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Abstract

We present a method for assessing categorical perception from continuous discrimination data. Until recently, categorical perception
of speech has exclusively been measured by discrimination and identification experiments with a small number of different stimuli, each
of which is presented multiple times. Experiments by Rogers and Davis (2009), however, suggest that using non-repeating stimuli yields a
more reliable measure of categorization. If this idea is applied to a single phonetic continuum, the continuum has to be densely sampled
and the obtained discrimination data is nearly continuous. In the present study, we describe a maximum-likelihood method that is appro-
priate for analysing such continuous discrimination data.
� 2012 Elsevier B.V. All rights reserved.
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1. Introduction

In speech perception research, categorical perception of
vowels and consonants has been assessed by experiments
that involve identification and discrimination tasks. In an
identification task, sounds that belong to the same category
receive the same label. Identification has mostly been tested
by means of a multiple-forced choice experiment in which
listeners label each stimulus as one of the phonemes of their
native (or second) language.

In categorical perception, discrimination of sounds
across a category boundary is easier than discrimination
of sounds within a category (Liberman et al., 1957; Eimas,
1963). To test the discrimination of speech sounds, various
laboratory tasks have been designed and utilized, which
may slightly differ in the extent to which they exhibit cate-
gorical perception effects (Gerrits and Schouten, 2004);
among these are the classical AX (“same”–“different”) task,
in which listeners indicate whether the sounds of a pair are
the same or different (e.g. Pisoni, 1973), the AXB task, in
which listeners identify the second sound of a stimulus
0167-6393/$ - see front matter � 2012 Elsevier B.V. All rights reserved.
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triplet either with the first sound or with the last sound
(Liberman et al., 1957), or the 4IAX (four-interval
“same”–“different”; or ABAA) task, in which listeners have
to indicate whether the first or the second pair of a stimulus
quadruplet contained a deviant sound (Pisoni, 1975).

Discrimination experiments reported in the vast major-
ity of previous studies have used a relatively small number
of stimuli that were repeated multiple times within a single
experiment: in one of their experiments, Liberman et al.
(1957) used 12 different stimulus pairs, and it is hard to find
studies that employ even a slightly larger number. The use
of such a small number of different stimuli comes with a
problem. In order to have a sufficient amount of data to
determine the existence of a discrimination peak, each stim-
ulus pair has to be repeated multiple times (42 in Liberman
et al.’s case), and this is problematic: Rogers and Davis
(2009) showed that “stimulus repetition reduces discrimina-
tion of within-category differences, and enhances between-
category discrimination” (p. 379). They compared the
results of a discrimination task with eight different stimuli
repeated 208 times each to the results of a discrimination
task with 384 different stimuli that occurred eight times
each, and found that having numerous repetitions of a
small number of different stimuli introduces a bias towards
perceiving the stimuli categorically. Although Rogers and
Davis used many different phonetic continua in their
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Fig. 1. The 130 stimulus pairs on an F1 continuum in erb. Each pair
consists of two points along the horizontal axis, connected here by an arc.
The distance between the members of a pair is constant, i.e.
s37b � s37a = s105b � s105a = 0.9 erb.

1 Kewley-Port (1995) found much smaller difference limens for for-
mants, namely around 0.2 erb for /I/. This is still much greater than the
step between our pairs.
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“non-repeating” task (namely, 96), we like to apply their
idea to the case of a single phonetic continuum, for reasons
of ecological validity. That is, discrimination experiments
should be designed with a large number of non-repeating
stimuli even if the experiment is performed along a single
continuum; the stimuli will then have to be densely sampled
along that continuum, a situation that corresponds to how
humans learn from phonetic continua in the real world.
The explicit laboratory task for the listener (AX, AXB,
4IAX) can then stay the same as in earlier experiments.

A densely sampled (i.e. effectively “continuous”) design
poses a problem for the analysis of the data that earlier
experiments did not face. In one of the experiments by
Liberman et al. (1957), for instance, there were only 12
stimulus pairs along the phonetic continuum, so that each
of those 12 points could be measured enough times
(namely, 42) to produce a reliable measure of “percentage
correct”; together these 12 percentages formed a response
curve that could be visually inspected for whether it
showed a discrimination peak. Statistical corroboration
of the existence of a discrimination peak typically involved
performing an analysis of variance on the heights of the
curve near the boundary and away from the boundary
(e.g. Best and Strange, 1992). These methods are not imme-
diately available if the number of repetitions of each stim-
ulus is low. In the discrimination experiment reported
below, for instance, each stimulus pair was measured only
twice (namely, once in each order of its members), so that
any raw response curve would look quite noisy. In this
paper we therefore introduce an analysis method that is
appropriate for densely sampled discrimination data: we
show how to represent the raw data as a continuous curve
for visual inspection, and how to statistically establish the
existence of a discrimination peak by a maximum likeli-
hood method.

