
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Prediction-based auto-scaling of scientific workflows

Cushing, R.; Koulouzis, S.; Belloum, A.S.Z.; Bubak, M.
DOI
10.1145/2089002.2089003
Publication date
2011
Document Version
Final published version
Published in
Proceedings of the 9th International Workshop on Middleware for Grids, Clouds and e-
Science: MGC 2011, co-located with ACM/IFIP/USENIX 12th International Middleware
Conference, December 12-16, 2011, Lisbon, Portugal

Link to publication

Citation for published version (APA):
Cushing, R., Koulouzis, S., Belloum, A. S. Z., & Bubak, M. (2011). Prediction-based auto-
scaling of scientific workflows. In B. Schulze, O. Rana, & E. Madeira (Eds.), Proceedings of
the 9th International Workshop on Middleware for Grids, Clouds and e-Science: MGC 2011,
co-located with ACM/IFIP/USENIX 12th International Middleware Conference, December 12-
16, 2011, Lisbon, Portugal (pp. 1). ACM. https://doi.org/10.1145/2089002.2089003

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:25 Jul 2022

https://doi.org/10.1145/2089002.2089003
https://dare.uva.nl/personal/pure/en/publications/predictionbased-autoscaling-of-scientific-workflows(2ec61774-bbcd-4ba6-849f-f2b48c6749cf).html
https://doi.org/10.1145/2089002.2089003

Prediction-based Auto-scaling of Scientific Workflows

Reginald Cushing
Informatics Institute

University of Amsterdam
R.S.Cushing@uva.nl

Spiros Koulouzis
Informatics Institute

University of Amsterdam
S.Koulouzis@uva.nl

Adam S. Z. Belloum
Informatics Institute

University of Amsterdam
A.S.Z.Belloum@uva.nl

Marian Bubak
Informatics Institute

University of Amsterdam
and AGH Krakow

M.T.Bubak@uva.nl

ABSTRACT
In this paper we propose a novel method for auto-scaling
data-centric workflow tasks. Scaling is achieved through a
prediction mechanism where the input data load on each
task within a workflow is used to compute the estimated
task execution time. Through load prediction, the frame-
work can take informed decisions on scaling multiple work-
flow tasks independently to improve overall throughput and
reduce workflow bottlenecks. This method was implemented
in the WS-VLAM workflow system and with an image analy-
ses workflow we show that this technique achieves faster data
processing rates and reduces overall workflow makespan.

Keywords
workflows, dataflow, auto-scaling, replication, messaging, mes-
sage pipeline

1. INTRODUCTION
Scientific Workflow Management Systems (SWMS) have

emerged as ubiquitous tools for eScience applications. Such
tools aid scientists to compose complex scientific experi-
ments that can be scheduled and executed on distributed
systems such as grids and cloud e-infrastructures. As eScience
is increasingly becoming data-centric, SWMS tools are nowa-
days faced with challenges as how to deal with massive
datasets such as data processing and data transport. This
shift towards data in eScience has given rise to the fourth
paradigm in scientific discoveries [8] where it is envisioned
that data analyses will play a central role in future discov-
eries. Tools such as SWMSs can play a vital role in ac-
celerating discoveries by providing means for coordination
of data-centric workflows where computation can automat-
ically scale to meet the data demands.

Auto-scaling deals with automatically replicating tasks
within a workflow as a means to speedup data process-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MGC’2011, December 12th, 2011, Lisbon, Portugal.
Copyright 2011 ACM 978-1-4503-1068-0/11/12 ...$10.00.

ing rates. Workflows are commonly described as Directed
Acyclic Graphs (DAG) where vertices represent computa-
tion tasks while edges represent dependencies between tasks.
In SWMSs such as WS-VLAM [9], tasks also include a list of
input and output data ports which, apart from the data de-
pendency, also describe data channels between tasks. Tasks
within a data-centric scientific workflow are often data de-
pendent on each other where each task can, potentially, be a
data intensive task. Managing multiple data-intensive tasks
in SWMS poses a coordination challenge since the progress
of the whole workflow is easily hampered by the slowest
task. Data-centric tasks follow a pattern of consuming data
chunks, processing the data and output results. This cycle
is repetitive and the amount of data chunks that need to be
processed directly influences the execution time of the task.
A prediction engine for each task can infer the load on a
task by monitoring the queued data chunks for a given task
and computing the estimated execution time using heuris-
tics from previous data processing times. Having a high load
on a task, a coordinator can decide to replicate the task
and partition the data chunks amongst them thus reducing
the apparent load since data is consumed at a higher rate.
Within scientific workflows, where each task is subjected to
this prediction engine, each task can independently scale to
accelerate its consumption rate and match its predecessor’s
data production rate thus maintaining a steady flow of data
through the workflow.

