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Abstract Mevalonate kinase deficiency (MKD) is an
autoinflammatory disorder caused by mutations in the
MVK gene resulting in decreased activity of the enzyme
mevalonate kinase (MK). Although MK is required for
biosynthesis of all isoprenoids, in MKD, in particular, the
timely synthesis of geranylgeranyl pyrophosphate appears
to be compromised. Because small guanosine triphospha-
tases (GTPases) depend on geranylgeranylation for their
proper signaling function, we studied the effect of MK
deficiency on geranylgeranylation and activation of the two
small GTPases, RhoA and Rac1. We demonstrate that both
geranylgeranylation and activation of the two GTPases are
more easily disturbed in MKD cells than in control cells
when the flux though the isoprenoid biosynthesis pathway
is suppressed by low concentrations of simvastatin. The
limited capacity of geranylgeranylation in MKD cells
readily leads to markedly increased levels of nonisopreny-
lated and activated GTPases, which will affect proper
signaling by these GTPases.

Abbreviations
MKD Mevalonate kinase deficiency
MK Mevalonate kinase

Hyper-IgD Hyperimmunoglobulinemia D and periodic
fever syndrome

GEF Guanine nucleotide exchange factor
GAP GTPase-activating protein
GDI GDP-dissociation inhibitor
GGTI Geranylgeranyltransferase inhibitor

Introduction

Protein isoprenylation is the posttranslational covalent
addition of the isoprenoids farnesyl pyrophosphate or
geranylgeranyl pyrophosphate to cysteine residues at the
carboxy terminus of proteins (Casey and Seabra 1996).
Isoprenylation is crucial for the proper function of small
guanosine triphosphatases (GTPases) (McTaggart 2006;
Takai et al 2001), because it enables their localization to
membranes where they can interact with downstream
signalling effectors. Small GTPases participate in the
regulation of a wide variety of cellular functions, including
cell cycle progression, morphology and migration, cyto-
skeletal function, vesicle trafficking, and gene transcription
(Casey and Seabra 1996; McTaggart 2006; Takai et al
2001). In addition to regulation by isoprenylation, small
GTPases act as molecular switches by cycling between an
active and an inactive guanosine diphosphate (GDP)-bound
state (Bustelo et al 2007). Activation of small GTPases is
controlled by so-called guanine nucleotide exchange factors
(GEFs) that catalyse the exchange of GDP for GTP,
whereas GTPase-activating proteins (GAPs) release the
interaction with downstream effectors by accelerating
hydrolysis of GTP by the small GTPases. Cytosolic Rho-
GDP-dissociation inhibitors (Rho-GDIs) normally prevent
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activation of small GTPases in the cytosol through binding
with their geranylgeranyl moieties (Bustelo et al 2007).

Among the different enzyme defects of isoprenoid
biosynthesis currently known, only the autoinflammatory
disorder mevalonate kinase deficiency (MKD; OMIM
#260920, #610377) affects the synthesis of all isoprenoids
(Waterham 2006). MKD is due to mutations in the MVK
gene, resulting in decreased activities of mevalonate kinase
(MK; EC 2.7.1.36), the first enzyme following the highly
regulated 3-hydroxy-3-methylgluaryl (HMG-CoA reduc-
tase) in the isoprenoid biosynthesis pathway (Houten et al
2003a; Waterham 2006). Dependent on the mutations,
patients may present with the milder hyperimmunoglobu-
linemia D and periodic fever (Hyper-IgD)-syndrome phe-
notype characterized primarily by recurrent episodes of
high fever associated with headache, skin rash, abdominal
pain, arthritis, nausea, and diarrhoea or with the more
severe mevalonic aciduria phenotype, where these episodes
are accompanied with developmental delay, dysmorphic
features, ataxia, cerebellar atrophy, and psychomotor
retardation (Houten et al 2003a).

