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Argumentation with (bounded) rational agents

Robert van Rooij∗ & Kris de Jaegher†,‡

Abstract

A major reason for our communication is to influence our conversational
partners. This is so both if our preferences are aligned, and when they are not.
In the latter case, our communicative acts are meant to manipulate our part-
ners. We all know that attempts to manipulate are nothing out of the ordinary.
Unfortunately, the standard theory of rational communicative behavior predicts
that any such attempt will be seen through, and is thus useless. The main aim of
the paper is to investigate which assumptions of the standard theory we have to
give up to account for our communicative behavior, when preferences between
partners are not alligned.

1 Introduction: Communicate to influence others

Why do we talk? What is the purpose of our use of language? It is obvious that
language is used for more than one purpose. Sometimes we use language with an
expressive purpose: guess what our roommate just did when his computer crashed
again. Sometimes language is being used to strengthen relationships between people:
our colleagues gossip a lot during lunch. We have to admit, however, that we normally
use language just to influence the behavior of others. And to be honest, we think you
are exactly like us. Indeed, although language is a multi-purpose instrument, the
purpose to influence other’s behavior seems to be basic.

Now, why do we want to influence others behavior, and how are we going to analyze
this? Well, let us again speak for ourselves: we want to influence your behavior by our
use of language because we believe that your changing behavior would be profitable
for us. So, we consider one communicative act better than another, when we expect
the former to have a more profitable effect than the latter. This suggest that language
use is very much like other kinds of economic behavior, and that it can be studied
profitably by means of decision and game theory.

According to decision theory, an agent should choose that action which has the
highest expected utility. Consider now the following decision problem with an agent
wondering which of {a1, a2} she should perform.

a1 a2

t1 -2 0
t2 3 0
t3 -2 0

On the assumption that the three states are equally likely, it is clear that the
agent will choose action a2 because that has, on average, a higher utility than action
a1, 0 versus − 1

3 . If an agent receives new information, and the agent believes it,
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this will turn the old decision problem into a new one. Suppose, for instance, that
the agent receives the information that the actual state is in {t1, t2}. As a reaction,
the agent will adapt her probability function such that the posterior function gives
a probability 0 to state t3. Maximizing expected utility with respect to this new
probability function now results in action a1, because that has now, on average, the
highest utility: 1

2 versus 0. But now suppose that the actual state is actually t1.
Although on the basis of this new information it was rational for the agent to choose
for a1, it still was actually the wrong decision.

Until now we assumed that our agent simply received truthful information. We
haven’t considered how she received it. Suppose that she received it from another
agent. This other agent might also care about which action our agent is going to
perform. For instance, he might prefer our agent to perform a1 instead of a2, inde-
pendent of which state actually holds. In such a case, the combined utility table of
the answerer (first entry) and our agent can be pictured as follows:

Table 1:

a1 a2

t1 1,-2 0,0
t2 1,3 0,0
t3 1,-2 0,0

For a situation that can be modeled by the above multi-agent decision table, it
makes a lot of sense for the informer to provide our agent with information {t1, t2} in
case the actual state is t1: if the agent just accepts what she is informed of, she will
perform action a1, which is exactly what the informer hoped for. Thus, if our agent
takes the new information at face value, she can be manipulated by the informer and
will act in accordance with his, but not her own, preferences.

But now suppose that our agent knows the preferences of the informer as well,
and that this, in fact, is common knowledge. If she is also rational, our agent will
see through the attempt of manipulation of the informer and will not take the new
information at face value. If the informer is rational as well, she will see trough this
in turn, and will realize that it doesn’t make sense to provide information {t1, t2},
because the acting agent won’t take this information to be credible. A new question
comes up: how much can an agent credibly communicate in a situation like that
above? This type of question is studied by economists making use of signaling games.

