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Chapter 5

Competing technologies: a discrete

choice model

5.1 Introduction

In this chapter we study the interaction of three factors affecting technological competi-

tion: decisions externalities, technological progress and environmental policy. Regarding

externalities, the case of technological competition is peculiar, because on top of generic

social interactions, there are other sources of feedback, called “network externalities”,

stemming from technological standards and infrastructure. Cases where social inter-

actions and network externalities are important include, for instance, information and

communication technologies, and power generation. Fig. 5.1 reports time series data for

computer servers operating systems. In this figure we see how Linux entered the market

in 1999 and managed to overcome Unix as the dominant operating system in about 5

years. Fig. 5.2 contains the time series of different sources of energy production in the

United States. In this case there are little changes from 1972 until 2008, and for instance

renewable energy is not able to gain momentum. In both these two examples of technol-

ogy competition network externalities give rise to barriers which are strong to be broken.



Figure 5.1: Computer servers: time series of operating systems shares (source: TOP500 Supercomputer).
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Figure 5.2: Energy production in US: time series of different sources (source: OECD/IEA).

This scenario translates into multiple equilibria, and once the economy is stuck in one

of those, with one technology dominating the market (technological lock-in), it is hard

for alternative technologies to gain market shares, let alone to overcome the dominant

technology. This happened in the case of computer servers operating systems, but not

for home computers operating systems, where Windows is still the unrivalled leader. In
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the case of energy production, a shift from the equilibrium represented by fossil fuels may

be even harder to happen, due to the importance of energy infrastructures. In order to

tackle these issues we propose a discrete choice model of interacting non-strategic decision

makers who can adopt different technological solutions. The theoretical framework of the

model is the discrete choice model with social interaction of Brock and Durlauf (2001).

A behavioural model of competing technologies that greatly influenced the literature

on technology diffusion is Arthur (1989). With a sequential decision model Arthur focuses

in particular on the role of increasing returns. His model can explain path-dependence of

technological trajectories and lock-in, where one technology conquers the whole market.

The technical version of this model (Arthur et al., 1987) is based on urn schemes, also

known as a Polya process. These processes are a powerful tool in explaining positive

feedback and path-dependence. A shortcoming of the model is that it employs a non-

autonomous difference equation, which makes analytical study very difficult. One of our

objectives is to reproduce Arthur’s results with the simpler mathematics of a discrete

choice model. Then we build upon this model by introducing technological progress and

environmental policy, first separately and then in combination. Chapter 3 of this thesis

proposes a different model of competing technologies with environmental policy. The main

differences in the model of the present chapter are first, that here agents’ decisions are

modelled with a ‘mean-field’ approach, while in the model of Chapter 3 they are sequential.

Second, fluctuations of technology shares here may result as endogenous chaotic dynamics

of a deterministic model, and not as the outcome of a stochastic process.

Two popular models of externalities in collective decision making are Banerjee (1992)

and Bikhchandani et al. (1992). These are sequential decision models which do not

consider increasing returns on adoption, and consequently do not address technologi-

cal choices, but financial markets and fashion dynamics, instead. Kirman (1993) proposes

a model of recruitment based on social ants behaviour, where he explains how casual in-

teractions may cause symmetry breaking in a symmetric system, with a large majority of
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agents choosing one out of two identical options, and how regime shifts may occur. Also

this model does not consider any forward looking behaviour and the externality does not

stem from increasing returns to adoption, but from recruitment, that is a sort of contagion

effect, instead. In our model the way to understand the effect of network externalities

and social interactions is the dynamics of technological shares. Our model is quite close

to the discrete choice model proposed by Brock and Durlauf (2010), who study the adop-

tion curve of one technology. The present chapter considers two technologies available for

adoption, focusing on technology competition and on the dynamics of technology shares.

Moreover we also extend the discrete choice mechanism to the case of an environmental

policy and to technological progress.

Technological competition is characterized by several sources of positive feedback from

decision externalities. Besides contagion effects, imitation and learning through social in-

teractions, technology choices are also affected by network externalities and technological

infrastructures. Because of this, positive feedback is common in technology adoption deci-

sions, leading to path-dependence and lock-in into a dominant technology Arthur (1989).

Here we propose a discrete choice model of technological competition which reproduces

the main results of Arthur (1989). The simpler structure of the discrete choice frame-

work has the advantage that it allows for a partly analytical study of the equilibrium

and stability of the system, and of the qualitative changes in dynamics due to changes in

parameters values (bifurcations).

The discrete choice framework further allows for several useful extensions of the model.

A first extension is the case of competition between technologies that have an effect on

the environment due to their generation of pollution. This in turn makes it possible to

study the impact of environmental policy. Here we consider a simple scenario with the

competition between a “clean” and a “dirty” technology, and a policy which attempts

to reduce the market share of the latter. Together with network externalities and social

interactions, the environmental policy affects the dynamics of the system and its equilibria.
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We show that a policy whose effort is aimed at directly altering technology market shares

may miss that goal, giving place to cyclical behaviour.

A second extension of the model is the cumulative effect of technological progress,

which adds an element of irreversibility to technology competition. This works in two

directions: technological competition driven by network externalities and social interac-

tions affects and is affected by technological progress (innovation). This specification of

the model offers a tool for studying innovation policy, as it deals with the trade-off be-

tween the advantages of technological variety and the advantages of the rate of progress

of a single technology: intuitively, technological variety counters the rate of development

of each technology by reducing the amount of resources allocated to each of them.

A final extension brings together technological progress and environmental policy. This

model is particularly relevant for power generation, where the competition of the different

energy resources is heavily affected by technological progress. Here we also consider two

types of environmental policy, one linked to technology shares, and one that tries to close

the profitability gap between “clean” and “dirty” technologies. The interplay of environ-

mental policy and decision externalities shapes the catching-up of “clean” technologies,

and consequently it affects the outcome of the environmental policy in its attempt to un-

lock the market from the “dirty” technology. In particular we observe that policy alone

hardly succeeds in this attempt, and a stronger effort directed to technological innovation

of the “clean” solution is needed.

The structure of the remainder of this chapter is as follows. Section 5.2 presents a basic

version of the model. Section 5.3 proposes an application to environmental economics with

the competition of “dirty” and “clean” technologies. Section 5.4 introduces technological

progress. Section 5.5 brings together environmental policy and technological progress.

Section 5.6 concludes.
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5.2 Social interactions and network externalities

In this section we present the basic version of the model, modelling the effect of social

interactions and network externalities in technology competition. Network externalities

are a source of self-reinforcement due to increasing returns to adoption: the utility from

one technology increases with the number of fellow adopters (Arthur, 1989), because of

technological standards and infrastructure (have you ever tried to use Linux in a depart-

ment where everybody uses Microsoft Windows? Or go around with your fuel cell car and

run out of hydrogen?). Social interactions instead convey all positive externalities that

occur as a contagion effect, “word of mouth” learning or recruitment (Kirman, 1993), or

as conformity effects and habit formation (Alessie and Kapteyn, 1991). The main dif-

ference is that network externalities stem from measurable contributions to utility with

the diffusion of one technology (a network of users), while social interactions imply social

contacts and do not cause any tangible benefit in terms of performance of the technology

adopted.