Despite the markedly decreased MK enzyme activity in
fibroblasts from MKD patients, the de novo isoprenoid
biosynthesis can be rather normal when these fibroblasts
are cultured under normal conditions (Gibson et al 1990;
Hoffmann et al 1997; Houten et al 2003b). Previous work
showed that this is due to an increased activity of HMG-
CoA reductase, which leads to elevated levels of mevalo-
nate and a virtually normal flux through the isoprenoid
biosynthesis pathway (Gibson et al 1990; Hoffmann et al
1997; Houten et al 2003b). However, this flux can easily be
disturbed, which also follows from the observation that
MKD fibroblasts are more sensitive to inhibition of HMG-
CoA reductase by simvastatin than are control fibroblasts
(Houten et al 2003b). Although the depressed MK enzyme
activity in MKD in principle affects the biosynthesis of all
isoprenoids, there are strong indications that, in particular, a
temporary shortage or dysfunction of one or more ger-
anylgeranylated proteins is associated with onset of fever
episodes (Frenkel et al 2002; Houten et al 2002; Houten et
al 2003b; Mandey et al 2006).

Because small GTPases depend on isoprenylation for
their proper signalling function, we studied the effect of
MK deficiency on isoprenylation (i.e., geranylgeranylation)
and activation of the two small GTPases, RhoA and Rac1.
RhoA and Rac1 are two major examples of the family of
RhoA GTPases that play a role in different cellular
processes (including inflammatory processes), are abun-
dantly expressed, and for which good antibodies and
sensitive activation assessment assays are available. For
these studies, we used cultured control and MKD fibro-
blasts in which the isoprenoid biosynthesis pathway can be
readily manipulated by varying the culturing conditions.

Materials and methods

Cell culture

Primary skin fibroblast cell lines obtained from an MK-
deficient patient with the classic mevalonic aciduria
presentation and homozygous for the c.803T>C (p.I268T)
mutation in the MVK gene, and a healthy control individual
with similar passage numbers, were cultured in nutrient
mixture of Ham’s F-10 with L-glutamine and 25 mM 4-2-
hydroxyethyl-1-piperazineethanesulfonic acid (HEPES;
Invitrogen, Breda, The Netherlands) supplemented with
10% fetal calf serum (FCS; Invitrogen) and grown in a
temperature- and humidity-controlled incubator [95% air,
5% carbon dioxide (CO2)] at 37°C until confluence.
Subsequently, the medium was replaced with fresh culture
medium supplemented with either 20 μM geranylgeranyl-
transferase inhibitor (GGTI-298; Calbiochem, Merk Chem-
icals Ltd, Nottingham, UK) or different concentrations of
simvastatin (a gift from Merck, Sharpe, and Dohme BV,
Haarlem, The Netherlands), as indicated. Cells were then
cultured for 2 days at 37°C and either used directly for the
activated RhoA and Rac1 assessment assays (see below) or
harvested by trypsinization, washed once with phosphate-
buffered saline (PBS) and once with 0.9% sodium chloride
(NaCl), snap-frozen as pellets in liquid nitrogen, and stored
at –80°C to be used later for membrane and soluble fraction
separation (see below). Simvastatin was prepared as a 10-
mM stock solution, as described previously (Houten et al
2003b). GGTI was prepared as a 20-mM stock solution by
dissolving the drug in dimethylsulfoxide (DMSO) (Merck,
Darmstadt, Germany).

Membrane and soluble fraction separation

Membrane and soluble fraction separation was performed
essentially as described previously (Houten et al 2003b)
and used to determine levels of isoprenylated protein (i.e.,
membrane-bound) and nonisoprenylated protein (i.e., solu-
ble fraction). Protein concentration in the sonicated lysates
was determined using the Bradford assay (Biorad) and
adjusted with hypotonic buffer to a concentration of 1 mg/
ml. One milligram of total protein was used for ultracen-
trifugation. The membrane and soluble fractions were
analyzed by immunoblot analysis, as described below.
These experiments were performed in triplicate.