A common pattern in scientific applications for achieving
higher throughput by partitioning data amongst identical
tasks is using a master/slave model [11]. In such a model,
a master coordinator is responsible for disseminating data
chunks to all slaves. This approach does not usually con-
sider auto-scaling the amount of slaves and most often re-
lies on over-provisioning resources by, greedily, initiating as
many salves as possible. Such an approach is not well suited
for scientific workflows since each task can possibly hog all
the available resources by initiating many slaves and hence
starve the rest of the workflow which will impede its pro-
gression.

In this paper we describe a new method for independently
auto-scaling data-centric workflow tasks using a prediction-
based approach, its implementation is called Datafluo. Size
of queued data awaiting to be processed is used as an indica-
tor for the task load. The role of the SWMS is to reduce each
task load by replicating tasks so as to maintain workflow pro-
gression and reduce overall makespan. We also shows how

scientific logic can be abstracted from the underlying dis-
tributed architecture intricacies such as communication and
data transport through a method of task harnessing.

The paper is organized as follows: section 2 is an overview
of work related to our contribution. Section 3 describes
the model of computation for orchestrating workflows and
achieving auto-scaling. Section 4 describes the implemen-
tation of the Datafluo architecture. Section 5 evaluates the
architecture using a typical scientific workflow. Section 6
discusses future work and concludes.

2. RELATED WORK
Our work on auto-scaling is closely related to the master/

slave patterns which are commonly used within the scientific
community to scale up parameter study type applications.
MapReduce [6, 3] is a recent popular programming models
that follows the master/slave approach. In a typical mas-
ter/slave execution pattern, a master program acts as the
coordinator for a set of slaves by assigning work to them.
In this case MapReduce works in a push model whereby a
master coordinates the whole execution of its slaves by dis-
seminating work chunks to slave nodes. This entails that the
master needs to keep track of the work chunk distribution.
Optimizations of this model includes better scheduling of
data chunks to heterogeneous resources [15] where the size
of the data chunks assigned to a node is proportional to the
node performance.

Combining the MapReduce model within a scientific work-
flow engine has been done in Kepler [16] which represents
the mapping and reduce functions as separate tasks within
a workflow. In [16], Hadoop is integrated with Kepler hence
the work dissemination back-end still depends on a master
coordinator to manage a set of slaves. In [5] a MapReduce
high performance workflow system for GIS is proposed. This
system estimates the number of resources needed to perform
a particular distributed execution by simulation using user-
defined estimated task execution.

For handling better task manageability during runtime,
tasks are commonly submitted to grids using late binding
mechanisms. In late binding, pilot jobs such as Condor
Glideins [12] are submitted as place holders instead of the
actual job or user-overlay systems like GANGA/DIANE [11]
are applied. Once the place holder is executed on a node,
the actual job is pulled into the node for execution. This late
binding technique circumvents scheduling queueing waiting
time. Pilot job mechanisms lack thorough task management
such as abstracting the scientific logic from the underlying
communication and data transport complexities.

3. MODEL OF TASK AUTO-SCALING
Auto-scaling targets workflows that are represented as

DAGs with vertices representing tasks. Tasks, in turn, have
a list of its input and output ports. Edges in the DAG
represent data communication channels and thus, the data
dependency between tasks.

We model a workflow W as a set of interdependent dataflow
tasks {t1, t2, ..., tn} which are matched to the set of resources
R. Tasks are represented as tuples

< id, st, IP,OP, PT,DT, IC,OC >

where id is the task id, st is the allocated computing slot
time for a given task, IP is the set of input ports, OP is

the set of output ports, PT is the set of tasks that precede
task tid where PT ⊂ W , DT is the set of dependent tasks
that follow task tid where DT ⊂ W . IC is the set of input
data channels between output ports of tasks in set PT to
input ports for task tid. Similarly, OC is the set of output
data channels between output ports for task tid to input
ports of tasks in DT . Ports consume and produce a set
of messages {m1,m2, ...,mn}, messages are consumed and
produced sequentially. The dataflow model dictates that a
task tk will only be matched to a resource in R when, for
each input port IPtk , the first message m1 is delivered.