2 Signaling games and non-aligned preferences

In his classic work on conventions, Lewis (1969) proposed to study communication by
means of so-called signaling games. In this section we will only consider cheap talk
games: games where the messages are not directly payoff relevant. A signaling game
with payoff irrelevant messages is a sequential game of incomplete information with
two players involved, player 1, the sender, and player 2, the receiver. Both players
are in a particular state, an element of some set T . Player 1 can observe the true
state, but player 2 can not. The latter has, however, beliefs about what the true state
is, and it is common knowledge between the players that this belief is represented by
probability function P over T . Then, player 1 observes the true state t and chooses
a message m from some set M . After player 2 observes m (but not t), he chooses
some action a from a set A, which ends the game. The utilities of both players are
given by U1(t, a) and U2(t, a). The (pure) strategies of the player 1 and player 2 are
elements of [T → M ] and [M → A], respectively. In simple communication games,
we call these functions sending and receiving strategies, i.e., σ and ρ.
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What strategy combinations are equilibria of the game depends on the probability
distribution. With distribution P , the strategy pair 〈S,R〉 is an equilibrium if, as
usual, neither player can do any better in terms of expected utility by unilateral
deviation. As a small example, consider the signaling game with only two states t1, t2,
two messagesm1,m2 and two actions a1, a2, where τ(ti) = ai for i ∈ {1, 2}. Obviously,
both players have four (pure) strategies each. Furthermore, let x = P (t1) > P (t2) =
y. Then, we have the payoff matrix in table 2.

Table 2:

t1 t2 m1 m2 ρ1 ρ2 ρ3 ρ4

σ1 m1 m1 ρ1 a1 a1 σ1 x, x x, x y, y y, y
σ2 m1 m2 ρ2 a1 a2 σ2 x, x 1, 1 0, 0 y, y
σ3 m2 m1 ρ3 a2 a1 σ3 x, x 0, 0 1, 1 y, y
σ4 m2 m2 ρ4 a2 a2 σ4 x, x y, y x, x y, y

It is easy to see that the signaling game described above has four Nash equilibria:
〈σ1, ρ1〉, 〈σ2, ρ2〉, 〈σ3, ρ3〉 and 〈σ4, ρ1〉. But what we are interested in here are the
cases where communication takes place, meaning that in different states different
messages are sent. It is easy to see that this is the case only in the equilibria 〈σ2, ρ2〉
and 〈σ3, ρ3〉. In cheap talk games, the messages are not directly payoff relevant: the
utility functions do not mention the messages being used. Thus, the only effect that
a message can have in these games is through its information content: by changing
the receiver’s belief about the situation the sender (and receiver) is in. If a message
can change the receiver’s beliefs about the actual situation, it might also change the
receiver’s optimal action, and thus indirectly affect both players’ payoffs.

In an important article, Crawford & Sobel (1982) show that cheap talk can have
real strategic impact in that it might change the receiver’s optimal action, but also
that the amount of possible communication in cheap talk games depends on how far
the preferences of the participants are aligned. They show that when the preferences
are more aligned, more communication can occur through costless signaling. To put
it more negatively, they show that in Lewisean cheap talk games communication is
possible only if the preferences of speaker and hearer are aligned. In a zero-sum two-
person game, for instance, it is predicted that communication with cheap messages
is impossible: whatever is said by the sender will be ignored by the receiver. One
might think of this result as a motivation of Grice’s cooperative principle, which
assumes that the participants are cooperative – thus have aligned preferences – in a
conversation.

To establish the fact proved by Crawford & Sobel, no mention was made of any
externally given meaning associated with the messages. What happens if we assume
that these messages do have an externally given meaning, taken to be sets of situa-
tions? Thus, what happens when we adopt an externally given interpretation function
‘[[·]]’ that assigns to every m ∈ M a subset of T? The interesting question is now
not whether the game has equilibria in which we can associate meanings with the
messages, but rather whether there exist equilibria where the messages are sent in a
credible way. That is, are there equilibria where a speaker sends a message with mean-
ing {ti} if and only if she is in state ti? As it turns out, the old question concerning
informative equilibria in signaling games without pre-existing meaning and the new
one concerning credible equilibria in signaling games with messages that have a pre-
existing meaning are closely related. Farrell (1988, 1993), Rabin (1990), Mathews et
al. (1991) and Stalnaker (2006) show that costless messages with a pre-existing mean-
ing can be used to credibly transmit information only if it is known by the receiver
that it is in the sender’s interest to speak the truth. Communication is predicted to
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be possible only if the preferences are alligned. But this immediately gives rise to
a problem. It seems that agents – human or animal – also send messages to each
other, even if the preferences are less harmonically aligned. Why would they do that?
In particular, how could it be that natural language is used for communication even
in these unfavorable circumstances?