Activated RhoA and Rac1 assessment assays

Activated RhoA and Rac1 assessment assays were per-
formed as described previously (Sander et al 1998). Briefly,
cultured fibroblasts were washed three times with ice-cold
PBS and subsequently lysed by scraping in the culture flask
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using lysis buffer [50 mM Tris pH 7.4, 100 mM NaCl, 10%
glycerol, 1% tergitol-type NP-40 (NP-40), 2 mM magne-
sium chloride (MgCl2), 0.1 mM phenylmethylsulfonyl
fluoride, 10 μg/ml leupeptin, 10 μg/ml aprotinin, 1 mM
benzamidine, 1 mM dithiothreitol (DTT), 1 mM vanadate].
The lysed cell homogenates were then centrifuged (10 min,
12,000 x g) and the supernatants transferred to 1.5-ml
tubes. After determining protein concentration of the
supernatants with the Bradford assay, 500 μg total protein
in 500 ml was incubated for 60 min at 4°C with bacterially
produced glutathione S-transferase Ras-binding domain
(GST-RBD, Rhotekin) (Reid et al 1996) (for RhoA
pulldowns) or GST-p21-activated Ser/Thr kinase (PAK)
(Sander et al 1998) (for Rac1 pulldowns) bound to
glutathione-agarose beads (Sigma, St. Louis, MO, USA).
Subsequently, the beads were washed three times with lysis
buffer followed by centrifugation (10 s, 12,000 x g). Bound
proteins, i.e., active RhoA or Rac1, were eluted by boiling
in sodium dodecyl sulfate (SDS)-sample buffer and
analyzed by immunoblot analysis, as described below.
These experiments were performed in triplicate.

Combination of membrane and soluble fraction separation
and activated RhoA and Rac1 assessment assays

For combination assays, fibroblasts were incubated with 0,
0.2, or 0.02 μM simvastatin for 48 h at 37°C. Fibroblasts
were washed three times with ice-cold PBS and harvested
by scraping in lysis buffer without 1% NP-40. Protein
concentration in the sonicated lysates was determined
using the Bradford assay and adjusted with lysis buffer
lacking 1% NP-40 to a concentration of 1 mg/ml. Then,
900 μg of total protein was used for ultracentrifugation.
The supernatant was transferred to another tube, and NP-
40 was added (end concentration 1% NP-40). The pellet
was dissolved in lysis buffer with 1% NP-40 and
sonicated. The supernatant (soluble) and pellet (mem-
brane) fractions were then incubated with GST-RBD or
GST-PAK, as described above. These experiments were
performed in triplicate.

Immunoblot analysis

To allow comparisons between control and MKD cells,
protein fractions of the two cell lines from one experiment
were separated on the same 12% SDS-polyacrylic acid
(PAA) gel and subsequently transferred onto nitrocellulose
membranes by semidry blotting. To verify equal transfer of
proteins, each blot was reversibly stained with Ponceau S.
prior to incubation with antibodies. Membranes were then
incubated with RhoA monoclonal antibody (sc-418; Santa
Cruz Biotechnology, Santa Cruz, CA, USA) diluted
1:1,000, Rac1 monoclonal antibody (Upstate Biotechnolo-

gy, Lake Placid, NY, USA) diluted 1:10,000 or, to verify for
equal amounts of input protein, β-actin monoclonal
antibody (Sigma-Aldrich, St. Louis, MO, USA) diluted
1:10,000. Antigen–antibody complexes were visualized
with rabbit anti-mouse horseradish peroxidase conjugate
(DAKO, Glostrup, Denmark) using the enhanced chemilu-
minescence system (Amersham Biosciences, Little Chal-
font, UK). Densitometric analysis of the immunoblots
(same exposure for both cell lines) was performed using
Advanced Image Data Analyzer (AIDA) software (Raytest,
Strauenhardt, Germany).

Statistical analysis

Statistical analysis was performed using one-way analysis
of variance (ANOVA) followed by Dunnett’s post hoc test
or paired Student’s t test. P values less than 0.05 were
considered significant.