Auto-scaling is achieved by monitoring messages between
tasks, the auto-scaling module can deduce which tasks are
overloaded by predicting the completion time. Given a task
tk, replication can be applied by monitoring a designated
port iptk ∈ IPtk . The first step in auto-scaling is to keep
track of the data processing rate of tk on a node rj ∈ R.
Mip.tk is the set of messages for the designated port iptk .
Cip.tk ⊂ Mip.tk is the set of messages already consumed by
iptk where the current message being processed is also part
of this set. Qip.tk ⊂ Mip.tk is the set of messages yet to be
consumed by iptk . The function timeip.tk (mj) records the
time a message has been delivered to input port iptk . The
processing time of a message is defined as the interval time
recorded between successive messages thus mitip.tk (ml−1,ml) =
timeip.tk (ml) − timeip.tk (ml−1). size(mk) represents the
data size of mk thus the actual data size of the set M ,
size(M) =

∑n
j=1 size(mj). Since messages can have dif-

ferent data sizes, auto-scaling module needs to calculate the
data processing rate. This is done on every message being
consumed by a port and is defined as:

proc(iptk) =
size(Cip.tk)∑n

j=2 mitip.tk (mj−1,mj)
, n = |Cip.tk |. (1)

Equation 1 calculates the data processing rate in bytes
per second and this includes also the overhead of delivering
a message, the overhead to start processing the next mes-
sage, and depending on the implementation of the task, the
calculation, would typically include the time for producing
messages on output ports as a response to processing in-
put messages. Equation 2 calculates the expected time for
completion.

pred(iptk) = size(Qip.tk)× proc(iptk). (2)

The prediction is calculated on every consumed message
and is averaged out with the last calculated prediction to
smooth out large spikes in the prediction graph. Task tk
is said to be overloaded if for the designated port iptk ,
pred(iptk) > tstk alternatively, tstk could be substituted by
a user-defined threshold. A simple calculation of the needed
number of clones to reduce the completion time below tst is

repl(tk) =
pred(iptk)

tstk
. (3)

Equation 3 assumes that all messages have approximately
the same size which may not always be the case thus another
solution is to factor in the standard deviation from the mean
message size such that

corr(Qip.tk) = 1− mean(Qip.tk)− stdd(Qip.tk)

mean(Qip.tk)
. (4)

The final number of clone to be initiated can then be
calculated as ceil(repl(tk) × corr(Qip.tk)). The greater the
message size standard deviation the less clones are initiated.
Large standard deviation results in messages having drastic
variation in their data sizes and can lead to over-provisioning
resources through inaccurate clone number calculation.

Another source of variation in the number of clone calcu-
lation is the fact that the prediction is based on some re-
source with its own characteristics CPU power and memory
capacity. Since resources in distributed systems are intrin-
sically heterogeneous, the time to process messages on one
resources might not be the same as on other resources. This
may lead to over-provisioning when clone number estimation
is done on a relatively slow resource.

To cater for over-provisioning, clones are scheduled in
bursts. When a burst of clones is scheduled, auto-scaling
continues predicting the estimated completion time which
would now include the data processing of all instances of the
replicated task. If the task is still overloaded more bursts
are scheduled until the load is reduced within the acceptable
limit.

4. IMPLEMENTATION OF AUTO-SCALING

4.1 Architecture of the Datafluo System
Figure 1 depicts a high-level overview of the Datafluo

system architecture. The system is composed of a set of
loosely coupled modules bound by a central messaging back-
end. The Datafluo system implements a two-step scheduling
strategy. The Datafluo enactment engine represents the top-
level scheduler which models the workflow task data depen-
dencies. The enactment engine deals with tasks at an ab-
stract level and merely marks tasks as runnable when their
dependencies are met. The bottom-level scheduler deals
with scheduling tasks on a set of resources thus its main
role is matchmaking. The central module in the whole sys-
tem is the messaging back-end which binds all the modules
together.