Reputation effects of lying in repeated games have been proposed (e.g. Axelrod
& Hamilton, 1981) to explain reliable communication. But experiments show that
communication takes place even in one-shot games. To account for these cases, it is
standardly assumed both in economics (starting with Spence, 1973) and in biology
(Zahavi, 1975; Grafen, 1990; Hurd, 1995) that reliable communication is possible, if
we assume that signals can be too costly to fake. The utility function of the sender
takes no longer only the benefit of the receiver’s action for a particular type of sender
into account, but also the cost of sending the message. But assuming that messages
of natural languages can be costly seems counterintuitive.1 Until now we have not
assumed that speakers are required to speak truly. Perhaps by adding this constraint
we can explain communication in more general settings. This issue is discussed in
persuasion games, to which we will turn now.

2.1 Persuasion games

Persuasion games are very similar to signaling games, but where the messages do have
pre-existing meaning, and it is assumed that signallers can only send true messages.

In general we can think of a persuasion game as a game between an interested
party (the sender) and a decision maker (the receiver). Let T be a finite set of states
of the world and P a full support probability on T . The decision maker is interested
in predicting the value of a payoff relevant state or ti ∈ T by choosing a state tj ∈ T
as close as possible to the actual state ti. The interested party’s utility function uS is
strictly increasing in T . Thus, for all ti ∈ T , us(ti, tj) > us(ti, tk) just in case j > k.
This, of course, is common knowledge, which means that the Decision Maker knows
the ordinal preferences of the Interested Party. As usual, the Decision Maker doesn’t
know the actual state, but the interested party tries to persuade the Decision Maker
that the true state is high by revealing some information. A sender strategy σ is a
function from states to messages, such that for any t ∈ T : t ∈ [[σ(t)]]. Thus, the set
of available messages for each type, Ω(t), is a subset of {m ∈ M : t ∈ [[m]]}. What is
important is that when the actual state is t, the sender has available a report m that
rules out lower quality types. In symbols: ∀t ∈ T : ∃m ∈ Ω(t) : ∀t′ < t : m 6∈ Ω(t′).
This assumption would be satisfied, for example, if the sender could always prove the
precise quality of its products or if it can prove a tight lower bound on the quality of
its product. A decision maker’s utility function consistent with the above assumptions
can be given by ur(ti, tj) = −(j − i)2. This gives rise to the following type of payoff-
table, where the rows represent the actual states, while the columns represent the
choice of the decision maker:

Table 3:

Utility:

us, ur t1 t2 t3 t4
t1 1, 0 2,-1 3,-4 4,-9
t2 1,-1 2, 0 3,-1 4,-4
t3 1,-4 2,-1 3, 0 4,-1
t4 1,-9 2,-4 3,-1 4, 0

We will assume that a receiver strategy is a function from messages to a prob-
1Though see de Jaegher (2003) for more discussion.
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abilistic function over T , such that ∀m ∈ M :
∑
t ρ(m)(t) = 1. The identity of

ρ(m) will depend on what the Decision Maker believes, represented by probability
function µ. This function µ specifies what the receiver, or Decision Maker, believes
when the sender makes a report. Let us call a pair 〈ρ, µ〉 a ‘posture’ for the Deci-
sion Maker. Every posture requires that the Decision Maker form beliefs consistent
with his information and maximize accordingly. A naively credulous posture is one
in which the Decision Maker takes the Sender’s report at face value and simply puts
µ(t|m) = P (t)

P ([[m]]) for t ∈ [[m]]. A sceptical posture 〈ρ, µ〉 is one such that, for every
report m, µ(tj |m) = 1 for the minimal t as far as the sender is concerned, i.e., t ∈ [[m]]
and ∀t′ ∈ [[m]] : us(·, t′) ≥ us(·, ti). A skeptical posture minimizes (over all postures)
the state he is going to guess. In terms of seller and buyer, a skeptical posture min-
imizes the quantity the buyer will purchase. Equilibria of this game are defined in
terms of triples like 〈σ, ρ, µ〉, where σ is a sender strategy and and 〈ρ, µ〉 is a receiver
posture. The triple 〈σ, ρ, µ〉 is a sequential equilibrium if (i) σ is the sender’s best
response to ρ for whatever type he is; (ii) for all m, ρ(m) is the best guess of the
receiver given his beliefs; and (iii) µ(t|m) = P (t)

P (σ−1(m)) for t ∈ σ−1(m) and is zero
otherwise.