Results

Effect of simvastatin on RhoA and Rac1 localization
and activation

Previously, we showed that under standard culturing
conditions, fibroblasts from MKD patients have similar
levels of geranylgeranylated RhoA in their membranes, as
observed in control cells, despite MK deficiency. Inhibition
of HMG-CoA reductase, however, resulted in a stronger
decrease of membrane-bound (i.e., geranylgeranylated)
RhoA in MKD cells than in control cells (Houten et al
2003b). Using the same approach, i.e., reducing the flux
through the pathway by incubating control and MKD cells
with simvastatin, an inhibitor of HMG-CoA reductase, we
now studied the effect on localization and activation of
RhoA and Rac1. When control and MKD cells were
cultured in the absence of simvastatin followed by
separation into membrane and soluble fractions, we
observed somewhat higher levels of membrane-bound
RhoA in MKD cells than in control cells (Fig. 1b,
immunoblots), whereas membrane-bound Rac1 levels were
slightly lower in MKD cells than in control cells (Fig.1g,
immunoblots). Incubation with simvastatin decreased the
levels of membrane-bound RhoA in both control and MKD
cells (Fig. 1b). However, MKD cells were more sensitive to
treatment with simvastatin, already resulting in decreased
levels of membrane-bound RhoA after incubation with
0.02 μM simvastatin. The levels of RhoA protein in soluble
fractions increased in both control and MKD cells
(Fig. 1c). Although the relative increase of soluble RhoA
was higher in control cells after simvastatin treatment,
levels of soluble RhoA were higher in MKD cells, which
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Fig. 1 Effect of simvastatin on the localization and activation of
RhoA (a–e) and Rac1 (f–j). Control and mevalonate kinase deficient
(MKD) cells were incubated with 0 (white bar; set as 100%), 0.02
(grey bar), or 0.2 μM (black bar) simvastatin for 2 days. Equal
amounts of cell lysate (a, f) were analyzed for relative levels of RhoA
(b) and Rac1 (g) associated with the membranes and relative soluble
levels of RhoA (c) and Rac1 (h). In separate experiments, equal

amounts of cell lysate (d, i) were analyzed for relative levels of active
RhoA (e) and Rac1 (j). Bars show the mean and standard error of the
mean (SEM) of three independent experiments. Immunoblots show
the results of one representative experiment. Statistic analysis of
observed effects of treatments was performed with one-way analysis
of variance followed by Dunnett’s post hoc test. * = P < 0.05, ** =
P < 0.01
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can be explained by the fact that untreated MKD cells
already have higher levels of soluble RhoA.

Levels of membrane-bound Rac1 also decreased upon
incubation with increasing simvastatin concentrations,
paralleled with increasing levels of soluble Rac1 (Fig. 1g,
h). However, with respect to Rac1 localization, MKD cells
do not appear to be more sensitive toward inhibition with
simvastatin than do control cells. Overall, the effects of
simvastatin treatment were more pronounced for RhoA than
for Rac1. Incubation with simvastatin led to an increase in
the total levels of active, GTP-bound RhoA and Rac1 in
both control and MKD cells. The relative increase in active
RhoA was larger than the relative increase in active Rac1
(Fig. 1e, j).

The effect of GGTI on RhoA and Rac1 localization
and activation

Earlier studies indicated that the effect of simvastatin on the
localization of RhoA is due to a shortage of geranylgeranyl
diphosphate (GGPP) and can be prevented by the addition of
geranylgeraniol (GGOH) (Houten et al 2003b). To confirm
that the observed effect of simvastatin on RhoA and Rac1
activation was due to a shortage of GGPP, we studied the
effect of GGTI, an inhibitor of geranylgeranyl transferase, on
localization and activation of RhoA and Rac1 and found that
GGTI had a similar effect as simvastatin. Incubation with
GGTI led to a reduction in membrane-bound RhoA and
Rac1 that was similar for both control and MKD cells
(Fig. 2b, g) and, in parallel, an increase in the levels of
soluble RhoA and Rac1 (Fig. 2c and 2h).

As observed with simvastatin, inhibition by GGTI also
led to activation of total RhoA in both control and MKD
cells (Fig. 2e). After treatment with GGTI, Rac1 was also
activated in MKD cells; however, no Rac1 activation was
detected in control cells (Fig. 2j). Thus, the effect of
specific inhibition of geranylgeranylation by GGTI was
more pronounced for RhoA than Rac1, which is compara-
ble with results obtained after simvastatin treatment.