Social interactions and network externalities are important to a different extent in

different technology sectors. For instance, computer software packages present strong

network externalities, due to standards and compatibility barriers. On the other hand,

web browsers are perfectly compatible, and their competition is likely to be characterized

only by social interactions. There may also be cases where social interactions give place to

a negative feedback, as with conspicuous consumption aiming at social status. We discard

this possibility, and we model social interactions and network externalities together as a

unique source of self-reinforcement in technology decisions.

ConsiderM technologies competing in the market for adoption or for R&D investment

by N agents (N �M). The utility from choosing technology a in period t is

ua,t = λa + ρaxa,t, (5.1)
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where λa is the profitability of technology a, and xa,t is the fraction of agents that choose

technology a in period t. For the moment we assume λa to be constant, that is we

discard technological progress. In Section 5.4 we relax this assumption. The parameter

ρa > 0 expresses the intensity of positive externalities in agents’ decisions. The term

ρaxa,t describes the self-reinforcing effect of decision externalities.

We model agents’ choices about technology by the discrete choice framework of Brock

and Durlauf (2001). The general case with M choice options is addressed in Brock and

Durlauf (2002) and in Brock and Durlauf (2006). According to this model, each agent

experiences a random utility ũi,t = ui,t + εi,t, where the noise εi,t iid is across agents,

and it is known to an agent at the decision time t. What the agent does not know with

infinite precision is the decision of other agents, that is the social term ρaxa,t of Eq. (5.1).

In the limit of an infinite number of agents, when the noise εi,t has a double exponential

distribution, the probability of adoption of technology a converges to the Gibbs probability

of the multinomial logit model:

xa,t =
eβua,t−1∑M
j=1 e

βuj,t−1

. (5.2)

The parameter β is the intensity of choice and it is inversely related to the variance of

the noise εi,t (Hommes, 2006). In the limit β → 0 the different technologies tend to an

equal share 1/M . The limit β → ∞ represents the “neoclassical-economic” or “rational

agent”limit, where everybody chooses the optimal technology. The main difference of our

model with respect to Brock and Durlauf (2001) is in the timing of utility computation

entering Eq. (5.2): their model is based on rational expectations, so as to have the

utility of time t dictating the agents’ fraction xa,t. In our model instead agents’ decision

is based on past experience, either involving technological network externalities or social

interactions. Our focus is on technology competition dynamics, which calls for modelling

learning and decision dynamics as in Brock and Hommes (1997), instead of the decision

rule (5.2) being a condition for equilibrium consistency as in Brock and Durlauf (2001).
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Of all the possible learning heuristics we adopt the most simple one, naive expectations,

according to which agents decide today based on the last experienced utility. In the

Industrial Organization literature the model by Smallwood and Conlisk (1979) considers

a similar switching mechanism where consumers take into account the market share of

products, beside their quality. The main difference of our model is the strong accent on

dynamics of choices.

Consider the simplest scenario with two competing technologies, labelled a and b.

This model is one-dimensional: one state variable, the fraction of technology a, xa ≡ x,

is enough for knowing the state of the system at a given time (xb = 1 − x). Assume for

simplicity an equal increasing return on adoption ρa = ρb ≡ ρ for the two technologies.

The difference of utilities is central in this model:

ub,t − ua,t = λ + ρ(1− 2xt), (5.3)

where λ ≡ λb − λa is the difference in profitability between the two technologies. The

probability of adoption (and the market share) of technology a in period t is:

xt =
eβ(λa+ρxt−1)

eβ(λa+ρxt−1) + eβ[λb+ρ(1−xt−1)]
=

1

1 + eβ[λ+ρ(1−2xt−1)]
≡ f(xt−1). (5.4)

Analytical results regarding the dynamics of the system (5.4) are in line with Brock and

Durlauf (2001). The fixed points of the map f give the equilibrium values for xt.

Proposition 5.2.1. The system (5.4) has either one stable steady state or an unstable

steady state x∗ and two stable steady states x∗1 and x∗2 such that x∗1 ≤ x∗ ≤ x∗2.

A first observation is that x = 0 and x = 1 (technological monopoly) are equilibria

only for β = ∞. For finite β the less adopted technology never disappears. Fig. 5.3

shows some examples with different values of β for λ = 0 and λ = 0.2 (with ρ = 1). In

the symmetric case λ = 0 (left panel) the steady state x = 1/2 is stable if f ′(1/2) ≤ 1,

which is true if β ≤ 2. Whenever the intensity of choice is smaller than 2, the adoption
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Figure 5.3: Map f for different values of β (ρ = 1). Left: λ = 0. Right: λ = 0.2.

process will converge to equal shares of technologies a and b. Conversely, for β > 2

the system converges to one of two alternative steady states, where one technology is

dominant. Such qualitative change in the dynamics of a model due to a change in one

parameter is called a bifurcation. The critical value (β = 2) is the bifurcation value.

Symmetry of the two technologies (λ = 0) gives place to a “pitchfork bifurcation” for

β = 2, where the steady state x = 1
2
loses stability and two new stable steady states are

created. When one technology is more profitable than the other one (λ �= 0) additional

steady states are created by a “tangent bifurcation”. The right panel of Fig. 5.3 shows

a tangent bifurcation for β � 3.4, in which two steady states are created, one stable and

one unstable. The role of ρ is somewhat similar to the role of β, as illustrated in Fig.

5.4. In this case a larger λ also lowers the value of the map in the flex point, f(x̂). Fig.

5.5 describes the occurrence of a tangent bifurcation for λ. Here two tangent bifurcations

occur for λ � −0.27 and λ � 0.27. When λ �= 0, the worse technology may still attain a

larger share in equilibrium. This is due to the positive externality in (5.1), which renders

the initial condition very important. A positive value of λ (technology b better than a),

for instance, shifts the map to the right, with an unstable steady state x∗ > 1/2. If the

initial condition x0 > x∗ > 1
2
, the system converges to x∗2, with a larger share of technology
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Figure 5.4: Graph of map f for different values of ρ (β = 4). Left: λ = 0. Right: λ = 0.2.
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Figure 5.5: Map f for different values of λ (β = 4, ρ = 1).

a, despite this one being worse than technology b.

A bifurcation diagram gives a broader picture of the qualitative dynamics of this

system, consisting of the long run value(s) of the state variable xt from many different

initial conditions in a given range of parameter values. Fig. 5.6 reports four bifurcation

diagrams of λ for four different values of β. In two cases (β = 1 and β = 2) there is a

smooth change in the equilibrium value of the share of technology a following a change in

λ, namely the share x decreases continuously as the profitability gap with technology b

increases. For higher values of the intensity of choice (β = 3 and β = 4) an increase of λ
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Figure 5.6: Bifurcation diagram of λ (horizontal axis) for the share xt of technology a (vertical axis) with
β = 1, 2, 3 and 4, where increasing β the diagram gets closer to a step. Here ρ = 1 and x0 = 0.5.

near the bifurcation value λ = 0 may cause an abrupt change from a to b as the dominant

technology. The values of β, ρ and λ together determine whether or not multiple equilibria

exist. The following two necessary conditions hold true:

Proposition 5.2.2. ρβ > 2 and −ρ < λ < ρ are necessary conditions for multiple

equilibria.

