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Abstract
Background A potential role for muscle in glucose homeo-
stasis was recently suggested based on characterization of
extrahepatic and extrarenal glucose-6-phosphatase (glucose-
6-phosphatase-β). To study the role of extrahepatic tissue in
glucose homeostasis during fasting glucose kinetics were
studied in two patients with a deficient hepatic and renal
glycogenolysis and/or gluconeogenesis.
Design Endogenous glucose production (EGP), glyco-
genolysis (GGL), and gluconeogenesis (GNG) were
quantified with stable isotopes in a patient with glycogen
storage disease type 1a (GSD-1a) and a patient with
fructose-1,6-bisphosphatase (FBPase) deficiency. The
[6,6-2H2]glucose dilution method in combination with the

deuterated water method was used during individualized
fasting tests.
Results Both patients became hypoglycemic after 2.5 and
14.5 h fasting, respectively. At that time, the patient with
GSD-1a had EGP 3.84 μmol/kg per min (30% of normal
EGP after an overnight fast), GGL 3.09 μmol/kg per min,
and GNG 0.75 μmol/kg per min. The patient with FBPase
deficiency had EGP 8.53 μmol/kg per min (62% of normal
EGP after an overnight fast), GGL 6.89 μmol/kg per min
GGL, and GNG 1.64 μmol/kg per min.
Conclusion EGP was severely hampered in both patients,
resulting in hypoglycemia. However, despite defective
hepatic and renal GNG in both disorders and defective
hepatic GGL in GSD-1a, both patients were still able to
produce glucose via both pathways. As all necessary
enzymes of these pathways have now been functionally
detected in muscle, a contribution of muscle to EGP during
fasting via both GGL as well as GNG is suggested.

Abbreviations
EGP Endogenous glucose production
GGL Glycogenolysis
GNG Gluconeogenesis
GSD Glycogen storage disease
FBPase Fructose-1,6-bisphosphatase

Introduction

Endogenous glucose production (EGP) during fasting is
predominantly derived from hepatic gluconeogenesis
(GNG) and glycogenolysis (GGL), with a minor contribu-
tion from renal GNG (Ekberg et al. 1999). Recently, a
potential additional role for muscle in EGP has been
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suggested based on characterization of an isoform of
glucose-6-phosphatase, glucose-6-phosphatase-β (Glc-6-
Pase-β) expressed in muscle and other extrahepatic tissue
(Martin et al. 2002; Shieh et al. 2003). Gl-6-Pase-β has
been shown to have structural and functional properties in
muscle comparable with glucose-6-phosphatase-α
expressed in liver, kidney, and intestine (EC 3.1.3.9; Glc-
6-Pase-α) (Shieh et al. 2004). As patients with glycogen
storage disease 1a (GSD-1a; OMIM #232200) are deficient
for Glc-6-Pase-α, resulting in defective hepatic and renal
GNG and GGL, Gl-6-Pase-β activity in muscle might
explain the residual EGP previously observed in these
patients (Kalhan et al. 1982; Schwenk et al. 1986; Tsalikian
et al. 1984; Weghuber et al. 2007). In order to investigate
the potential role of extrahepatic and extrarenal tissue in
glucose homeostasis during fasting in vivo, we performed
whole-body kinetic studies in a patient with GSD-1a and a
patient with fructose-1,6-bisphosphatase (FBPase) deficiency
(OMIM #229700), an inborn error of hepatic and renal
GNG. For the first time, differential contributions of GGL
and GNG to EGP during fasting were quantified in these
disorders using the [6,6-2H2]glucose isotope dilution method
combined with the deuterated water method (Landau et al.
1996; Wolfe et al. 2005).

Materials and methods

Study individuals

Patient 1 presented with severe hypoglycemia (plasma
glucose 0.3 mmol/L) and hepatomegaly at the age of
4 months. GSD-1a was diagnosed on the the basis of a
complete deficiency of glucose-6-phosphatase activity in
a fresh liver biopsy. This diagnosis was later confirmed
by mutation analysis revealing two mutations known to
completely abolish Glc-6-Pase-α activity (Table 1) (Rake
et al. 2000). Patient 2 was admitted at 11 months because
of convulsions due to hypoglycemia. At this time, she
exhibited severe metabolic acidosis with hyperlactatemia

and a marked hepatomegaly. She was diagnosed with
FBPase deficiency by repeated demonstration of undetect-
able enzyme activity in leucocytes (Table 1) (Baker et al.
1970).