2. The experiment

We will illustrate our analysis method with example data
obtained from real listeners. In this section we therefore
report on a small perception experiment that addressed dis-
crimination within the continuum between [i] and [e]. In
Section 3 we try to infer categorical perception along this
continuum on the sole basis of the discrimination data
obtained in this experiment. We did not elicit identification
data, because the experiment was a part of a larger exper-
iment that included continua on which the participants’
language had no categories. That larger experiment, which
has a research question on feature generalization, will be
reported elsewhere; the subject of the present paper is only
the establishment of the appropriate analysis method.

2.1. Stimuli

The stimuli were isolated steady vowels that differed
only along an F1 continuum. They were synthesized with
the Klatt synthesizer (Klatt and Klatt, 1990), as built into
the program Praat (Boersma and Weenink, 1992–2011),
and modeled after a female voice. The vowels all had the
same F2 value, namely 2700 Hz, and F3 through F10 were
fixed at 3300, 3850, 4950, 5950, 6950, 7950, 8950, and
9950 Hz, respectively. The vowels had a rising-falling pitch
contour: F0 was 220 Hz at the start of the vowel, went up
linearly to 270 Hz at one third of the duration, and from
there fell down linearly to 170 Hz at the end. The voicing
amplitude was maximal at the start of the vowel and fell
linearly by 13.5 percent towards the end. Along the F1 con-
tinuum, which ranged from 6.93 erb (280 Hz) to 12.86 erb
(725 Hz), we created 130 stimulus pairs that were equally
spaced along the continuum; this resulted in 260 different
vowels (as summarized in Fig. 1).

The F1 distance between the two vowels within a stimu-
lus pair was 0.9 erb, so that the 130 low members of the
pairs ranged from 6.93 to 11.96 erb, and the high members
from 7.83 to 12.86 erb. The number of 0.9 erb was chosen
because in a pilot experiment a difference of 0.9 erb was just
small enough to make the number of spontaneous “same”

judgments comparable to the number of spontaneous “dif-
ferent” judgments. The number of 0.9 erb is also compara-
ble to the just-noticeable difference for formants as
measured by Mermelstein (1978).1

The F1 distance between two neighboring stimulus pairs
was more than a factor of 20 smaller than the distance
within a pair, namely (11.96 – 6.93)/(130 – 1) = approxi-
mately 0.039 erb. By thus oversampling the difference
limen, we render the stimulus set effectively continuous.

As Fig. 1 illustrates, both the within-pair F1 distance
and the between-pairs F1 distance were kept the same for
all the 130 stimulus pairs along the continuum.
2.2. Procedure

Vowel discrimination was tested by means of a tradi-
tional AX task. The inter-stimulus interval (i.e. the time
interval between the two members of a pair) was 500 ms,
and the trial-initial silence (i.e. the time interval between
the participant’s mouse click and the first member of the
next pair) was 600 ms. Each of the 130 stimulus pairs
occurred twice, that is, in one trial the pair member with
the lower F1 was played first, while in the other trial with
the same pair the member with the higher F1 was played
first; this was to factor out any stimulus-order effects that
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had been reported in previous vowel discrimination exper-
iments (Polka and Bohn, 2003). The complete set of 260
pairs of stimuli was presented in random order.

As described above, the two members of a stimulus pair
were never identical, and in fact the auditory distance
between the two members of a pair was the same for every
trial. Despite the fact that the two sounds were always dif-
ferent, we asked the listeners to indicate whether the
sounds were different or the same; as noted in Section
2.1, roughly a 50 percent “same” judgment was expected.

In line with the definition of categorical speech percep-
tion, our listeners (whose language has at least two segmen-
tal phonemes along the presented vowel continuum) were
expected to perceive stimulus pairs in some regions of the
F1 continuum as different (i.e., stimuli across a category
boundary) and stimulus pairs in other regions of the F1
continuum as identical (i.e., stimuli that lie within one cat-
egory). We can find (a gradient form of) categorical percep-
tion if our listeners have more “different” responses for
stimulus pairs in some regions along the vowel continuum
than for stimulus pairs in other regions. The location of the
category boundary will lie between the sounds that elicit
the largest number of “different” responses.