The proof is based on the position of the inflection point x̂ = λ+ρ
2ρ

of the map f and

on the maximum derivative f ′(x̂) = βρ
2

(see Appendix 5.A).

The intensity of choice regulates the shape of the map (5.4): the larger is β, the more

f is similar to a step function, with a discontinuity in x̂ = λ+ρ
2ρ

. The following holds true:

Proposition 5.2.3. Consider map (5.4):

• when β ≈ 0, there is a unique equilibrium, and it is stable.

• when β ≈ ∞, there may be three cases:

1. if λ < −ρ the equilibrium x∗2 = 1 is unique and stable,

2. if λ > ρ the equilibrium x∗1 = 0 is unique and stable,

3. if −ρ < λ < ρ, x∗ = x̂ = λ+ρ
2ρ

is unstable, while x∗1 = 0 and x∗2 = 1 are stable.

The proof of Proposition 5.2.3 relies on the fact that when β = ∞, the two conditions

of Proposition 5.2.2 are also sufficient for multiple equilibria, because the system depends
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only on the position of the inflection point x̂; in the third case, x̂ falls inside the interval

[0, 1], and both x = 0 and x = 1 are stable equilibria. In this case the market will be

completely taken by one or the other technology, depending on the initial condition.

We conclude this section with a numerical implementation of this model which aims

to reproduce the main result of Arthur (1989). Consider the case of two equally profitable

technologies (λ = 0) and set β = 3 and ρ = 1. These settings meet all requirements of

Proposition 5.2.2, that is two stable equilibria. Fig. 5.3 indicates that one equilibrium,

x∗1, is located between 0.05 and 0.1, and the other, x∗2, between 0.9 and 0.95. Assume

that technologies a and b start with equal shares (x0 = 0.5). This initial condition

coincides with the unstable equilibrium. By adding an arbitrarily small noise term to

the state variable x, one escapes this unstable equilibrium. The point is that sometimes

the system converges to x∗1, where technology b is dominant, and at other times to x∗2,

where a is dominant. Fig. 5.7 reports five simulated time series of the share x produced

by five different runs of the model with a noise component εt ∼ N(0, 0.01) added to Eq.

(5.4). The fact that no one can tell which technology will be the winner is one of the

 0
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Figure 5.7: Five time series of the share of technology a obtained by running the model with noise for
two equally performant technologies (λ = 0) starting with equal shares (x0 = 0.5), with β = 3 and ρ = 1.

main insights from Arthur (1989). Path-dependence and the lock-in effect are stronger in

Arthur’s model, because the probability distribution of the states of the system changes

with time. This is not the case with probability distribution (5.4), instead. By adding

memory to the utility in our model we also can obtain a stronger lock-in effect.
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5.3 Competing technologies with an environmental

policy

An application of this model in environmental economics pertains to the case of technolo-

gies with different degrees of pollution. Power generation is an example, and it will be our

reference story in this section. Say d is a “dirty” technology, fossil fuels for instance, with

a high pollution intensity, and c is a “clean” technology, for example renewable energy,

with low pollution intensity. We assume the clean technology has higher costs and/or

lower performance compared to the dirty technology, which translates into a profitability

gap λ = λd − λc > 0. In principle one can unlock the economy from the dirty technology

by making λ low enough, so as to eliminate the socially less desirable equilibrium (Fig.

5.5). This is the goal of an environmental policy. The way such a policy is enforced has

strong consequences for the dynamics of technology competition, and a tougher policy

does not necessarily lead to an equilibrium with a larger share of clean technology, due to

non-linearities in the system, as we will show. In this section we study the changes in the

dynamics of competing technologies due to the introduction of an environmental policy.

In the case of power generation, environmental policies aim at the “grid parity”,

where clean energy reaches the profitability of traditional dirty energy. To realize this,

a number of different policies have been implemented in different countries (Fischer and

Newell, 2008). Such policies can be grouped in various ways, but in essence they either

impose taxes on pollution or provide subsidies for the clean(er) technology. Taxes make

the dirty technology more expensive, by internalizing the pollution externality. Subsidies

make the clean technology less expensive. Both measures result in an attempt to lower

the profitability gap λ. Here we consider the case of subsidies, which are implemented by

the so-called “Feed-in-Tariffs” in Germany and Denmark, for instance (Lipp, 2007).

An energy policy tends to be endogenous to technology competition, because its effort

usually decreases as the share of the clean technology xc ≡ x increases. If σ is a sort
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of fixed price (tariff) for the unit of clean energy produced, the profitability of the clean

technology is augmented by the subsidy σt = σ(1− xt) in each period. Consequently the

profitability gap after the introduction of subsidies changes as follows:

λσ(x) = λ0 − σ(1− x), (5.5)

where λ0 = λd−λc is the profitability gap without policy. After substituting λ with λσ(x)

in the utility (5.1), the difference in utility between the two technologies becomes:

ud − uc = λ0 − σ(1− x) + ρ(1 − 2x) (5.6)

and the new map of the system is:

fσ(x) =
1

1 + eβ[λ0+ρ(1−2x)−σ(1−x)] . (5.7)

The dynamics of the share of clean technology is given by xt = fσ(xt−1). In Appendix 5.B

we show that a pollution tax leads to the same dynamic model. Without policy (σ = 0)

one is back to the basic model (5.4). The main difference to the basic model is that here

the map can be decreasing, depending on the policy effort σ:

Proposition 5.3.1. fσ is downward sloping for σ > 2ρ and upward sloping otherwise.

The case σ = 2ρ gives a flat map, with one steady state which is stable. The proof of

Proposition 5.3.1 is in Appendix 5.C. This proposition says that beyond a threshold value

of policy effort the steady state becomes unstable and period 2 cycles of technology shares

occur. The intuition for a cyclical dynamics of the technology market is the following. An

environmental policy that reduces the profitability gap as indicated by Eq. (5.5) is shut

down as soon as the clean technology reaches a certain market share (here this threshold

is equal to one, for simplicity). But without policy the profitability gap widens in the

next period, calling for the policy to be enforced again, and so the story repeats. Such
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cyclical behaviour is easier to attain the lower is the intensity of externalities ρ:

Proposition 5.3.2. There are six cases:

1. the map fσ is upward sloping (σ < 2ρ):

(a) λ0 < ρ: raising σ leads to a tangent bifurcation. With both one or three steady

states, raising σ increases the equilibrium(a) share. The flex point is x̂ < 1.

(b) λ0 = ρ: there is only one steady state, which is stable. The flex point is x̂ = 1.

(c) λ0 > ρ: there is only one steady state, which is stable. The flex point is x̂ > 1.