The in vivo stable isotope studies were approved by the
Institutional Review Board. Both patients and their parents
gave informed consent prior to the studies.

Study protocol

Fasting tests were performed at the age of 17.9 and of
16.7 years, respectively. Both patients were admitted 1 day
before the test. An intravenous catheter was inserted into
antecubital veins of both arms after topical application of
lidocaine cream. One catheter was used to administer
[6,6-2H2]glucose and the other for blood sampling. At
baseline, a blood sample was collected to determine
background enrichment of deuterated water in plasma.
Fasting was started at a time considered safe based on
previous experience with fasting in the patients. Prior to
fasting, both patients consumed their regular evening meal.
Patient 1 received nocturnal nasogastric drip feeding
without glucose polymers. This drip feeding was discon-
tinued 2 h prior to initiation of [6,6-2H2]glucose infusion
and substituted by an unlabeled glucose infusion at a
rate of 5 mg/kg per min, which was continued until the
start of the [6,6-2H2]glucose infusion. Both patients
remained fasted throughout the test and maintained bed
rest (Fig. 1).

Twelve hours prior to [6,6-2H2]glucose infusion, both
patients drank deuterium-enriched water (99% pure;
Cambridge Isotope Laboratories, Cambridge, MA, USA)
at a dose of 5 g/kg body water divided in five doses within
120 min (Ackermans et al. 2001). The total amount of body
water (kg) was estimated as 60% of body weight (kg)
(Friis-Hansen 1961). Thereafter, patients were only allowed
to drink tap water enriched to 0.5% with deuterated water
until the end of the test. At the start of the fasting test in
patient 1, after 10 h of fasting in patient 2, and after collection
of a blood sample to determine background enrichment of

Table 1 Patient characteristics

Sex Age (years) Height (m) Weight (kg) Inborn error of metabolism Enzyme activity (normal range) DNA analysis

Patient 1 M 17.9 1.76 (-1 SD) 75.0 (+1.5 SD) Glucose-6-phosphatase
deficiency (GSD Ia)

0.0 (10–30) nmol/min/mg proteina R170X ∆F327b

Patient 2 F 16.7 1.50 (-2 SD) 60.0 ( +2 SD) Fructose-1,6-
bisphosphatase deficiency

<0.1 (3–20) nmol/min/mg proteinc ND

ND not determined
a In hepatocytes
b Rake JP et al 2000
c In leucocytes, repeated measurements; Baker L et al. 1970
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[6,6-2H2]glucose in plasma, a primed continuous infusion
of [6,6-2H2]glucose (99% pure; Cambridge Isotope
Laboratories) was started (bolus 26.4 µmol/kg; continuous
infusion 0.33 µmol/kg per min) to reach an estimated 2%
plasma enrichment (Bier et al. 1977). Blood samples were
drawn every 5 min at the beginning and end of the test
when patients became hypoglycemic, and every 30 min
during the test (Fig. 1). Samples were centrifuged at
3,000 rpm for 10 min, after which plasma was collected
and stored at –20°C. Blood samples to determine
fractional GNG were immediately deproteinized by add-
ing an equal amount of 10% perchloric acid. These
samples were centrifuged at 4,000 rpm for 20 min, after
which the supernatant was collected and stored at –20°C.
Blood glucose levels were monitored every hour and more
frequently when glucose levels dropped <3.5 mmol/L. The
test was terminated when clinical symptoms of hypogly-
cemia occurred, after which patients were immediately
given carbohydrate-rich drinks and a meal.

Analytical methods

Plasma glucose concentration Plasma glucose levels were
analyzed with the hexokinase method on a Roche
MODULAR P800 analyzer (Roche Diagnostics GmbH,
Mannheim, Germany).