2.3. Participants

The subjects in the whole experiment (which will be
reported elsewhere) were a large group of young Czech
monolinguals. In the present paper, which only addresses
the analysis method, we discuss only three of these partic-
ipants; we choose these three people because they seem to
reflect the three most common strategies found in the larger
group.
Fig. 2. Raw data (grey poles) and smoothed data (solid curves) of three particip
3. Analyzing a listener

The analysis of the data of a single listener runs as fol-
lows. The listener is confronted with N (here: 130) different
stimulus pairs. The nth stimulus pair (n = 1. . .N) is
repeated Kn (here: always 2) times. Of these Kn replications,
the listener judges a pair as “same” sn times, and as “differ-
ent” dn times, with sn + dn = Kn .

Fig. 2 shows the raw data of three listeners. For every
stimulus pair, the possible number of “different” responses
was 0, 1, or 2, and the figure shows that the listeners indeed
used all three possibilities. Since the visualization of the
raw data by poles is not very informative with respect to
where the discrimination peaks lie, Fig. 2 also shows
smoothed versions of the data, obtained by convolving
the raw data with a unit-area Gaussian (Babaud et al.,
1986) with a standard deviation of 10 steps (i.e. 0.39 erb)
along the continuum; an edge correction is obtained by
dividing the resulting curve by the convolution of that same
Gaussian with data consisting of all ones (analogously to
the window correction for autocorrelation in Boersma,
1993). The first purpose of having these smoothed curves
is to help us in visually inspecting the data: they suggest,
for instance, that participant 1 has a constant probability
of judging “different”, that participant 2 has a single dis-
crimination peak around stimulus pair 49, and that partic-
ipant 3 could have discrimination peaks around stimulus
pairs 53 and 113. Whether these visual suggestions are cor-
rect, e.g. whether the small right-hand bump of listener 2 is
indeed irrelevant and the taller right-hand bump of listener
3 is not caused by random variation, remains to be seen.
The following three subsections therefore submit these data
to several maximum-likelihood analyses, each of which
ants with apparently zero, one, and two discrimination peaks, respectively.
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corresponds to a different model of what the listener is
doing. The models are compared in Section 3.4.

3.1. First model: no discrimination peaks

Our first, simplest, model assumes that the listener has
no categorical perception along the continuum but instead
only has an acoustic discrimination strategy. Since we used
constant distances along the auditorily uniform erb scale,
an ideal acoustic listener has a constant probability pconst

of judging any stimulus pair as “different”. In other words,
the probability pn that the nth stimulus pair is judged as
“different” is simply

pn ¼ pconst ð1Þ

Although an estimate of the parameter pconst could sim-
ply be computed by dividing the total number of “differ-
ent” judgments by the total number of trials (260), we
here provide a more general method of estimation, which
can also be used for more complicated formulas for pn,
as we do in Sections 3.2 and 3.3.

The general maximum-likelihood method (Fisher, 1922)
for finding the best underlying model pn (for any formula
for pn, not just the model in (1)) runs as follows. The prob-
ability that both the first and the second presentation of the
first pair are judged as “different” is p2

1, and the probability
that they are both judged as “same” is (1 � p1)2; the prob-
ability that the first is judged as “different” and the second
as “same” is p1(1 � p1), and the probability that the first is
judged as “same” and the second as different is (1 � p1)p1.
In general, the probability of a certain observed sequence
of d1 “different” judgments and s1 “same” judgments is
pd1

1 ð1� p1Þ
s1 . Given the values of all dn and sn of the lis-

tener, the probability of the total observed data sequence
of the listener is

L ¼
YN
n¼1

pdn
n ð1� pnÞ

sn ð2Þ

This probability is denoted as L, because it is the likeli-
hood associated with the parameter(s) of pn. The logarithm
of this is the “log-likelihood”

LL ¼ ln
YN
n¼1

pdn
n ð1� pnÞ

sn

¼
XN

n¼1

ðdn ln pn þ sn lnð1� pnÞÞ ð3Þ

The best underlying model is now the set of parameters
for pn that maximize LL. This is true for any formula for
pn; in the case of the parametrized model in (1), the only
parameter is pconst, so we have to find the value of pconst that
maximizes LL.