2. the map fσ is downward sloping (σ > 2ρ):

(a) λ0 < ρ: there is only one steady state, which is stable. Increasing σ increases

the equilibrium share. The flex point is x̂ > 1.

(b) λ0 = ρ: there is only one steady state, which becomes unstable for σ sufficiently

large, giving place to a stable period 2 cycle. The flex point is x̂ = 1.

(c) λ0 > ρ: there is only one steady state, which becomes unstable for σ sufficiently

large, giving place to a stable period 2 cycle. The flex point is x̂ < 1.

The proof is in Appendix 5.C. Fig. 5.8 illustrates the different cases of Proposition

5.3.2 with a number of examples. A tougher policy (larger σ) generally leads to a larger
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Figure 5.8: Model with environmental policy. Map fσ for seven different values of subsidy level σ (with
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share of clean technology, as one may expect. More surprising, beyond a threshold value

of σ cyclical dynamics occur. Both effects are clear in the left and middle panels of Fig.

5.8. In the left panel (λ0 > ρ, cases (1c) and (2c) of Proposition 5.3.2) there is always

a unique steady state, and an increasing effort shifts the flex point x̂ to the right. In

the middle panel (λ = ρ, cases (1b) and (2b)) there is still only one steady state, but

the flex point position x̂ = 1 is unaffected. In the right panel (λ0 < ρ, cases (1a) and

(2a)), rising σ leads to a tangent bifurcation for σ � 0.6, with the appearance of two

additional steady states, one of which stable. Another tangent bifurcation above σ = 1

reduces the number of steady states again to only one. We can resume the effect of the

environmental policy in the condition of the right panel as follows: for low effort values

the marginal effect of the policy on the market share of the clean technology is very

small. For middle values of the effort, the environmental policy creates an alternative

equilibrium, which is socially desirable. Higher efforts lead to a sudden shift, eliminating

the suboptimal equilibrium. If the economy is locked-in into a dirty technology, this event

tips the market towards the clean technology. Concluding the remarks on the examples of

Fig. 5.8, stronger network externalities and/or social interactions are responsible for the

occurrence of multiple equilibria, which are the fundamental condition for lock-in into one

technology. When such externalities are relatively weak, it is easier for the environmental

policy to increase the share of the clean technology. But if the policy effort is too strong

it destabilizes the market with cyclical dynamics.

Fig. 5.9 on the left reports a simulated time series of the share xt that converges to a

period 2 cycle. The middle panel of Fig. 5.9 is a bifurcation diagram of the subsidy level σ.

By comparing the left and right panels of Fig. 5.8 we see that lower network externalities

and social interactions make it easier for environmental policy to trigger cycles. This is

evident also from the bifurcation diagram of ρ in the right panel of Fig. 5.9.

The switching behaviour of the discrete choice framework may be unrealistic in cases

where large sunk costs cause stickiness in the decision process. The power generation
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Figure 5.9: Model with environmental policy. Left: time series of the share of clean technology x. Centre:
bifurcation diagram of σ (horizontal axis) for the share x (vertical axis). Right: bifurcation diagram of
ρ (horizontal axis) for the share x (vertical axis). λd = 2.4, λc = 1, ρ = 1, β = 4 and σ = 4.

sector is an example, although utilities can switch energy source to some extent, by

switching on and off different power plants. Nevertheless we can improve the realism of

the model by capturing persistence of behaviours through asynchronous updating. This

extension of the model responds to the idea that not all agents update their strategy in

every period. The discrete choice model with asynchronous updating is given by

xi,t = αxi,t−1 + (1− α)
eβui,t−1∑M
j=1 e

βuj,t−1
, (5.8)

where α is the portion of agents that stick to their previous strategy, while a fraction

1−α chooses a strategy based on the discrete choice mechanism (5.2). A larger α means

more persistence of strategies. Fig. 5.10 reports a bifurcation diagram of α. Whenever α
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Figure 5.10: Model with environmental policy and asynchronous updating. Bifurcation diagram of α
(horizontal axis) for the share of clean technology x (vertical axis). λd = 2.4, λc = 1, ρ = 1, σ = 4, β = 4.

is larger (more stickiness) the amplitude of the fluctuations is smaller. Above a threshold

value of α there is a unique stable equilibrium.
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Although asynchronous updating has a stabilizing effect in general, it may lead to

chaotic dynamics. If the map fσ is downward sloping (see Fig. 5.8), the map with

asynchronous updating is a convex combination of an upward and a downward non-linear

function, which may result in a non-monotonic map. For the case of two competing

technologies we have:

fσ,α(x) = αx+ (1− α)
1

1 + eβ[λ0+ρ(1−2x)−σ(1−x)] . (5.9)

A non-monotonic map may generate chaotic dynamics. The left part of Fig. 5.11 reports

an example of a bifurcation diagram in a setting with chaotic dynamics. Here the dynamics
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Figure 5.11: Model with environmental policy and asynchronous updating. Left: bifurcation diagram
of α (horizontal axis) for the share of clean technology x (vertical axis). Right: time series of x, with
λd = 3, λc = 1, ρ = 1, σ = 9, α = 0.3 (for the time series) and β = 5.

of xt is chaotic for α between 0.25 and 0.5, where a cascade of period doubling and

period halving bifurcation occur, respectively. Large values of σ are responsible for this

occurrence, because they give a map with a steep negative slope (Fig. 5.8). An example

of a time series xc,t showing chaotic dynamics is reported in the right panel of Fig. 5.11.

5.4 Competing technologies and technological progress

In this section we extend the discrete choice model of technology competition of Section 5.2

in a different direction, by introducing an endogenous mechanism of technological progress.

The stream of research that goes under the name of “endogenous growth theory” addresses
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the mutual relationship between economic growth and technological progress (Romer,

1990; Aghion and Howitt, 1998). The main feature of this approach to economic growth

is the recognition of mutual effects between the economy and technological change, going

beyond the traditional one-way relationship from science to technology to the economy.

Although these models are generally claimed to have micro-foundations, relatively little

attention is given to the decision of agents concerning which technology to adopt. Here

we propose a behavioural approach, and study the decision process that underlies the

interplay of technological competition and technological progress. Building on the discrete

choice mechanism of the basic model, we can study in particular how network externalities

and social interactions shape technological progress.

In general, technological progress may take the form of costs reduction or performance

enhancement of one technology (vertical product differentiation), and it can give rise to

an increase in product variety (horizontal product differentiation). Here we consider the

former case, and we model it through changes in the profitability of competing technolo-

gies. We focus on gradual innovation and do not consider here the occurrence of radical

innovation represented by the advent of new technological regimes.

Consider again the competition of two technologies a and b with utility given by (5.1).