Effect of simvastatin on activation of soluble
and membrane-bound RhoA and Rac1

To determine whether the observed increase of active GTP-
bound RhoA and Rac1 during the different culturing
conditions was due to activation of soluble or membrane-
bound RhoA and Rac1, we studied separately the effect of
simvastatin. When MKD and control cells were cultured in
the absence of simvastatin, levels of active RhoA protein in
the soluble fraction were markedly higher in MKD cells,
whereas levels of active membrane-bound RhoA were
similar in both control and MKD cells (Fig. 3b, c).
Incubation with simvastatin led to an increase of active

soluble RhoA and a decrease of active membrane-bound
RhoA in a concentration-dependent manner in both control
and MKD cells. Again, MKD cells were more sensitive to
treatment with simvastatin, with markedly increased levels
of active soluble RhoA and decreased levels of active
membrane-bound RhoA already observed after incubation
with low concentrations of simvastatin.

In contrast to active RhoA, levels of active Rac1 protein
in soluble and membrane fractions were similar in control
and MKD cells in the absence of simvastatin (Fig. 3e, f). In
the presence of simvastatin, there was a decrease in active
membrane-bound Rac1 and an increase in active soluble
Rac1, with MKD cells being more sensitive to lower
concentrations of simvastatin than were control cells.

Discussion

Although the MK enzyme activity can barely be detected in
MKD cells, we previously showed that protein isoprenyla-
tion is usually rather normal when these cells are cultured
under normal conditions (Houten et al 2003b). This is due
to increased activity of HMG-CoA reductase, which leads
to elevated levels of mevalonate and a virtually normal flux
through the isoprenoid biosynthesis pathway (Gibson et al
1990; Hoffmann et al 1997; Houten et al 2003b). Because
MKD fibroblasts depend on elevated levels of mevalonate
to maintain the flux through the pathway, they are more
sensitive to simvastatin, an inhibitor of HMG-CoA reduc-
tase, which is the enzyme producing mevalonate (Houten et
al 2003b). Indeed, in MKD fibroblasts, a low concentration
of simvastatin already inhibits the pathway, resulting in a
substantial reduction of membrane-bound RhoA. Although
the relative decrease of membrane-bound Rac1 is similar
for control and MKD cells, we also observed less
membrane-bound Rac1 in MKD cells after incubation with
simvastatin. However, the effect of inhibiting the isoprenoid
biosynthesis pathway on isoprenylation of Rac1 is less
pronounced than for RhoA, which may be due to different
turnover rates of these two proteins. Because small
GTPases require the isoprenyl moiety to translocate to the
membrane to allow binding to their effectors, inhibition of
the isoprenoid biosynthesis pathway is expected to disturb
proper functioning of such small GTPases. Indeed, we
believe our observations for RhoA and Rac1 will also
pertain to other proteins that rely on geranylgeranylation,
including other members of the small GTPase family.

The observed effect of simvastatin on protein isopreny-
lation of RhoA and Rac1 is due to a shortage of
geranylgeranyl pyrophosphate, and it was previously shown
that this shortage can be replenished by the addition of
mevalonate or GGOH (Houten et al 2003b). Our experi-
ments with GGTI confirm that increased activation of
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RhoA and Rac1 by simvastatin is also the result of a
shortage of geranylgeranyl moieties. The increase in total
cellular levels of active RhoA and Rac1 due to simvastatin
appears primarily, if not solely, caused by activation of