The maximization of LL for the model in (1) runs as fol-
lows. We initially assign to the parameter pconst a random
value between 0 and 0.5 and subsequently add small
positive or negative values to it (starting with a uniformly
distributed random number between �0.1 and +0.1, under
the constraint that pconst stays between 0 and 1), always
checking whether LL improves (becomes less negative)
according to formulas (1) and (3). Whenever LL improves,
we keep the changed pconst as our new best value of pconst,
and we subsequently start again from this new value. After
1000 iterations, in which the maximum change gets expo-
nentially smaller (after 1000 iterations it has decreased by
a factor of 100, i.e. to a uniformly distributed random
number between �0.001 and +0.001), we arrive near the

best value of pconst. We then home in on the best value in
10,000 more steps, in which the changes gradually decrease
by another factor of 100), and thus arrive at the best value
for pconst. For listener 1 it is 0.508, for listener 2 it is 0.319,
and for listener 3 it is 0.304. The top row of Fig. 3 shows
these values, together with the best LL values obtained.
As expected, the optimized pconst values are indeed identical
to the overall fraction of “different” responses. The Figure
suggests that the constant model of equation (1) fits the
data well for listener 1 but not for listeners 2 and 3 (this
is corroborated in the model comparison of Section 3.4).
3.2. Second model: one discrimination peak

Our second model assumes that the listener mixes an
acoustic discrimination strategy with a categorical percep-
tion strategy based on the existence of two categories along
the continuum. We assume, therefore, that the probability
of a “different” judgment shows one peak somewhere along
the continuum. If we assume that the peak has a Gaussian
shape, is centered at l, has a height of p+ and a width of r,
and that the height of the tails of the peak far away from l
is p�, the formula for the probability of a “different” judg-
ment for the nth pair is

pn ¼ p� þ ðpþ � p�Þ exp ð� ðn� lÞ2

2r2
Þ ð4Þ

In terms of an underlying categorical perception model,
p� can be regarded as the probability of judging two 0.9-
erb-distant stimuli within a category as “different” (this is
0 for perfect categorical perception), and p+ can be
regarded as the probability of judging two 0.9-erb-distant
stimuli across a category boundary at their midpoint as
“different” (this is 1 for perfect categorical perception
across an infinitely crisp boundary).

The optimization procedure again starts with random
values of the four parameters p� (between and 0 and
0.5), p+ (between p� and 1), l (between 1 and 130) and r
(between 0 and 100), and randomly changes these parame-
ters 1000 times (initially by at most ±0.1 for p� and p+, and
±10 for l and r) so as to increase the value of LL accord-
ing to (4) and (3), under some constraints (p� and p+ have
to stay between 0 and 1, p+ can never become less than p�,
l has to stay between 1 and 130, and r has to stay positive).
Since this procedure can arrive in a non-global local opti-
mum, it is repeated 100 times from different random start-
ing conditions, yielding a set of 100 best LL values. The



Fig. 3. Maximum-likelihood fitting of three listeners, each with zero, one, and two peaks. Solid curves: smoothed data (copied from Fig. 2). Dashed curve:
fit (unlabelled vertical dotted lines: l ± r). Thick grey curve: smoothed fit.
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highest of these 100 values is chosen as our first approxima-
tion of the “best best LL”; starting from the parameter val-
ues associated with this approximation, we make the
approximation more precise with a single set of 10,000
decreasing changes, as before.2 The resulting best best LL

values are shown in the middle row of Fig. 3. The figure
shows both the fitted pn itself and its smoothed version,
which ought to be close to the smoothed data because it
is obtained by convolving the fitted pn with a unit-area
Gaussian with a standard deviation of 10 (and edge correc-
tion), just as was applied to the raw data above. We see
that visually, the smoothed fit for listener 2 is indeed very
close to her smoothed data (this comparison is the second
purpose of showing the smoothed raw data).
3.3. Third model: two discrimination peaks

Our third model assumes that the listener has three
categories along the continuum, and therefore two discrim-
ination peaks:
2 There are faster methods for finding local optima (Press et al., 1992, ch.
10.6), and they can be used as well. Repeating the search multiple times to
find the global optimum, however, cannot be prevented.
pn ¼ p� þ ðpþ1 � p�Þ exp �ðn� l1Þ
2

2r2
1

 !