The profitabilities λa and λb increase because of technological progress. Assume that for

each technology the progress depends on the cumulative investment through history, and

in every period the technology investments Ia,t and Ib,t are proportional to the technology

market share: Ia,t = haxt and Ib,t = hb(1−xt). Growth is concave in investments (Barlevy,

2004), and a concave function is used also to describe endogenous technological progress

(Aghion and Howitt, 1998). We model technological progress with the following learning

curves:

λa,t = λa0 + ψa

(
ha

t∑
j=1

xj

)ζ

, λb,t = λb0 + ψb

(
hb

t∑
j=1

(1− xj)

)ζ

, (5.10)

with λa0 and λb0 the profitabilities without technological progress. According to this

specification, the difference in profitabilities (the technological gap) between the two tech-

127



nologies becomes:

λt = λb,t − λa,t = λ0 + ψb

(
hb

t∑
j=1

(1− xj)

)ζ

− ψa

(
ha

t∑
j=1

xj

)ζ

, (5.11)

where λ0 is the technological gap without progress. ψa, ψb measure how investments

translate into technological progress, and together with ha and hb describe R&D in each

technology. ζ ∈ [0, 1] is a sector specific parameter which dictates the curvature of the

investment function. In general, an old established technology a is likely to present low

values of ha and ψa, while the opposite is true for a young innovative technology.

The difference in utility between b and a with technological progress becomes:

ub,t − ua,t = λt + ρ(1 − 2xt), (5.12)

Here technology competition is driven by externalities (the second term of the right hand

side) as well as technological progress (the first term): the share of technology a according

to (5.2) is now given by:

xt =
1

1 + eβ[λt+ρ(1−2xt−1)]
≡ ft(xt−1). (5.13)

The map ft depends on time. It is identical to the map f of the basic model (5.4)

after substituting the static parameter λ with the time varying technological gap of Eq.

(5.11). Endogenous technological progress as expressed by the dynamic technological

difference λt works as a slowly changing parameter that modifies the flow map of the

competing technology system as shown in Fig. 5.5. The long run equilibrium, or long

run dynamic of this system is known only by looking at the limit map given by the limit

value limt→∞ λt ≡ λ∞. The technology gap λ does not modify the curvature of the map,

but it may affect the number of stable equilibria by shifting it. There can be two cases:

1) if the steady state x∗ of Proposition 5.2.1 is stable, a change in λ changes gradually
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the equilibrium market shares as one technology slowly catches up, or 2) if x∗ is unstable,

a change in λ can cause a change from one to two stable equilibria (or the other way

around) through a tangent bifurcation (Fig. 5.5). In this second case, a less adopted

technology may suddenly overcome the other, unlocking the economy from the previous

dominant technology.

The convergence of the series λt plays a key role in determining the long run equilibrium

of the technology market. Whenever one technology has a faster pace (due to larger values

of h and/or ψ), we have λt → ±∞, that is lock-in into technology a (λt → −∞) or b

(λt → +∞). The linear case ζ = 1 allows to derive some analytical results on the

dynamics of λt. Eq. (5.11) in this case becomes

λt = λ0 + ψbhb

t∑
j=1

(1− xj)− ψaha

t∑
j=1

xj (5.14)

= λ0 + hbψbt− (haψa + hbψb)

t∑
j=1

xj .

The following proposition lists the possible outcomes in the linear case:

Proposition 5.4.1. In the long run (t → ∞) the technological gap λt for ζ = 1 (Eq.

5.14) has the following limit behaviour:

1. λt converges if and only if ∃ p, q constants such that
∑t

j=1 xj ∼ g(t) = p+ qt, with

q = hbψb

haψa+hbψb
and p = − λ∞

haψa+hbψb
.

2. If
∑t

j=1 xj is slower than g(t), then λt diverges to +∞ (lock-in into b).

3. If
∑t

j=1 xj is faster than g(t), then λt diverges to −∞ (lock-in into a).

Condition 1 implies that xt =
hbψb

haψa+hbψb
, on average. Conditions 2 and 3 represent

situations where one technology systematically grows faster than the other, and eventually

it conquers the entire market (eq. 5.4). The only possibility for technological market

segmentation is condition 1.
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One important question that this model can address is how social interactions and

network externalities affect technological progress through technological competition. To

answer that question, one needs a measure of technological progress. A rough measure is

the sum of profitabilities, Λ = λa + λb:

Λt = λa0 + λb0 + ψa

(
ha

t∑
j=1

xj

)ζ

+ ψb

(
hb

t∑
j=1

(1− xj)

)ζ

. (5.15)

Λt gives the technological frontier of the market. In the linear case ζ = 1 it becomes

Λt = λa0 + λb0 + hbψbt + (haψa − hbψb)

t∑
j=1

xj . (5.16)

Consider Proposition 5.4.1: if the technology gap λt converges (condition 1), we have:

Λt = λa0 + λb0 + 2
hahbψaψb
haψa + hbψb

t. (5.17)

The rate rate of change of Λt is the rate of technological progress r:

r = 2
hahbψaψb
haψa + hbψb

=
ηaηb
ηa + ηb

. (5.18)

As long as ζ = 1, all the quantities above depend on the products hiψi ≡ ηi. If one can

make either ηa or ηb as large as desired, the rate r is unbounded. But if there are limits

to cumulation and/or to investments, there are also conditions that maximize r. With a

linear constraint ηa + ηb = E, we have for the rate of technological progress

r = 2ηa

(
1− ηa

E

)
, (5.19)

which is maximum in the symmetric case ηa = ηb = E/2. Since convergence of λ (case 1

of Proposition 5.4.1) implies xt ∼ ηb
ηa+ηb

in the long run, technologies a and b converge to

equal shares in this condition. Summarizing, under the assumption of linear cumulation
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of investments (ζ = 1), if market segmentation persists, with both technologies growing

so that λt → λ∞ <∞, the rate of total technological progress λt is higher for a maximally

diversified technological market.

In all cases when λt → ±∞, the rate of growth of the total technological level Λt (rate

of technological progress) is obtained with Eq. (5.16). If we are in case 2 of Proposition

5.4.1, the rate of growth of λt is higher for ηa < ηb. If we are in case 3 of Proposition 5.4.1,

the other way around is true, with a higher rate of technological progress for ηa > ηb.

Whenever ζ < 1, the rate of technological progress is lower, but the results obtained

above do not change as long as concavity is the same for both technologies. At this point it

is left to understand what determines the competing technologies system to fall into one or

the other of the three cases of Proposition 5.4.1, which amounts to understand the effect

of externalities ρ on technological progress. In order to do that, we rely on numerical

observations with a simulation of the model (5.13). Consider the following example:

cumulative technological investments are set with ha = 1, hb = 0.8, ψa = 0.5, ψb = 1.2,

with concavity parameter ζ = 0.5. Initial qualities are λa0 = 2 and λb0 = 1, and β = 1

for the intensity of choice. Fig. 5.12 reports the simulated time series of the share xt,

the technology gap λt and the total technological level Λt, for three different externalities

conditions, ρ = 0.1 (weak) ρ = 1 (medium) and ρ = 10 (strong). This example gives

two main messages: first, network externalities strongly affect the long run technology

shares (compare top and middle panels in the second column of Fig. 5.12 to the bottom

panel), and second, strong externalities can lower the rate of technological progress (right

column of Fig. 5.12). Initial events are important for the long run values: although the

two technology start with equal shares, initially technology a performs better (left column

of Fig. 5.12). If network externalities and social interactions are weak, this pattern is

halted thanks to a more effective R&D for technology b, that catches up first and outpaces

technology a (see the reversal of xt in the top and middle panels of the left column of

Fig. 5.12). If such externalities are strong instead, the initial advantage of technology a
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Figure 5.12: Time series of technology share xt (left), technological gap λt (centre) and total technological
level Λt (right), with low externalities, ρ = 0.1 (top), medium externalities, ρ = 1 (centre) and strong
externalities, ρ = 10 (bottom). β = 1, λa0 = 2, λb0 = 1, ha = 1, hb = 0.8, ψa = 0.5, ψb = 1.2, ζ = 0.5.

weights more, and the better R&D process of b is not enough to outpace technology a.