Milgrom and Roberts demonstrate that in such persuasion games it is best for the
Decision Maker to“assume the worst” about what the seller reports and that they
have omitted information that would be useful. Their optimal equilibrium strategy
will always be the sceptical posture. What is more, sellers will know that this is
the Decision Maker’s optimal strategy. Given this, sellers could as well reveal all
they know.2 In terms of our topic, this means that sellers/informed speakers might
try to manipulate the beliefs of the Decision Maker by being less precise than they
could be, this won’t help because the Decision Maker will see through this attempt
of manipulation. So, again, the conclusion is that standard economic theory predicts
that manipulation by communication is impossible, a result that is very much in
conflict with what we perceive daily.3

Glazer & Rubinstein have recently studied a somewhat different type of persua-
sion games. For them, a persuasion problem is a quadruple 〈{S,H}, S,A, p, σ〉, with
speaker S, hearer H, hearer’s goal A, and where p is H’s probability function over S.
The idea is that S wants H to do a, but H only wants to do it if the actual state s0, is
in A, so ∈ A ⊆ S. As in other persuasion games, also Glazer and Rubinstein assume
that S can only use true messages. A crucial role in their games is the Persuasion
function f . It is a function from messages to a number in [0,1], where this number
measures the probability that H is persuaded to do a. Assuming that both players are
rational, S wants to choose m that maximizes f , while H wants to minimize the error
probability: µw0(f) = 1−maxm∈σ(s0)f(s), if s0 ∈ A, and maxm∈σ(s0)f(s) otherwise.

For illustration, look at the following coin toss example. This is a game about the
result of 5 coin tosses. It is easy to see that this gives rise to 32 possible outcomes. S
knows the actual outcome, but H does not. It is common knowledge that S wants H
to perform a whatever the outcome is, but H wants to do a only if she is persuaded
that the coin landed heads at least 3 times. Unfortunately, S can only inform H about
the outcomes of 2 coin tosses. What is the optimal way for S and H to proceed? Well

2The argument used to prove the result is normally called the unraveling argument. See Jager et
al. (to appear) for a slightly different version.

3As noted by Shin (1994), the unraveling argument is extremely sensitive to any uncertainty
concerning what the informed parties actually know. To give a very simple example, suppose that
T = {t1, t2}, but that the Decision Maker is not sure whether the sender knows the true state. Then,
if the sender announces that the true state is either t1 or t2, the Decision Maker cannot appeal to
the unraveling argument to conclude that t1 is the true state. There is now a positive probability
that the seller is genuinely uninformed, and is in fact telling the whole truth. Still, one can prove a
generalization of the result of Milgrom & Roberts that there always exists a sequential equilibrium
〈σ, ρ, µ〉 of the persuasion game in which the disclosure strategy σ is perfectly revealing in the sense
that the sender will say exactly what he knows.
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suppose that H’s rule is to do a iff S demonstrates that the coin came up heads 2
times. In that case there are 10 of the 32 possible outcomes where H will make the
wrong choice: do a although the coin came up heads only 2 times. Thus, the error
probability is 10

32 . But H can do better: he can perform a only if S demonstrates
that the coin came up heads at 2 consecutive tosses. In this case, the error possibility
is only 5

32 . Glazer and Rubinstein prove that this is also the optimal strategy for
H to choose. From our point of view we are interested in something else: can this
persuasion game perhaps explain how we try and can manipulate others? But the
straightforward answer is again ‘no’. The unique best strategy used by the hearer
will always be a sceptical one: always assume the worst. For instance, if the speaker
would have said that the coin came up heads on the 1st toss and the 3rd, the hearer
will conclude that the coin didn’t come up heads in the 2nd trial. Manipulation can’t
succeed.