Enactment
Engine

Task
Auto-Scaling

Message
Router

Pluggabe
Task

Task Harness

Resource
Submission
Scheduler

Pluggabe
Task

Task Harness

Pluggabe
TaskPluggabe

Task

Task Harness

Fault
Tollerance

monitor

Submitter

monitor

Submitter

monitor

Submitter

Data Store

Resources: Grid, Cloud

Message Queues

Figure 1: Loosely coupled Datafluo system modules
revolving around a core messaging module

The Datafluo enactment engine is the entry point into the
system. It accepts a WS-VLAM [10] DAG workflow gener-
ated by a workflow composer. At this stage the workflow
is interpreted and a dataflow object representation is gener-
ated.

When a task is made runnable (i.e. all input ports have
data) it is passed to the bottom-level scheduler for match-
ing to a resource. The architecture allows for different sched-
ulers to be implemented. Default schedulers are round-robin
which circularly matches tasks to resources and therefore
achieves load balancing between resources, bucket scheduler
which orders resources by the amount of slots available and
fills up the resources consecutively starting from the largest
resource thus achieving locality between tasks, cloud sched-
uler which takes into consideration a budget for running a
workflow and elastically expands the resource pool R by call-
ing an interface to cloud resources [14] for on-demand cluster
creation to accommodate more tasks.

4.2 Data Queueing
The message queues play a pivotal role in the whole ar-

chitecture. Most importantly message queues allows inter-
task communication over computing infrastructure domains
which, most often, have restricted Internet access. Interme-
diate messages allow tasks to exploit fine concurrency be-
tween dependent tasks. As with message streams, the gran-
ularity of concurrency depends on the task logic and how
often messages are produced and consumed. A one-to-one
mapping exists between the set of task input/output ports
(IP , OP) and message queues. The message queues provide
a persistent means of communication between tasks which in
turn decouples task execution in time and hence eliminates
the need to co-allocate resources. Co-allocations is known
to degrade the system due to increased task waiting times
[7, 13]. As depicted in Figure 1, the message queuing also
allows for modules such as the message router and the en-
actment engine to spoof on the messages being transmitted.
Based on the message routing, the enactment engine can in-
fer which tasks have data on their ports and thus can make
tasks runnable.

Figure 2: Queue setup strategy for achieving auto-
scaling. Parent non partition-able data queues have
associated shadow queues which enable clones to re-
trieve the whole input message set any time. Input
ports also have a reserve port which is used by the
fault tolerance subsystem to replay the last message
in case the task is re-submitted.

Figure 2 depicts the queuing strategies that supports cloning
tasks. Cloning is the procedure of replicating a task by the
scaling subsystem. The parent task is responsible for man-
aging its own clone farm which means that the Datafluo en-
actment engine has no knowledge of replication taking place.
This preserves the original workflow semantics. Port 1 of the
parent task is the designated port for which auto-scaling will

Figure 3: Harness setup for a task with 2 input ports
and 1 output port

perform prediction and replication. All instances of the same
task will share the designated port and thus the data is parti-
tioned amongst all clones. Ports 2 and 3 are not partitioned
amongst clones. This is due to the complexity and ambi-
guity of how to partition multiple ports amongst a set of
clones. The system guarantees that for any non-designated
input ports, all clones have the same input message set there-
fore in Figure 2 the input message sets Mip2 and Mip3 are
identical to the parent and clones. This is achieved through
shadow queues on the central message exchange. A shadow
queue acts as a buffer for the set of messages consumed by
the parent. Clone input ports are attached to the shadow
queues instead of the standard queues. All clones share the
same output ports with the parent. By default no ordering
is done on the message output queues hence messages are
delivered out of order. Ordering is an expensive routine and
can be achieved through the message sequence numbers.

4.3 Task Harnessing
The unit of submission is a task harness. The main goals

of the task harness are: it allows task late binding by dy-
namically plugging tasks and abstracts the underlying data
management and communication from the core scientific
logic. The task harness is responsible for retrieving mes-
sages from the queues, interpreting the protocol used in the
reference, loading the necessary communication libraries, re-
trieving the actual data from reliable storages, and pushing
the data up to the task. On data output, the harness locates
the closest data store from a list of stores, puts the data on
the server and queues a message indicating the reference to
the stored data.