Hormones Plasma insulin and cortisol concentrations were
determined on an Immulite 2000 system (Diagnostic
Products Corporation, Los Angeles, CA, USA). Insulin

was measured with a chemiluminescent immunometric
assay, and cortisol was measured with a chemiluminescent
immuno assay. Glucagon was determined by RIA (Linco
Research, St. Charles, MO, USA). Plasma free fatty acid
(FFA) levels were measured by an enzymatic method
(NEFAC; Wako Chemicals GmbH, Neuss, Germany).

Plasma [6,6-2H2]glucose enrichment Plasma glucose
enrichments were determined as described previously
(Ackermans et al. 2001). Briefly, plasma was deprotei-
nized with methanol and evaporated to dryness. The
extract was derivatized with hydroxylamine and acetic
anhydride (Reinauer et al. 1990). The aldonitrile pentaa-
cetate derivative of glucose was extracted into methylene
chloride and evaporated to dryness. The extract was
reconstituted in ethyl acetate and injected into a gas
chromatograph/mass spectrometer (HP 6890 series GC
system and 5973 Mass Selective Detector, Agilent
Technologies, Palo Alto, CA, USA). Separation was
achieved on a J&W DB17 column (30 m×0.25 mm, df
0.25 µm; J&W Scientific, Folsom, CA). Glucose ions
were monitored at m/z 187, 188 and 189. The isotopic
enrichment of glucose was determined by dividing the
peak area of m/z 189 by the peak area of m/z 187 after
correction for background enrichment of [6,6-2H2]glucose.

Deuterium enrichment in glucose at position C5 and in plasma
water Glucose was converted to hexamethylene tetra-amine
(Ackermans et al. 2001; Landau et al. 1996). Hexam-
ethylene tetra-amine was injected into a gas chromatograph/
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Fig. 1 Study protocols in
patients 1 [glycogen storage
disease type 1a (GSD-1a)] and 2
[fructose-1,6-bisphosphatase
(FBPase)] deficiency
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mass spectrometer (HP 6890 series GC system and 5973
Mass Selective Detector, Agilent Technologies). Separa-
tion was achieved on an AT-amine column (30 m×
0.25 mm, df 0.25 µm; Alltech Associates Inc, Deerfield,
IL, USA). Hexamethylene tetra-amine ions were moni-
tored at m/z 140 and 141. Deuterium enrichment in plasma
was determined by a method adapted from Previs et al.
(Previs et al. 1996).

Calculations and statistical analysis

Rate of glucose appearance The rate of glucose appearance
in plasma (Ra glucose), reflecting whole-body endogenous
glucose production (EGP) during fasting, was calculated
with Steele’s non-steady-state equation (Steele 1959). The
fraction of the total extracellular glucose pool was assumed
to be equal to the extracellular water compartment, which
was between 20% and 25% of body weight in the patients
studied (Friis-Hansen 1961). Calculated rates of EGP were
compared to rates of EGP after overnight fasting in healthy
individuals of the same age, as reported previously (Bier et
al. 1977).

Absolute gluconeogenesis and glycogenolysis Absolute
GNG was calculated by multiplying Ra glucose by the
fractional GNG. Fractional GNG was calculated as follows
(Landau et al. 1996): 100% · (deuterium enrichment in
glucose at position C5/deuterium enrichment in plasma
water). Absolute GGL was calculated by subtracting
absolute GNG from Ra glucose.

Results

Plasma glucose, FFA, and glucoregulatory hormones

Plasma glucose In patient 1, after exogenous glucose
supplementation was stopped, plasma glucose decreased
from 6.3 mmol/L to 1.1 mmol/L within 2.5 h (Fig. 2). In
patient 2, plasma glucose decreased from 3.7 mmol/L to
2.5 mmol/L at 12–14.5 h of fasting (Fig. 3).

Plasma FFA Plasma FFA concentration was 1.64 mmol/L
in patient 1 and 2.16 mmol/L in patient 2 at the end of the
test. This may have been inaccurate in patient 1, as the
hypertriglyceridemia could have interfered with the enzy-
matic assay.