3 Giving up some standard assumptions

We communicate more than standard game theory predicts. This strongly suggests
that standard game theory is based on some unrealistic assumptions. In this section
we will discuss three of such assumptions, and indicate what might result if we give
these up. First we will discuss the assumption that what game is being played is
common knowledge. Second, we will see the implications of giving up the unrealis-
tic hypothesis that everybody is completely rational, and this is common knowledge.
Finally, we will discuss the assumption that our assessment of probabilities and our
decisions is independent of the the way the alternatives and decision problems are
stated. Giving up either of these assumptions will make more room for communica-
tion, and will thus be more realistic.

3.1 No common knowledge of the game being played

In standard game theory it is assumed that players model the game in the same way:
it is common knowledge what game is played. But this seems like a highly ideal-
ized assumption. Is it not the case that players might model the game differently, or
at least view others as modeling it as differently? In recent work, Feinberg (2008)
demonstrates that if this possibility is taken into account, a new rationale for com-
munication shows up. Instead of giving his theory, we will just motivate his approach
by discussing one of his examples. Consider the following strategic game between row
player Alice and column player Bob.

Table 4:

game 1. Actual Game:

b1 b2 b3
a1 0,2 3,3 0,2
a2 2,2 2,1 2,1
a3 1,0 4,0 0,1

This game has obviously exactly one Nash equilibrium: 〈a2, b1〉. Standard game
theory predicts that this equilibrium will be played, if it is assumed that it is common
knowledge between the players that the above is indeed the game that is being played.
Suppose, however, that Alice believes that Bob thinks that the only actions between
which Alice can choose are a1 and a2, i.e., Alice believes that Bob is unaware of action
a3 and thinks that the following game will be played:

In fact, however, Bob believes that it is the actual game in figure 1 that is being
played, although he recognizes that Alice is unaware that he is considering a3. Thus,
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Table 5:

game 2. A thinks that B thinks:
b1 b2 b3

a1 0,2 3,3 0,2
a2 2,2 2,1 2,1

Bob also thinks that Alice thinks that Bob is consider game 2 as the actual game. A
similar iteration holds for Alice one level up etc. Notice that although game 1 has
〈a2, b1〉 as its unique Nash equilibrium, game 2 has 〈a2, b2〉 as its unique equilibrium.
As a result, Alice thinks it is likely that Bob will play action b2. Alice’s actual best
response (i.e. in game 1) to b2, however, is not a2, but a3. But because of Bob’s
knowledge (he is aware that Alice thinks that Bob is unaware of action a3), he can
figure out that Alice would play a3, and his best response to this in game 1 — the
actual game and the game that he thinks he is playing — is action b3. Thus, this
reasoning of Alice and Bob would result in play 〈a3, b3〉, which is strictly worse for
both agents than the Nash equilibria-play in either game.

Suppose that before the agents make their choice, agents are allowed to send a
message. We have seen that in standard game theory pre-play communication can
normally be ignored (the messages are not credible) if the preferences of the agents are
not well aligned. On the other hand, if it were common knowledge that the game was
game 1, for example, pre-play communication would be ignored as well, because that
game has only one Nash equilibrium. We will see that in our case, however, pre-play
communication makes perfect sense. Bob can send a message (‘I know you can also
play a3’) which makes clear to Alice that he is aware of action a3. It is immediately
clear that this message is credible: there is no reason for Alice to think she is being
manipulated. As a result, it becomes common knowledge that it is actually game 1
that is being played, and that Alice should thus choose a1 instead of a3. Together
with Bob’s best response, we end up with the Nash equilibrium 〈a2, b1〉 which gives
rise to a higher utility for Alice and for Bob. Thus, it was indeed rational for Bob to
communicate as he did. Feinberg (2008) discusses more cases like this

Thus, we can explain more cases of rational communication than we could before
if we don’t make the ideal, but unrealistic assumption that it is always common
knowledge which game is being played.

3.2 No common knowledge of rationality

A Nash equilibrium is the solution concept in game theory, but it is not always easy
to reach it. In quite a number of games, however, a simple procedure will do: (it-
erated) elimination of strategies that violate the canons of rationality, i.e. that are
strongly dominated. In case we end up with exactly one (rationalizable) strategy for
each player, this strategy combination must be a Nash equilibrium. This procedure
crucially depends, however, on a very strong epistemic assumption: common knowl-
edge of rationality; not only must every agent be ideally rational, everybody must also
know of each other that they are rational, and they must know that they know it, and
so on ad infinitum. It is harder to justify Nash equilibria in general, but also such
a justification leans heavily on this strong assumption. Unfortunately, there exists a
large body of evidence that the assumption of common knowledge of rationality is
highly unrealistic.