The task harness architecture is based on plug-in model
whereby the task and communication are dynamically load-
able modules. The core of the harness is the data manage-
ment fabric which binds loadable communication libraries
to the task input/output ports through a system of queues.
As shown in figure 3, these internal queues decouple the
scientific logic from the underlying communication mecha-
nisms. On starting the harness, the configuration is loaded
which allows task late binding since it is only at this point
that a task is assigned to a harness. On loading a task tk,
the harness sets up internal data queues for each task port
in IPtk ∪ OPtk . Messages containing referenced data are
handled by the harness by dynamically loading the appro-
priate protocol library, such as GridFTP, for retrieving the
actual data. The communication library responds by push-
ing the data onto its internal queue (shown in the bottom

part of Figure 3). The harness will then route the data from
the communication queue to the relevant task input queue.
Data output by the task happens in reverse order. When
data is available on the tasks’ internal output queue, the
harness picks up the data, it then locates the closest data
server from a list of servers, loads the required communica-
tion libraries and pushes the data to communication queue.
The communication module picks up the data and sends it to
the data server. The harness will then construct a message
with the endpoint reference of the newly created data and
sends it to the central message queue which is then routed
to other tasks in the workflow.

Since communication in distributed environments can be
quite restrictive due to security policies, the Datafluo system
relies on a pull model whereby tasks initiate all communi-
cation. A pull model is the best guarantee that tasks can
establish communication. The task harnesses poll the server
for new messages. Polling implements an exponential back-
off when no new messages are retrieved. When no messages
are retrieved the polling interval is increased up until a fixed
threshold or until a new message is retrieved. This reduces
the load on the messaging back-end by not overwhelming
the server with too many unnecessary requests.

5. EVALUATION
Figure 4 shows an example application using Octave1 [2]

aimed at illustrating the task level scaling implemented in
the Datafluo system. The workflow has two starting points
one being the DirectoryReader which, as the name suggests,
reads images from a directory. The second starting task is
the Parameter task. This task acts as a parametric engine
which supplies parameters to the Histogram task. The Nor-
malize task normalises RGB images. The tasks Converter2
and Converter1 convert images into different colour spaces.
Histogram calculates the euclidean distance between the two
new colour space histograms. At the end of the workflow
the results are collected by Results while intermediate im-
ages are collected by ImageCollector. The core tasks of the
workflow i.e. Normalize, Converter2, Converter1, and His-
togram are embarrassingly parallel in nature. These tasks
have no casual dependency between messages on the same
port and therefore are ideal for a driving test case to test
our Datafluo scaling systems.

DirectoryReader Normalize

Converter1

Converter2

Parameters

Generate
Histogram

ImageCollector

ImageCollector

Results

Figure 4: An Octave image processing workflow.
The workflow converts images into two different
colour spaces and calculates the histogram difference
between the two new colour spaces. The parameter
setting for the Histogram is the histogram bin size.

1GNU Octave is a language intended for numerical compu-
tations which is very similar to Matlab.

00:00:00

00:05:00

00:10:00

00:15:00

00:20:00

00:25:00

00:30:00

00:35:00

00:40:00

00:45:00

00:50:00

00:55:00

01:00:00

 0 2 4 6 8 10

T
im

e
 h

h
:m

m
:s

s

Number of Tasks

DirectoryReader
Normalize

Parameters

Converter1
Converter2

ImageCollector

Histogram
Results

Figure 5: Workflow execution without scaling. The
length of the bar represents the total execution time.

As a resource pool back-end we had access to the Dis-
tributed ASCI SuperComputer 3 (DAS3) [1] which is a five
wide area distributed system. Tasks where submitted across
all clusters. Each site hosts a GridFTP server which where
used to transmit data between tasks and therefore allow
inter-cluster task communication. The timings illustrated
in Fig. 5, Fig. 6 shows the execution time of each task in
the workflow. The execution time incorporates the the sci-
entific logic execution time as well as overheads associated
with communication, startup and cleanup times. Since the
DAS3 is a shared computing infrastructure, care was taken
so that execution times where not influenced by other jobs
running on DAS3. The experiment was executed 15 times.
The execution profiles were deemed similar with minor de-
viations in the number of tasks replicated for Converter 1
and Converter 2. This is due to the dynamism of the re-
sources and the scheduling algorithm. The results depict
one of the executions which is an ideal representative of all
other samples.

