,

where

%ﬂwﬁﬁzEtMﬁ0+p@MMﬁ0—Q%Q2M%ﬂ,

where Vg, (1,0) is the expected equilibrium utility as a function of the stability pact
parameters and f1; and fy; are the equilibrium outcomes. In the sequel of this proof all
expressions are understood to be evaluated at 6 = 0. Taking the derivative with respect

to 0, and thus evaluating at 6 = 0, we obtain:

Vri()

S0 [uf () 2 p (e () S+ ) B f) — S0 %]

Substitute into this equation:

=+ (- ) B+ G [E - a) + @l

Ofoi __ n 1
%__ﬁw%_( 17/’) 86’
which gives
[ (f1i) + ' (e:) ul fai)] F2 e

avgg =Eq + [ (fu) —p(e) ' (fa)] [ 11/;%1 ( _ %qo 6;31']
+u' (fu) 75V [(E—ea)+ (e —e)] -5 b %
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Let n — 0o. We can then use (K.3) and (K.4). In addition, letting o — 0, we obtain:

W) B (fu) [ — /() (e + ) 0}
= E[(fu) (@)]¢ —E[W(fu) (6 +e)]
= E/(fu)]E[E]Y — E[u'(fu) (6 +e)] v
= E[/(fu)l[é — E(e)]y — Cov [u(fui) (€ + e)]
= —Cov[u/(fu) (e + )] ¥

Here, the next-to-final equality has used the assumption that, as n — oo, é becomes
constant while the final line has used the result that, as n — oo, é — E(e;), because

shocks are i.i.d. and the response to shocks is symmetric across governments. Hence,

Wg—g(') > 0 if the correlation between (¢; + ¢;) and u' (f1;) is negative. This completes

the proof of the analogue of Proposition 3(a).

The question is under what circumstances this correlation is likely to be negative.
To explore this issue, write out government i’s first-order conditions evaluated at 6 = 0,
realizing that ¢; is observed by government ¢ and that aggregate variables are constant in

the limit when n — oo:

o [1+6i+ei+b1i—¢<b1i—l~)1)} = p(e)u [1—b1i—|—1/1<b1i—l~)1)],
u [1+ei—|—ei+bu—w<b“—l~)l>} = —p’(ei)u[1—b11-—|—?/1<b11-—51>}.

Differentiate both equations with respect to ¢;, realizing that €; does not affect l~71, to give:

(o) |1+ 52+ (1= 0) B2 = ' (en) Gt (far) +p () o (o) (1 — 1) 2, (K.12)
W) |14 32+ (1-) x| = (K.13)
—p" (e:) Zu(fos) — P (&) ! (fo) (¢ — 1) G2t

Hence, combining these last two expressions:
[P (es) u'(for) + p (e) u" (for)] (1 — ) G2 = [p' () 0/ (fai) + 1" (e:) ul fai)] G-

Hence,

by | p(e)u (f2i)+p" (ei)u(f2i) 1 e
O¢; o’ (e )u! (f2i)+p(e)u’ (fai) | 1—1p Oe; *
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Plug this expression back into (K.13):

nee . ple)u (f2i)+2p' (€)' (foi)+p" (es)ul(foi) | Oes
u (fh) {1 ™ [ p'(e)u (f2i)+p(ei)u” (f2i) i| 8€i}

_ {[P'(ei)u'(fQi)]Q-HD'(ei)P"(ei)u(fm)U'(fQi)—P’(ei)P"(ei)u(fm)“'(fQi)—P(ei)P"(ei)u(fm)U"(fQi)} de;

P (es)u!(fai)+p(ed)u' (f2:) de;
Hence,
nee ple)uw” (fri)u" (foi)+2p' (ea)u” (f1:)w' (foi)+p" (ei)u” (fri)u(foi) | De;
u'(fui) + [ P (e () +plen” (Far) ] e,
_ |:[P'(ei)ul(fm')]Q*P(ei)PH(ei)u(fzi)uﬂ(fm) de;
P’ (ei)w (foi)+p(ei)u” (f2i) O€;
Hence,

ple)u” (f1)u” (foi) 420 (e)u (fra)u' (fo)+p" (e)u” (fri)u(fai)+pled)p” (e)ulfa)u” (fai) =[P (e:)u’ (f2:)]? Oei
p(ei)u'(f2i)+p(ei)uw’ (f2:) Oe;
— _ul/ (flz) .
Hence,

dei _ —p'(e)u” (fri)u' (foi)—p(ei)w” (f1a)u" (f2:)
Oe; ple)u” (fra)u' (fai)+2p' (e )u” (fra)u! (fai)+p" (e )" (f1i)u(fai)+ple)p” (e)u( fai)u' (fai)—[p (e ) (f2i)]*

Observe that the numerator of the right-hand side of this expression is negative, while the
denominator equals the left-hand side of (K.7) for § = 0. Hence, 24 < 0.