The p-Beauty Contest Game (Moulin, 1986) is based on a similar game by Keynes
(1936), and was introduced to highlight how unrealistic this assumption is. In this
game, each of n > 2 players chooses a whole number between 0 and 100. Let us
say that k is the average of these n numbers. The winners of the game are those
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players who choose their numbers closest to 2k/3, and they share the prize equally.
Obviously, you shouldn’t choose any number greater than 2

3 × 100 ≈ 67, because
such a strategy has payoff 0, whereas the mixed strategy playing 0 to 67 with equal
probability has a strictly positive payoff. Thus, any of the former strategies is strongly
dominated by the latter mixed strategy and should thus be eliminated after one round
of eliminating strongly dominated strategies. A second round of eliminating strongly
dominated strategies, however, eliminates choices above 2

3

2 × 100 ≈ 44 in a similar
way. Continuing in this manner, we see that the only strategy that is not eliminated
in any round is the strategy to choose is 0. Experimental evidence, however, shows
that this would be a very poor choice. Working with various groups of size 14 to 16,
Nagel (1995) found that the average number chosen was 35, which is between two
and three rounds of iterated elimination of strongly dominated strategies. Thus, in
this game we cannot assume common knowledge of rationality: agents ‘think ahead’
only a very limited number of rounds.

In the previous sections we have seen that deception and manipulation could not
be explained within standard game theory. One reason for this is that it assumes
common knowledge of rationality. If it is common knowledge that everybody is ratio-
nal: any attempt of deception will be anticipated and the anticipation thereof will be
anticipated as well and so on ad infinitum. But we have seen above that it is not in
accordance with experimental evidence to assume common knowledge of rationality.
Is it possible to explain deception and manipulation if we give up this assumption?

Indeed, it can be argued that wherever we do see attempted deceit in real life
we are sure to find at least a belief of the deceiver (whether justified or not) that
the agent to be deceived has some sort of limited reasoning power that makes the
deception at least conceivably successful. Some agents are more sophisticated than
others, and think further ahead. To model this, one can distinguish different strategic
types of players. A strategic type captures the level of strategic sophistication of
a player and corresponds to the number of steps that the agent will compute in a
sequence of iterated best responses. One can start with an unstrategic level-0 players.
An unstrategic level-0 hearer (a credulous hearer), for example, takes the semantic
content of the message he receives literally, and doesn’t think about why a speaker
used this message. Obviously, such a level-0 receiver can sometimes be manipulated
by a level-1 sender. But such a sender can in turn be ‘seen through’ by a level-2
receiver, etcetera. In general, a level-k+ 1 player is one who plays a best response to
the behavior of a level-k player. (A best response is a rationally best reaction to a given
belief about the behavior of all other players.) A fully sophisticated agent is a level-inf
player. In a very interesting article, Crawford (2003) shows that in case sender and/or
receiver believe that there is a possibility that the other player is less sophisticated
than he is himself, deception is possible. Moreover, even sophisticated players can
be deceived if they are not sure that the opponent is fully rational or not. Crawford
assumed that messages have a specific semantic content, but did not presuppose that
speakers can only say something that is true. It is possible, however, to use the same
kind of idea to show that manipulation is possible in such circumstances as well in
persuasion games as discussed in section 2.1 of this paper.

We can conclude that (i) it is unnatural to assume common knowledge of ratio-
nality, and (ii) by giving up this assumption, we can explain much better why people
communicate than standard game theory can: sometimes we communicate to manip-
ulate others on the assumption that the others don’t ‘see it through’, i.e., that we are
smarter than them (whether this is justified or not).

3.3 Framing and reference-point based preferences

Although our standard of living increased a lot the last decades, psychological research
on happiness finds that subjective measures of well-being are relatively stable over
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time. This suggests that one’s well-being crucially depends on the value of one’s own
properties compared to that of others. In more abstract terms: utility is reference-
based, which is in contrast with the additive utility function underlying standard game
theory. The most natural reference-point to compare one’s welfare is the current status
quo position. Now, psychologists have discovered that people value payoffs according
to whether they are gains or losses compared to their current status quo position.
Subjective well-being is associated not so much with the level of income, but more
with changes of income. Moreover, agents are much more averse to loose X euros than
that they are attracted to winning X euros. These phenomena can be illustrated by
the following famous Asian disease experiment due to Tversky & Kahneman (1981).