soluble RhoA and Rac1 and not membrane-bound RhoA
and Rac1. A possible explanation for this could be the
difference in the ability of isoprenylated and nonisopreny-
lated proteins to interact with regulatory proteins. Because
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Fig. 2 Effect of geranylgeranyl-
transferase inhibitor (GGTI) on
the localization and activation of
RhoA (a–e) and Rac1 (f–j).
Control and mevalonate kinase
deficient (MKD) cells were in-
cubated with 0 μM (white bar;
set as 100%) or 20 μM (black
bar) GGTI for 2 days. Equal
amounts of cell lysate (a, f) were
analyzed for relative levels of
RhoA (b) and Rac1 (g) associ-
ated with membranes and rela-
tive soluble levels of RhoA (c)
and Rac1 (h). In separate
experiments, equal amounts of
cell lysate (d, i) were analyzed
for relative levels of active
RhoA (e) and Rac1 (j). Bars
show the mean and standard
error of the mean (SEM) of
three independent experiments.
Immunoblots show the results of
one representative experiment.
Statistic analysis of observed
effects of treatments was per-
formed with paired Student’s t
test; * = P < 0.05, ** = P < 0.01
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the isoprenyl moiety plays a critical role in interaction with
Rho-GDI (Bustelo et al 2007), nonisoprenylated GTPases
will no longer be inhibited by Rho-GDI and, consequently,
intrinsic nucleotide exchange, i.e., GDP release and GTP
binding, may occur. Moreover, it has been shown that
nonisoprenylated Rac1 and RhoA have no or a much
weaker interaction with GEFs (Ando et al 1992; Medley et
al 2000) and GAPs (Molnar et al 2001) than the
isoprenylated forms, implying that activation and inactiva-
tion of nonisoprenylated GTPases is compromised. Because
intracellular GTP levels are higher than GDP levels,
binding to GTP will be preferred over GDP (Carlucci et
al 1997). Therefore, nonisoprenylated GTPases are likely to
accumulate in the GTP-bound, active form.

Previously, we showed in vitro that treatment of MKD
cells with simvastatin may lead to an increase of residual
MK activity, whereas at the same time, the consequence of
inhibiting HMG-CoA reductase appears to be negative for
flux through the isoprenoid biosynthesis pathway
(Schneiders et al 2006).These findings indicated that one
needs to be cautious when treating MKD patients with
simvastatin, because the balance between inhibiting HMG-
CoA reductase and inducing MK activity may be critical,

especially in MKD patients in whom the pathway flux is
very sensitive to external influences. This was also
suggested by the negative outcome of treating two patients
with severe MKD—i.e. classic mevalonic aciduria—with
lovastatin, a drug that is similar to simvastatin (Hoffmann
1993). This treatment provoked severe clinical crises in
those patients. In contrast, treatment of six patients with a
milder MKD—i.e. hyper-IgD syndrome—with simvastatin
(Simon et al 2004) did not provoke clinical crises. Although
no statistical difference was observed with respect to the
severity, frequency, and occurrence of febrile attacks, a
decrease in the total number of febrile days was observed.
These findings are consistent with this study and our
previous observations that, in vitro, cells from patients with
mevalonic aciduria appear more sensitive to simvastatin
compared with cells from patients with hyper-IgD syn-
drome or those from control individuals (Houten et al
2003b).

In summary, we showed that protein isoprenylation in
MKD cells is more sensitive to inhibition by simvastatin
than in control cells, resulting in an increased, ectopic
activation of soluble RhoA and Rac1 in MKD cells. We
hypothesize that such incorrect (ectopic) subcellular local-
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Fig. 3 Effect of simvastatin on
activation of membrane-bound
and soluble RhoA (a–c) and
Rac1 (d–f). Control and meval-
onate kinase deficient (MKD)
cells were incubated with 0
(white bar), 0.02 (grey bar), or
0.2 μM (black bar) simvastatin
for 2 days. Equal amounts of
cell lysate (a, d) were analyzed
for relative levels of active
RhoA (b) and active Rac1 (e)
associated with the membranes
(white bar set as 100%) and
relative soluble levels of active
RhoA (c) and active Rac1 (f)
(black bar set as 100%). Bars
show the mean and standard
error of the mean (SEM) of
three independent experiments.
Immunoblots show the results of
one representative experiment.
nd not detected. Statistical anal-
ysis of observed treatments
effects was performed with one-
way analysis of variance fol-
lowed by Dunnett’s post hoc
test; * = P < 0.05, ** = P < 0.01
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ization of activated small GTPases leads to inappropriate
intracellular signaling, which may contribute to the inflam-
matory phenotype observed in MKD. This may be due to a
failure to induce certain signaling pathways or incorrect
induction of other signaling pathways involved in the up- or
downregulation of inflammation, or both. In future studies,
the effect of the disturbed, ectopic activation of these and
other GTPases on their downstream targets will be studied,
which may provide important insights into the pathophys-
iology underlying the inflammatory episodes observed in
MKD patients.
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