The examples of Fig. 5.12 show that network externalities and social interactions

amplify technological advantages. Initial values of profitability (λ0) play their role early,

while R&D (hi, ψi) needs time. R&D can reverse an initial technology gap, but if network

externalities or social interactions are too strong, this may never happen. On the other

hand, these externalities may help R&D in a technology transition, after R&D has covered

the initial technological gap. This message is relevant to innovation policy, indicating that

effort can diminish, as the desired technology acquires market shares .
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5.5 Technological progress and environmental policy

In Section 5.3 we analyze the impact of an environmental policy on technological competi-

tion, assuming a constant profitability for the competing technologies. Now we introduce

technological progress, bringing together the models of Section 5.3 and Section 5.4. Con-

sider again two competing technologies, a clean and a dirty one, labeled with c and d

respectively. Because of technological progress, the profitabilities λc,t and λd,t follow the

learning curve (5.10), and the profitability gap λt = λd,t − λc,t evolves according to Eq.

(5.11). We assume that without intervention, the clean technology has a lower profitabil-

ity, which means λ0 > 0 at time t = 0. Let alone, the market would converge to a complete

dominance of the dirty technology. A government steps in, enforcing an environmental

policy to foster the market share of the clean technology, by reducing the profitability gap

λ through subsidies. We consider two options: first, a subsidy proportional to the market

share of the dirty technology, σt = σ(1 − xt). This is the policy studied in Section 5.3,

to which we refer as policy I. Second, a subsidy linked to the technology gap λt, i.e. to

the technology learning curves, shaped by the endogenous technological progress. This

feature is commonly present in Feed-in-Tariffs (Lipp, 2007). Germany is a paradigmatic

example, where the tariff payed by utilities to renewable energy producers is adjusted to

production costs (ResAct, 2000). The idea is that subsidies decrease as the production

costs of clean energy go down. This is intended to foster permanently the clean technol-

ogy, through scale effects as well as technological progress. We model this policy with a

subsidy proportional to the previous period profitability gap, σt = σλt−1, and we refer to

this as policy II.

Environmental policy I modifies the profitability gap λt as follows:

λσIt = λt − σ(1− xt), (5.20)

with λt the gap without policy, given by Eq. (5.11). The profitability gap λσIt changes
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due to technological progress and to the environmental policy (Eq. 5.5). Equipped with

the profitability gap of Eq. (5.20), the discrete choice mechanism works exactly as before:

the differential utility (5.3) becomes

ub,t − ua,t = λσIt + ρ(1− 2xt) (5.21)

= λt − σ(1− xt) + ρ(1− 2xt),

and the map for the share of clean technology xt (Eq. 5.4) is

xt =
1

1 + eβ[λ
σI
t +ρ(1−2xt−1)]

≡ fσIt (xt−1). (5.22)

These two equations are to be compared to Eq. (5.3) and Eq. (5.4) of Section 5.2 (basic

model), to Eq. (5.6) and Eq. (5.7) of Section 5.3 (environmental policy) and to Eq. (5.12)

and Eq. (5.13) of Section 5.4 (technological progress).

We simulate the model under different conditions. We consider a setting in which the

profitability of the clean technology without policy is half the profitability of the dirty

technology, with an initial condition λc0 = 1 and λd0 = 2. Now the model contains

three factors: the positive feedback of social interactions and/or network externalities,

an environmental policy and technological progress. With this model we address the

following questions: first, how much the rate of technological progress matters in the

effort of unlocking the market from the lock-in into the dirty technology. Second, how

strict an environmental policy must be to achieve this target. Third, what is the role of

social interactions and network externalities in this dynamics. Far from attempting an

exhaustive study of the model under all possible conditions, we restrict our analysis to two

scenarios, one where the two technologies have the same rate of technological progress,

and one where the clean technology grows faster. Let us start with equal technological

progress for the clean and dirty technologies (scenario A). This means to set hc = hd and
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ψc = ψd in Eq. (5.11), that we rewrite:

λt = λd,t − λc,t = λ0 + ψd

(
hd

t∑
j=1

(1− xj)

)ζ

− ψc

(
hc

t∑
j=1

xj

)ζ

. (5.23)

We consider three levels of policy efforts, with subsidies σ = 0, 0.3, 0.9, and two different

intensities of positive feedback from social interactions and network externalities, ρ = 0.1

(weak externalities) and ρ = 1 (strong externalities). Fig. 5.13 reports the time series of

the share of the clean technology under these different conditions. This simulation tells
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Figure 5.13: Time series of xt (share of clean technology) with policy I. Scenario A: hc = hd = 1,
ψc = ψd = 1. Top: ρ = 0.1 (weak externalities). Bottom: ρ = 1 (strong externalities). Left: σ = 0.
Centre: σ = 0.3. Right: σ = 0.9. Other parameters are β = 1, λc0 = 1, λd0 = 2, ζ = 0.5.

us two things: first, the environmental policy is not able to unlock the market from the

lock-in into the dirty technology, which conquers all the market with xt converging to

x = 0 (“bad” equilibrium). Second, strong externalities make this process faster.

We consider a second scenario (scenario B) where the clean technology has a higher

rate of progress, with hc > hd (larger investments in innovation per firm) and ψc > ψd

(higher return to investment in terms of profitability). Fig. 5.14 shows the simulation
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results under the same conditions considered for the scenario A. Now for three out of
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Figure 5.14: Time series of xt (share of clean technology) with policy I. Scenario B: hc = 1.5, hd = 1,
ψc = 1.5, ψd = 1. Top: ρ = 0.1 (weak externalities). Bottom: ρ = 1 (strong externalities). Left: σ = 0.
Centre: σ = 0.3. Right: σ = 0.9. Other parameters are β = 1, λc0 = 1, λd0 = 2, ζ = 0.5.

six conditions the clean technology overcomes the dirty one, and the system converges

to the socially desirable equilibrium x = 1. Without environmental policy the market

always converges to the sub-optimal equilibrium x = 0. When externalities are weak,

even a medium level of policy stringency (σ = 0.3) is sufficient to unlock the market

from the dirty technology (top-centre panel). With strong externalities a stronger effort

is needed (bottom-left panel). From the analysis of scenarios A and B we draw the

following conclusions: an environmental policy alone is not able to foster permanently

the clean technology. Neither a faster rate of progress of the clean technology is able to

do that. Only the combination of faster progress and environmental policy achieves this

goal, and tips the market from the sub-optimal to the desirable equilibrium. Stronger

network externalities and/or social interactions make this process more difficult and call

for a tougher environmental policy.
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The second environmental policy that we consider, policy II, is based on learning

curves (5.10). Let assume that in each period a government subsidizes the clean technology

proportionally to the profitability gap in the previous period. The gap at time t becomes:

λσIIt = λt − σλσIIt−1, (5.24)

where λt is again given by Eq. (5.23). The profitability gap (5.24) should be compared

to Eq. (5.20) of policy I. It is convenient to re-write λt as λt = λ0 + ΔΨt, with λ0 the

initial condition, and ΔΨt the differential endogenous technological progress of the two

technologies (second and third term of Eq. 5.23):

Δψt = ψd

(
hd

t∑
j=1

(1− xj)

)ζ

− ψc

(
hc

t∑
j=1

xj

)ζ

, (5.25)

with the assumption Δψ0 = 0. The profitability gap λσIIt can then be expressed as follows:

λσIIt = λ0 +ΔΨt − σλσIIt−1. (5.26)

By iterative substitution of lagged terms, we get to the following expression for λσIIt :

λσIIt = λ0

t∑
i=0

(−σ)i +
t∑

j=0

(−σ)jΔΨt−j . (5.27)

The first term in the right hand side is a geometric series. If σ < 1 (but positive, by

definition) it is equal to λ0
1−(1−σ)t+1

1+σ
, and in an infinite time it converges to λ0

1+σ
. The

intuition is that policy II has a “contrarian” attitude, as Eq. (5.24) shows, and by

reducing the technological gap it tends to stabilize it.1 In the meantime Δψt continues

to evolve due to (endogenous) technological progress, as described by Eq. (5.25), growing

1If σ = 1, this term is equal to λ0 when t is even, and zero otherwise. Values of σ larger than one
make the geometric series non convergent, but they are not realistic in that σ > 1 would mean a complete
reversal of the technological gap in only one period of policy action.
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positive or negative, or converging to a finite value (see Proposition 5.4.1). In all cases

where the gap Δψ diverges, the policy intervention gets amplified by such differential

technological progress, as indicated by the second term of the right hand side in Eq.

(5.27): environmental policy and technological progress do not simply add together, but

interact dynamically. Such nonlinear interaction is the main feature of this model of

technology competition with environmental policy.

The difference of utilities (5.3) for the model with policy II is:

ud,t − uc,t = λσIIt + ρ(1 − 2xt), (5.28)

and according to Eq. (5.2) the map of the share xt becomes

xt =
1

1 + eβ[λ
σII
t +ρ(1−2xt−1)]

≡ fσIIt (xt−1). (5.29)

These can be compared to Eq. (5.21) and Eq. (5.22) of policy I, to Eq. (5.3) and Eq.

(5.4) of Section 5.2 (basic model) to Eq. (5.6) and Eq. (5.7) of Section 5.3 (environmental

policy) and to Eq. (5.12) and Eq. (5.12) of Section 5.4 (technological progress).

We do for policy II the same set of simulations of policy I. Fig. 5.15 reports the

results for scenario A (equal rate of progress for the clean and the dirty technologies),

and Fig. 5.16 refers to scenario B (faster progress for the clean technology). The

simulation results for policy II are in line with the results for policy I, which indicates that

the two policies are not substantially different. Policy II is characterized by transitory

oscillations of the market share xt, and that unlocking of the market from the dirty

technology occurs somewhat more slowly than with policy I, when σ = 0.9. This two

considerations would suggest to prefer policy I, although our simulation experiments are

by no means exhaustive, having considered only a few particular - realistic though -

settings and scenarios. The choice between one type of policy or the other is probably

going to be dictated by pragmatic reasons, as for instance considerations on whether it is
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Figure 5.15: Time series of xt (share of clean technology) with policy II. Scenario A: hc = hd = 1,
ψc = ψd = 1. Top: ρ = 0.1 (weak externalities). Bottom: ρ = 1 (strong externalities). Left: σ = 0.
Centre: σ = 0.3. Right: σ = 0.9. Other parameters are β = 1, λc0 = 1, λd0 = 2, ζ = 0.5.
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Figure 5.16: Time series of xt (share of clean technology) with policy II. Scenario B: hc = 1.5, hd = 1,
ψc = 1.5, ψd = 1. Top: ρ = 0.1 (weak externalities). Bottom: ρ = 1 (strong externalities). Left: σ = 0.
Centre: σ = 0.3. Right: σ = 0.9. Other parameters are β = 1, λc0 = 1, λd0 = 2, ζ = 0.5.
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easier to measure the market share x or the profitability gap λ.

5.6 Conclusion

The present chapter proposes the following contributions: a discrete choice model of

technological competition, with social interactions beside network externalities as expla-

nation of positive feedback in technology choices; the analysis of the interplay between

technology competition and technological progress, and consequently the effect of social

interactions and/or network externalities on technological progress; finally, an environ-

mental economics application of the technology competition model, with the introduction

of an environmental policy, with and without technological progress.

There are some limitations in this model and in its various extensions. First of all,

entry of new technologies is excluded, and competition is limited to the initial pool of

technologies. On the theoretical side, there is the limitation inherent to adopting a “mean-

field” approach, where the population of agents is indefinitely large and their interactions

are random and homogeneous. Any network structure is missing here, such as possible

reference groups, institutions and large corporations that can influence agents decisions.

Finally, technologies are described in a very stylised way, without any sector or market

specific feature. On the other hand, because of this abstraction, the model proposed

here is not limited to competing technologies, but can also describe the competition of

different freeware products that are based on the same technology, such as web browsers

for instance. More generally it addresses all situations of product and firm competition

where a price is not defined or not relevant, and other causes lie behind shares dynamics

beside product performance, such as network externalities and social interactions.

The first and basic version of the model focuses on the equilibria of the model, with

a series of analytical results and numerical observations about the qualitative changes

(bifurcations) in dynamics and the transitions from one to multiple equilibria that follow

from changes in the parameters. In particular, one parameter measures the effect of
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social interactions and network externalities. Social interactions can be important in

technology competition, especially when network externalities are weak, as it is the case

in the competition of hi-tech products as web browsers, for instance.

A first extension (Section 5.3) introduces an environmental dimension in the model,

with a policy that subsidizes the clean technology. This version of the model is relevant in

all cases where the competing technologies present some degree of pollution. In general an

environmental policy shifts the market equilibrium reducing the share of dirty technology.

In cases of multiple equilibria, the environmental policy can flip the market from the “sub-

optimal” to the socially desirable equilibrium where the clean technology is dominant.

There are cases where a tougher policy produces cycles of period two, with the clean and

the dirty technology alternating as the dominant technology. This is the result of a policy

that just “follows” pollution, without creating the conditions for systematic catch-up of

clean technologies through technological progress.