Glucoregulatory hormones At the end of the test in both
patients, plasma insulin levels were undetectable. Plasma
glucagon was 190 ng/L in both patients, and plasma

cortisol was 666 nmol/L in patient 1 and 792 nmol/L in
patient 2.

Glucose kinetics

Patient 1 (GSD-1a) After 2 h of fasting, EGP was
5.09 μmol/kg per min, normal after an overnight fast
13.23 μmol/kg per min (Bier et al. 1977). The test was
terminated at 2.6 h of fasting (EGP was 3.84 μmol/kg
per min). GGL decreased from 4.39 to 3.09 μmol/kg per
min between 2 and 2.6 h of fasting, representing 86.2–
80.5% of EGP, respectively. GNG was low but detectable:
0.60 and 0.78 μmol/kg per min (13.7–19.6% of EGP) at
2–2.6 h of fasting (Fig. 2).

Patient 2 (FBPase deficiency) After 12 h of fasting, EGP
was 13.27 μmol/kg per min, corresponding with the
predicted EGP after an overnight fast for this age
(13.77 μmol/kg per min) (Bier et al. 1977). EGP decreased
to 8.53 μmol/kg per min during the subsequent 2.5 h
(14.5 h of fasting). At 12 h of fasting, GGL was
10.44 μmol/kg per min (78.7% of EGP), decreasing to
6.88 μmol/kg per min (80.7% of EGP) during the
subsequent 2.5 h of fasting. GNG was 2.83 μmol/kg per
min (21.3% of EGP) at 12 h of fasting, decreasing to
1.65 μmol/kg per min (19.3% of EGP) during the
subsequent 2.5 h (Fig. 3).

Discussion

We report for the first time the contribution of both GGL
and GNG to EGP during fasting in a patient with Glc-6-
Pase-α deficiency (GSD-1a) and a patient with FBPase
deficiency. Our data on glucose kinetics show a persistent
EGP from both GGL and GNG in both patients, despite
their undetectable enzyme activities. On the basis of these
results, a potential role of muscle in glucose homeostasis
via both GGL and GNG in vivo is suggested. In patient 1,
Glc-6-Pase-α activity was completely deficient, which was
confirmed by mutation analysis (Table 1) (Rake et al.
2000). This excludes any contribution from liver, kidney, or
small intestine to EGP. However, EGP in this patient was
still 30% of the predicted EGP in healthy individuals of the
same age after an overnight fast (Bier et al. 1977). This is in
line with previous studies showing residual EGP, even up to
60% of normal, in patients with GSD-1 (Kalhan et al. 1982;
Schwenk et al. 1986; Tsalikian et al. 1984; Weghuber et al.
2007).

Three different explanations for the presence of EGP in
GSD-1 have been proposed. First, it has been suggested that
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EGP is based on increased cycling through hepatic glycogen
via action of amylo-1,6-glucosidase. However, this was ruled
out by in vivo kinetic stable isotope studies (Rother et al.
1995). Second, EGP might be due to lysosomal digestion of
hepatic glycogen through α-1,4-glucosidase activity. How-
ever, this is very unlikely (Kalderon et al. 1989a; Tsalikian et
al. 1984), as α-1,4-glucosidase is not susceptible to substrate
or hormonal regulation, and EGP in patients with GSD-1 is
influenced by exogenous glucose supplementation (Schwenk
et al. 1986; Tsalikian et al. 1984). Third, EGP in GSD-1 may
be derived through muscular GGL and/or GNG. This
hypothesis was made plausible by recent characterization of
muscular Glc-6-Pase-β (Shieh et al. 2003, 2004). Although
Glc-6-Pase-β has an approximately eightfold lower glucose-
6-phosphatase activity than Glc-6-Pase-α (Shieh et al. 2003),
the ubiquitous expression of Glc-6-Pase-β could still result
in a significant cumulative glucose-6-phosphatase activity.

The observed wide range in residual EGP between GSD-1a
patients of the same age and with completely abolished
enzyme activity, which is reflected by the interindividual
differences in fasting tolerance in patients with GSD-1
(Kalderon et al. 1989b; Labrune et al. 1993; Moses 2002),
may then be explained by differences in muscle mass and/or
muscular glycogen content.