Converter2 and Converter1 are set to auto-scaling. In
these cases the Datafluo system is responsible for gauging
the load on the designated data partition input queue and
decide on how many clones to submit using a user defined
threshold. The Parameter task acts as the parameter engine
by reading parameters from a file and sending messages con-
taining parameters to the Histogram. The latter is not set
to auto-scale but instead is scaled on a per parameter bases:
each parameter from Parameter creates a new instance of
Histogram. ImageCollector is set to a fixed replication where
the user specifies the number of clones.

At time 0 DirectoryReader and Parameters are submit-
ted as these have no dependencies. Other tasks are only
submitted when some data is available for input. This is
clearly shown by the difference in starting times for each
task in Figure 6. The computation overlap between tasks
shows the effect of message pipelining where tasks can start
processing data immediately as it is produced and need not
to wait for the dependant tasks to terminate before starting
execution.

Figure 5 shows the workflow execution with scaling dis-
abled. The results clearly show that Converter2 is relatively
slow to process the data and hence causes a flow bottleneck.

00:00

01:00

02:00

03:00

04:00

05:00

06:00

07:00

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44

T
im

e
 m

m
:s

s

Number of Tasks

DirectoryReader
Normalize

Parameters

Converter1
Converter2

ImageCollector

Histogram
Results

Figure 6: Workflow execution with scaling. Lines
preceding the bars represent waiting time while the
length of the bars represent actual execution time
of an instance of the workflow task. Bars with the
same line encoding are replicated instances of the
same task. Time 0 represents the start waiting time
for the first task.

This has a ripple effect on the dependant tasks (Histogram,
ImageCollector and Results) which spend most of their time
in an idling state waiting for new messages to be delivered
to their input ports. Since scaling is completely disabled,
the parameter sweep scenario does not take effect and hence
Histogram is not replicated. This results in The Histogram
task processing all parameters. The mean runtime for the
non-scaled workflow is around 54 minutes.

Figure 6 shows the same example with the same inputs
but this time enabling scaling features. The results imme-
diately show how the previous bottleneck was circumvented
through replication. The Converter2 was replicated as many
times as needed hence increasing the data consumption and
production. The Histogram is replicated 3 times which fol-
lows the parameter sweep scenario whilst we have four Im-
ageCollectors as defined by the user. All in all the 8 task
workflow unfolded into 44 separate tasks through scaling.
In this example the effect of just auto-scaling achieved a 9
fold improvement over the non scaled workflow. The single
task Converter2 achieves a much better improvement which
is approximately 16 times faster. The execution profile for
Converter2 tasks also shows the burst threshold in action
since tasks are replicated in bursts which gives rise to the
staircase profile. From Figure 6, Converter1 is also dynami-
cally scaled up but since it is faster it has a lower replication
count.

6. CONCLUSIONS AND FUTURE WORK
We have shown how prediction-based auto-scaling can be

applied to data-centric workflows as a way to accelerate data
processing rates within scientific workflows. The ability of
scaling tasks independently enables replication of tasks to
match the data production rate. This minimizes workflow
bottlenecks and reduces total makespan. Through task har-
nessing we showed how scientific logic can be separated from
underlying communication and data transport intricacies.

Although the system achieves auto-scaling, this is done

through the SWMS which can result in a bottleneck to the
system. An better approach is to shift most of the logic
into the task harness. This leads to autonomous workflow
orchestration where tasks can self scale and organise with
minimal coordinator intervention.

Auto-scaling is an attractive approach especially within
the context of scientific workflows where single tasks can
independently scale themselves. Applications that can im-
mediately benefit from this model belong to the class of
data-centric applications with easily partitionable data. The
example use-case demonstrated how improvements in execu-
tion time of a typical scientific workflow could be achieved
through the proposed auto-scaling model. The architecture
is not only limited to image analyses but can be equally
applicable to other scientific fields. Ongoing research is un-
der way to evaluate this system using a sequence alignment
workflow from bio-informatics.

The evaluation of the Datafluo system is aimed at demon-
strating the auto-scaling method as a way to speedup work-
flow execution. A further Datafluo system evaluation can
illustrate the overhead incurred by the various modules of
the system such as the Datafluo enactment engine, messag-
ing, and task harness.