Oe i
Further,

Oeites) __ de;
0¢; 1+ Be;
_ P (e)u’ (fri)w (foi)+p" (e)u” (fri)u(foi)+p(e)p” (e ul foi)u” (foi)—[p' (e:)w! (f2i)]°
ples)u (f1i)u’ (foi)+2p' (e5)u (fri )u! (f2i)+0" (e)uw” (f1s)u(fas)+ples)p! (ed)u(foi)u! (f2i)— [P (es)u! (f2:)]

while,

61' 861' 8i
G =143+ (1-y) Gu

_ pled)p (e )u(foi)u" (f2i) =[P (e:)u! (f2i))
plea)uw” (fri)u” (f2:)+2p (e )u (f1:)w (f2i)+p" (€ )u” (f1i)u(f2i)+p(e:)p" (€s)ulf2i )u’ (f2i) — [P (ei)u! (f2i)]*

The denominator is positive by the second-order condition. Hence, BBJL 1: > 0 iff
p(es) p” (ex) ufar)u" (f2i) — [pf (e2) v/ (fai)]* > 0.

This requires that p” < 0 and that [p/ (e;) u/(f2)] is not too large. Observe that, if p” < 0,
then 24 < 0. Hence, if % > 0, then 1+ %% > 0, so that (¢; +¢;) and o (f1;) are likely
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to be negatively correlated.

Let us give some more intuition for the requirement that p” < 0. Consider, for the sake

of the argument, the effect of a shock on debt, holding e; constant. Hence, we set gz =0
in (K.12), to obtain

0by; _ —u’ (fu) <0

Oe; (1 =) [u” (f1s) +p(es) " (fa)]

Hence, a negative shock induces additional borrowing, as one would expect. Now, consider
the effect of a shock on effort, holding by; constant. Hence, we set %L; = 0 in (K.13), to

obtain
Je; _ u” (f12)
O¢; u” (fri) + 0" (i) u (fas)

where the unambiguous sign follows from the second-order condition (K.6). Hence, a

< 0,

negative shock raises effort. Note that the response may be larger or smaller than one-
for-one, depending on the sign of p” (e;). When p” (e;) = 0, then the marginal loss of
effort as measured by the reduced re-election probability is unaffected by the response of
e; to the shock, and effort can safely neutralize the shock completely, i.e., de;/0e; = —1.
When p” (e;) < 0, the response will be less than one-for-one, as the marginal loss of effort
increases (p' (e;) becomes more negative); hence, in the optimum, the marginal gain (in
the form of higher first-period resources) must increase as well, which can only be possible
if the shock is not fully compensated by the increase in effort. Hence, first-period public
consumption decreases. Finally, for p” (e;) > 0, the opposite holds.

What is the effect on public debt? Suppose that p” (e;) = 0. Hence, the change in
effort neutralizes the effect of a negative shock completely. This means that choice of
public debt can only be driven by the effect of the change in effort. The reduction in the
re-election probability as a result of the increase in effort renders the second period less
important for the first-period government and induces it to issue more debt. Hence, first
period consumption increases when a negative shock occurs. If p” (e;) > 0, the increase in
effort overcompensates the effect of a negative shock. Debt may go up or down, depending
on whether the effect of the increase in first period resources or the fall in the re-election
probability is strongest. The overall effect, though, is an increase in first-period public
consumption. Hence, for first-period consumption to fall in response to a negative shock,
we need that p” (e;) < 0.

Other cases are also possible. For example, p” (e;) > 0 and p' (e;) w'(foi) < u"(f14).
Then, 1 + g—: < 0and 1+ g—: + (1 —1v) %L; < 0, so that ¢ + e; and fy; are positively
correlated and, hence, €; + e; and u' (f1;) are likely to be negatively correlated, so that
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Vi) > 0. Another example is when p” (¢;) = 0 and p/ (e;) v'(f2;) > u”(f1;). Hence,
0

96 |
1+ % > 0and 1+ % + (1 =) % < 0, so that ¢; +e; and fi; are negatively correlated,
hence €; + ¢; and v’ (f1;) are likely to be positively correlated, so that —ng(') i < 0.
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