In the patient with GSD-1a studied by us, GGL
contributed more than 80% to the observed EGP. In
addition, GNG still contributed up to 19% to EGP in this
patient (Fig. 2b). This contrasts with data from Kalderon et
al., who excluded GNG as a source for EGP in GSD-1
based on a lack of carbon recycling from [U-13C]glucose
(Kalderon et al. 1989a, b). Their method, however, only
provides an indirect and nonquantitative assessment of
GNG, whereas GNG determined with the deuterated water
method, as used in our study, is a direct method to quantify
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GNG, yielding accurate results (Wolfe et al. 2005).
Possibly, in experiments by Kalderon et al., the 13C label
from [U-13C]glucose was diluted beyond detection in the
triose phosphate and oxaloacetate carbon pools (Kelleher
1986). The observed GNG may also be of muscular origin.
Apart from Glc-6-Pase-β, a specific isoform of FBPase,
another key enzyme in GNG, is functionally expressed in
muscle (Tejwani 1983; Tillmann et al. 1998). Based on the
formerly presumed lack of glucose-6-phosphatase activity
in muscle, this muscle-specific FBPase was previously
considered not to be involved in GNG (Adams et al. 1990;
Dzugaj 2006). Alternatively, the observed residual EGP in
the patient with GSD-1a might also be explained by renal
GGL and/or renal and intestinal GNG, as Glc-6-Pase-β is
also expressed in kidney and small intestine (Martin et al.
2002). However, expression of Glc-6-Pase-β is much lower
in kidney and small intestine than in muscle (Martin et al.
2002) and has yet to been shown to be functionally active
in these tissues. Furthermore, muscle has by far the largest
body reservoir of glycogen (Shieh et al. 2004) and is
therefore the most likely candidate tissue for extrahepatic
and extrarenal glucose production.

A potential role for muscle in GNG is further supported
by results of our study in the patient with liver- and kidney-
specific FBPase (EC 3.1.3.11) isoform deficiency. Al-
though liver FBPase activity was not assayed and molecular
investigation on the FBPase gene was not performed
because, until now, only mixed results on disease-causing
mutations have been reported in FBPase deficiency
(Kikawa et al. 2002), the clinical presentation, in combina-
tion with repeated confirmation of absent FBPase activity
in leucocytes, is highly suggestive of complete absence of
liver- and kidney-specific FBPase isoform in patient 2. We
detected that GNG still contributed up to 20% to EGP in
this patient (Fig. 3). This might be explained by muscle-
specific FBPase isoform activity in combination with Glc-
6-Pase-β activity.

It should be mentioned that a transaldolase exchange
reaction may have contributed to deuterium labeling of
glucose at position C5 (Landau et al. 1966). This would lead
to an overestimation of gluconeogenesis as calculated from
the ratio of deuterium labeling at glucose position C5 over
deuterium labeling at glucose position C2. However, this
alternative pathway cannot explain the results in the patient
with GSD-1a, as functional hepatic glucose-6-phosphatase is
still needed to release deuterium-labeled glucose in plasma.
In addition, the contribution of this pathway to glucose C5
deuterium labeling in vivo remains to be determined, and
therefore, the deuterated water method is currently one of the
two best available methods to quantify gluconeogenesis and
glycogenolysis in vivo (Bock et al. 2008).

Although we report a significant endogenous glucose
production from gluconeogenesis and glycogenolysis in a

patient with GSD-1a and a patient with FBPase deficiency,
it should be noted that EGP in these patients was clearly not
sufficient to maintain normoglycemia. Therefore, EGP
originating from extrahepatic and extrarenal tissue can play
only a minor role in glucose homeostasis in patients with
defective hepatic and/or renal glucose production.

In conclusion, we provide in vivo evidence for both
GNG and GGL contributing to EGP in GSD-1a. This, in
combination with substantial residual GNG in FBPase
deficiency, demonstrates an important role of extrahepatic
and extrarenal tissue in glucose homeostasis. Our study
strongly suggests a role of muscle in glucose homeostasis
via both GGL and GNG.
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