The modular structure of the Datafluo system makes is
suitable for integrating with other workflow systems. Differ-
ent workflow languages can be parsed by plugging in new
parsers while legacy applications can be wrapped within
standard task harnesses.

As part of further research, the Datafluo system is being
extended to incorporate web services where the task harness
is an actual modified service container. The modified ser-
vice container will implement the harnessing logic and allow
services to auto-scale and deployed on distributed systems.
The pull model allows services to be invoked within network
access restricted clusters while enabling service back-to-back
communication through messaging.

7. ACKNOWLEDGMENTS
This research was partially funded by the COMMIT2 and

VPH-Share3 projects.

8. REFERENCES
[1] Das3. http://www.cs.vu.nl/das3.

[2] Gnu octave. http://www.gnu.org/software/octave.

[3] Hadoop. http://hadoop.apache.org.

[4] A. Belloum, M. Inda, D. Vasunin, V. Korkhov,
Z. Zhao, H. Rauwerda, T. Breit, M. Bubak, and
L. Hertzberger. Collaborative e-science experiments
and scientific workflows. Internet Computing, IEEE,
15(4):39 –47, july-aug. 2011.

[5] Q. Chen, L. Wang, and Z. Shang. MRGIS: A
MapReduce-Enabled High Performance Workflow
System for GIS. In eScience ’08: IEEE Fourth
International Conference on eScience, pages 646–651,
Dec. 2008.

[6] J. Dean and S. Ghemawat. MapReduce: simplified
data processing on large clusters. CACM,
51(1):107–113, 2008.

2www.commit-nl.nl
3www.vph-share.eu

[7] E. Elmroth, F. Hernández, and J. Tordsson. Three
fundamental dimensions of scientific workflow
interoperabilit:y model of computation, language, and
execution environment. Future Generation Computer
Systems, 26(2):245 – 256, 2010.

[8] T. Hey, S. Tansley, and K. Tolle, editors. The Fourth
Paradigm: Data-Intensive Scientific Discovery.
Microsoft Research, Redmond, Washington, 2009.

[9] V. Korkhov, D. Vasyunin, A. Wibisono,
V. Guevara-Masis, A. Belloum, C. de Laat,
P. Adriaans, and L. Hertzberger. WS-VLAM: Towards
a scalable workflow system on the grid. In WORKS
’07: Proceedings of the 2nd workshop on Workflows in
support of large-scale science, pages 63–68, New York,
NY, USA, 2007. ACM.

[10] V. Korkhov, A. Wibisono, D. Vasyunin, and A. B.
et al. VLAM-G: Interactive data driven workflow
engine for Grid-enabled resources. Scientific
Programming, 15(3):173–188, 2007.

[11] J. Moscicki, M. Lamanna, M. Bubak, and P. Sloot.
Processing moldable tasks on the grid: Late job
binding with lightweight user-level overlay. Future
Generation Computer Systems, 27(6):725 – 736, 2011.

[12] I. Sfiligoi et al. The Pilot Way to Grid Resources
Using glideinWMS. In Proceedings of the 2009 WRI
World Congress on Computer Science and
Information Engineering - Volume 02, pages 428–432,
Washington, DC, USA, 2009. IEEE Computer Society.

[13] W. Smith, I. Foster, and V. Taylor. Scheduling with
advanced reservations. IEEE Int. Par. and, 2000.

[14] R. Strijkers, W. Toorop, et al. Amos: Using the cloud
for on-demand execution of e-science applications. In
Proceeding of the eScience2010, pages 773–799, 2010.

[15] L. Thomas and B. Annappa. Utilization of
map-reduce for parallelization of resource scheduling
using MPI: PRS. In Proceedings of the 2011
International Conference on Communication,
Computing & Security, ICCCS ’11, pages 415–420,
New York, NY, USA, 2011. ACM.

[16] J. Wang, D. Crawl, and I. Altintas. Kepler + Hadoop:
a general architecture facilitating data-intensive
applications in scientific workflow systems. In
Proceedings of the 4th Workshop on Workflows in
Support of Large-Scale Science, WORKS ’09, pages
12:1–12:8, New York, NY, USA, 2009. ACM.