In the two versions of this experiment, which takes the form of a questionnaire,
a separate but similar population was confronted with the following hypothetical
scenario: ‘Imagine that the U.S. is preparing for the outbreak of an unusual Asian
disease, which is expected to kill 600 people. Two alternative programs to combat
the disease have been proposed.’

In version 1 of the experiment, subjects were offered the choice between Programs
A and B, which are described as follows:‘If Program A is adopted, 200 people will be
saved. If Program B is adopted, there is 1

3 probability that 600 people will be saved
and 2

3 probability that no people will be saved.’
In version 2 of the experiment, subjects were offered the choice between Programs

C and D: If Program C is adopted, 400 people will die. If Program D is adopted,
there is 1

3 probability that nobody will die and 2
3 probability that 600 people will die.

When the choice is between A and B, 72% of the subjects choose A; when the
choice is between C and D, 78% choose D. This is in spite of the fact that, from the
perspective of expected utility maximization, the two examples are perfectly equiv-
alent. Apparently, the experimenter, by framing the example in a different manner,
can influence the reference point of the subject, and can cause a preference reversal.

Let the US population have size X before the outbreak, and let us assume that the
decision maker is a expected utility maximizer with an increasing, strictly concave
Bernouilli utility function u(·) over the post-outbreak US population. Then it is
easy to see that the decision maker should not make any difference between versions
1 and 2. The expected utility of programs A and C is equally u(X − 400). The
expected utility of programs B and D is 1

3 × u(X) + 2
3 × u(X − 600). Note that the

numbers are chosen such that if for any Y we have u(Y ) = U , then u(X − 400) =
1
3 × u(X) + 2

3u(X − 600). It follows that as soon as u(·) is strictly concave, then
u(X−400) > 1

3×u(X)+ 2
3×u(X600), so that programs A and C should be preferred.

But this is contradicted by the results of Kahneman and Tversky’s experiment.
In order to account for such choices counter to expected utility theory (in this

and other experiments), Kahneman and Tversky construct Prospect Theory. The
elements of this theory are that decision makers think in terms of gains and losses
with respect to an exogenously given reference point. Decision makers are risk averse
with respect to gains, and risk loving with respect to losses (reflection effect). They
are loss averse, in that e.g. they are hurt more by a 100 loss than they enjoy a 100
gain. Finally, they overweigh small probabilities.

We only need the reference point and the reflection effect to account for the choices
in the Asian disease problem. Let r be the reference point of the decision maker, in this
case, a reference post-outbreak US population. Consider a strictly concave valuation
function v(·), which is defined both over gains and losses, and with v(0) = 0. In the
loss region, for a post-outbreak population of Y , the consumers utility then takes the
form v(Y − r) if Y ≥ r (gains region), and takes the form −v(Y − r) if Y < r (loss
region). The consumers utility is then indeed strictly convex in the loss region, and
strictly concave in the gains region. For the rest, all is the same as in expected utility
theory.

Assume now that in Version 1 of the experiment, the reference point is that nobody
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is saved, so that any person saved is seen as a gain. It follows that r = X − 600, and
that we are everywhere in the gains region. In this case, the decision maker prefers
program A if and only if:

v(X − 400− (X − 600)) > 1
3v(X − (X − 600)) + 2

3v((X − 600)− (X − 600)) iff
v(200) > 1

3 × v(600) if and only if
3× v(200) > v(600).
It is clear that this is valid as soon as we have a strictly concave v(·), so that the

decision makers utility is strictly concave in the gain region.
Assume that in Version 2 of the experiment, the reference population is that

nobody dies, so that any person who dies is seen as a loss. It follows that r = X, and
that we are everywhere in the loss region. The decision maker now prefers program
C if and only if
−V (X − (X − 400)) < − 1