In order to account for possible stickiness in agents decision we introduce asynchronous

updating of strategies. This is relevant in all cases where switching technology is difficult

and costly, as in power generation, for instance. The main result here is that although

asynchronous updating stabilises the system by reducing the amplitude of oscillations, it

may trigger chaotic behaviour by making the map of the system non-monotonic.

The model is extended in a different direction in Section 5.4, with technological

progress. With this extension we propose a discrete choice model that combines tech-

nological competition and technological growth. The main focus of this section are the

effects of social interactions and network externalities on technological progress. There

are cases where these externalities lower technological progress overall.

Technological progress and environmental policy are brought together in a further

extension which combines Section 5.3 and Section 5.4. This version of the model gives

the following main results: an environmental policy alone is not capable of unlocking the

market from the dirty technology. In order to tip the system to the socially desirable
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equilibrium, the clean technology must have a higher rate of progress. This calls for an

innovation policy besides the environmental policy. Moreover, a tougher environmental

policy is needed whenever the positive feedback of social interactions and network exter-

nalities is stronger. This fact suggests to work also on the side of network externalities,

in order to lower policy costs. This can be done for instance by removing technological

standards and by making technological infrastructures more flexible.
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Appendix

5.A Analysis of equilibria in the basic model

Consider the map (5.4) for the basic model of Section 5.2:

f(x) =
1

1 + eβ[λ+ρ(1−2x)]
. (5.30)

The first derivative of f is:

f ′(x) =
2βρeβ[λ+ρ(1−2x)]

{1 + eβ[λ+ρ(1−2x)]}2 . (5.31)

Since f is continuous in [0, 1] and f(x) ∈ [0, 1] ∀x ∈ [0, 1], then f has at least one

fixed point x = f(x) ∈ [0, 1], which is proved by applying the Bolzano’s theorem to the

function g(x) = f(x) − x. This means that at least one equilibrium exists. Moreover,

since f ′(x) > 0 for all x ∈ [0, 1], f(x = 0) > 0 and f(x = 1) < 1, there is at least one

stable equilibrium, by the Mean-value theorem.

The second derivative of the map (5.4) is:

f ′′(x) =
4ρβ2eβ[λ+ρ(1−2x)][eβ[λ+ρ(1−2x)] − 1]

{1 + eβ[λ+ρ(1−2x)]}3 . (5.32)

The condition f ′′(x) = 0 gives the inflection point x̂ ≡ ρ+λ
2ρ

, with f ′′(x) > 0 in [0, x̂) and

f ′′(x) < 0 in (x̂, 0]. The inflection point x̂ does not depend on β. If λ > ρ, then x̂ is

outside the interval [0, 1], and there can not be more than one fixed point for f . Similarly,

if λ < −ρ. This is why −ρ < λ < ρ is a necessary condition for multiple equilibria of f .

The steepness of function f in the inflection point is f ′(x̂) = ρβ
2
. Since this is the point

where f ′ is maximum, ρβ > 2 is a necessary condition for multiple equilibria.
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5.B Environmental policy with pollution tax

In Section 5.3 we study the competition of “dirty” and “clean” technologies in the presence

of subsidies for the clean technology. Consider an environmental policy that is enforced

through a pollution tax, instead. Assume the tax is proportional to the pollution level.

If τ is the pollution tax rate, the cost of clean and dirty technologies are cc = cc0 + τecx

and cd = cd0 + τed(1 − x), where ec and ed are the pollution intensities of the clean

and the dirty technologies, respectively. By assumption, ed > ec. The difference in

profitability is λτ (x) = λ0 + τ [(ec + ed)x − ed] and the difference in utility becomes

ud− uc = λ0 + ρ(1− 2x) + τ [(ec + ed)x− ed]. Using λ
τ instead of λ in Eq. (5.4), the map

of the system becomes

fτ (x) =
1

1 + eβ{λ0+ρ(1−2x)+τ [(ec+ed)x−ed]} . (5.33)

This is the same type of function that we obtain with subsidies, (Eq. 5.7). Without policy

(or with zero emission) the map fτ coincides with the map (5.4) of the basic model.

5.C Analysis of equilibria for the extended models

The map of the basic model (5.4) and the maps of the extensions (5.7) and (5.33) can be

written in the following general form:

fa,b(x) =
1

1 + ea−bx
. (5.34)

The first derivative of this map is

f ′
a,b(x) =

bea−bx

(1 + ea−bx)2
. (5.35)
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The value of b determines whether the map is upward or downward sloping. In the case

of the basic model we have b = 2βρ, which means the map f is always upward sloping.

In the case of an environmental policy with subsidies (Eq. 5.7) we have b = β(2ρ − σ).

Consequently the map fσ is downward sloping whenever σ > 2ρ. The model with a

pollution tax (Eq. 5.33) has b = β[2ρ− τ(ec + ed)]. In this case the map f τ is downward

sloping as soon as τ > 2ρ
ec+ed

. In both cases, a higher policy effort (larger subsidies σ or

higher tax τ) has the following effect:

• weak policy effort (b > 0): increasing the effort (σ or τ) a transition occurs from

three steady states, two of which are stable, to one stable steady state.

• strong policy effort (b < 0): increasing the effort (σ or τ) is destabilizing, with a

transition from a stable equilibrium to a stable period 2 cycle.

Network externalities as well as social interactions have an opposite effect, because a

larger ρ increases the value of the first derivative. Put differently, the environmental

policy counters the positive feedback of these externalities. This is because such policy

has been modelled with an effort inversely proportional to the share of the technology

that it aims at fostering (Eq. 5.5).

The second derivative of (5.34) is

f ′′
a,b(x) = b2ea−bx

(ea−bx − 1)

(ea−bx + 1)3
. (5.36)

The second derivative is zero in the flex point x̂ = a
b
, where the first derivative f ′

a,b(x̂) =
b
4

is maximum in absolute terms. For the basic model we have:

x̂ =
λ0 + ρ

2ρ
, f ′(x̂) =

βρ

2
. (5.37)
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For the model with subsidies we have:

x̂σ =
λ0 + ρ− σ

2ρ− σ
, f ′

σ(x̂) =
β(2ρ− σ)

4
. (5.38)

The model with a pollution tax presents:

x̂τ =
λ0 + ρ− τed

2ρ− τ(ec + ed)
, f ′

τ (x̂) =
β(2ρ− τ(ec + ed))

4
. (5.39)

The effect of the intensity of choice is the following:

• weak policy effort (b > 0, map upward sloping): increasing β makes the map more

S-shaped, possibly leading to two stable steady states.

• strong policy effort (b < 0, map downward sloping): increasing β makes the map

more similar to an inverse S, eventually leading to period 2 cycles.

Not only the value of the derivative, but also the position of the flex point is important to

dictate the dynamics of the system. The effect of policy effort on the flex point is given

by the following derivative:

dx̂

dσ
=

λ0 − ρ

(2ρ− σ)2
. (5.40)

No matter whether the map is upward or downward sloping, the effect of raising subsidies

is to shift x̂σ to the right whenever λ0 > ρ, and to the left otherwise. The effect of this

shift on the stability of equilibria is ambiguous, though, because it depends on whether

the map fσ is upward or downward sloping.
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