3V (X −X)− 2
3V (X − (X − 600)) if and only if

V (400) > 1
3V (600) if and only if

V (600) < 1.5V (400).
Again, this is valid as soon as we have a strictly concave v(·), so that the decision

makers utility is strictly convex in the loss region.
But why would the reference points be different in Version 1 and Version 2? It

seems that a reference point is induced merely by expressing the population as a gain
(‘are saved’) or as a loss (‘die’) with respect to a reference population. In version 1,
by expressing all populations as a gain with respect to a reference population where
600 people are killed, the decision maker is induced to be risk averse. In version 2,
by expressing all populations as a loss with respect to a reference population

Ducrot (1973) and Anscombre & Ducrot (1983) have argued that we have to look
at language use from a argumentative perspective to be able to explain the appropri-
ate use of certain adversarial connectives. Merin (1999) sought to provide a formal
analysis of their insights, but failed (cf. van Rooij, 2004). We believe that a more
appropriate formalization is possible making use of Prospect Theory. The idea is
that the argumentative function of an adversary connective used by a manipulative
persuader is to suggest a reference point with respect to which the main body of
information given should be compared. Consider the following modified statements
for the two versions. In Version 1*, the first sentence is now stated as a lack of a gain.
Further, the adversarial connective ‘still’ induces a contrast with this situation of no
gain. By their nature, such adversarial connectives would seem to invite the listener
to make comparisons, and so to think in terms of gains and losses. For the rest, all the
populations are stated as gains. In Version 2*, the first sentence is clearly stated as
a loss. The adversarial connective ‘however’ contrasts this with situations where the
losses are smaller. All further populations are expressed as losses. Further, the order
in which programs C and D are expressed is reversed in comparison to the original
experiment. The order in which the alternatives are expressed may also induce a
reference point.

Thus, an empirical question here lies in the extent to which adversarial connectives
and expressions suggesting gains and/or losses, and the order in which alternatives
are presented, are successful in creating reference points with listeners.

Version 1∗: Imagine that the U.S. is preparing for the outbreak of an unusual
Asian disease. If no program is adopted, there will be no rescue for 600 people. Still,
if Program A is adopted, 200 people will be saved, and if Program B is adopted, there
is 1

3 probability that all 600 people will be saved, and 2/3 probability that none of
them is saved.

Version 2∗: Imagine that the U.S. is preparing for the outbreak of an unusual
Asian disease. If we fail to interfere, 600 people will lose their lives. However, if
Program B is adopted, there is 1/3 probability that none of these people will die, and
a 2

3 probability that all 600 of them will continue to die. If Program A is adopted,
400 of these people will die.
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It should be noted that applications of prospect theory are not confined to uncer-
tainty. Another example (due to Anscombre & Ducrot,1983), which does not involve
uncertainty, and where both the order of the statements and adversarial connectives
seem to play a role, is the following. Consider a restaurant critic who objectively
observes a restaurant to be both more expensive than other good restaurants, and
better than other expensive restaurants.

Version 1∗∗ The restaurant is expensive, but good.
Version 2∗∗ The restaurant is good, but expensive.
Each time, the earliest statement may induce the reference point. Version 1∗∗

could induce a reference point with the decision maker of considering restaurants as
expensive. Yet, among expensive restaurants, the restaurant is one of the good ones.
Version 2∗∗ could induce as a reference point that restaurants serve good food. Yet,
among restaurants serving good food, the restaurant at hand is expensive. If the
decision maker reads the critics review of the restaurant, and considers eating home
as a choice with a utility of zero, then in Version 1∗∗ the decision maker would decide
to go to the restaurant (as she perceives positive utility in going to the restaurant),
and in Version 2∗∗ she would prefer to stay at home (as she perceives a negative utility
in going to the restaurant).

4 Conclusion

So, why do we talk so much? Perhaps because our preferences are much aligned
and participants of a conversation all profit from a larger distribution of knowledge.
This would be the ideal picture, but we doubt it is the true reason behind (all) our
talking. We also talk if our preferences are not aligned. No, we talk so much, we
argue, because, among others, (i) we think we know better in which situation we are
than others (3.1); (ii) we think we are smarter than others (3.2), or (iii) we think
we can influence the probabilities and utilities of others by the way we frame their
decision problems. In short, we talk and argue so much because we believe others are
bounded rational agents.
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