þ ðpþ2 � p�Þ exp �ðn� l2Þ
2

2r2
2

 !
ð5Þ

When we then optimize the seven parameters p�, p+1,
p+2, l1, l2, r1, and r2 for the maximum LL, in an iterative
process analogous to Section 3.2, we obtain the bottom
row of Fig. 3. For each listener, the smoothed fit is now
close to her smoothed data.
3.4. Comparison of the three models

Instead of judging visually how an increase in the num-
ber of model parameters improves the fit or not, we should
ask the question: does the likelihood rise significantly with
each addition of parameters? The table below summarizes
the values of LL for the three listeners, together with
DLL, which is the increase in LL from the next simpler
model. Following a known property of maximum likeli-
hood estimation (Wilks, 1938), the p values in the table
are derived from performing a v2 test on �2DLL (with 3
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degrees of freedom, which is the number of parameters
added to the model with each peak).

We see that the data of listener 1 show no evidence for
any discrimination peak, i.e. that they are consistent with
the idea that he listens acoustically (with a probability pconst

of hearing the difference) or that he has only one category
(with a bias pconst toward responding “different”); a mix of
these two strategies is also possible. The data of listener 2
indicate that she has at least one discrimination peak,
which suggests that she has at least two categories (again,
p� reflects the success of acoustic listening and/or a bias
toward responding “different”); there is no evidence for
more categories than two. The data of listener 3 indicate
that she has at least two discrimination peaks, suggesting
that she has at least three categories, without evidence for
more. Summing up, the minimal model for listener 1 has
zero peaks, the minimal model for listener 2 has one peak,
and the minimal model for listener 3 has two peaks. Decid-
ing what is the best model for each speaker is more specu-
lative: Akaike’s Information Criterion (Akaike, 1974)
favors a model over another if the improvement in LL is
greater than the increase in the number of parameters
(i.e. 3), and would therefore indeed select zero peaks for lis-
tener 1 (although having one peak is only 2.3% less likely),
one peak for listener 2, and two peaks for listener 3; several
Bayesian criteria (for an overview, see Pitt et al. (2002))
could also be used.

3.5. Interpretation of models

As has been illustrated in Section 3.4, the number of
peaks in the last significantly-improving model can be
interpreted as the number of reliably detected category
boundaries that the listener has along the continuum. In
the absence of response bias and decision noise, the value
of p� can be interpreted as the probability that the listener
is listening acoustically within a category, and the value of
p+ � p� can be interpreted loosely as the degree of categor-
ical perception. The value of l expresses the location of the
category boundary (here, a real number between 1 and
130), and r expresses the crispness of the boundary.

Several other models are possible. If your idea of the
underlying mechanism of the listener’s responses is such
that p+1 has to be equal to p+2, you can eliminate one
parameter in (5) by forcing p+1 and p+2 to be identical,
leading to a model with only 6 parameters:

pn ¼ p� þ ðpþ � p�Þ

� exp �ðn� l1Þ
2

2r2
1

 !
þ exp �ðn� l2Þ

2

2r2
2

 ! !
ð6Þ

When we apply this model to the data of listener 3, the
result is very similar to the third row of the third column of
Fig. 3, but with a value for p+ intermediate between p+1

and p+2 in that figure. The resulting log-likelihood is
�136.532, which is significantly better than the value for
one peak (v2(df = 2) = 2(146.360 – 136.532), p = 0.00054)
but not significantly worse than the value for two peaks
with different heights (v2(df = 1) = 2(136.532 – 135.903),
p = 0.26), which means that the model in (6) has reliably
detected the second peak and that allowing p+ to be differ-
ent for the two peaks, as in (5), has not reliably been shown
to improve the fit.

The models in (4)–(6) could be criticized on the basis
that they are just “fitting” models, i.e., they produce a fit
with Gaussian response curves without supplying an
underlying mechanism for the shape of these curves. An
alternative model could be based on production: it may
be argued that the value of F1 produced for the categories
A and B in the listener’s prior learning environment were
distributed as the Gaussians PA(x) = norm(lA, rA) and
PB(x) = norm(lB, rB), where x is the value of F1 in erb.
A probability-matching strategy for the listener (as is pre-
dicted by some perception learning algorithms, e.g.
Boersma, 1997) would lead her to identify the auditory
value x as the category A with a probability of IA(x) =
PA(x)/(PA(x) + PB(x)). In the perfect categorical percep-
tion case (Liberman et al., 1957), the probability of a “dif-
ferent” judgment would then be DAB(x) = IA(x � d/
2)IB(x + d/2) + IA(x + d/2)IB(x � d/2), where d is the dis-
tance between the members of a pair (0.9 erb). Mixing this
with the simplest model of acoustic versus categorical lis-
tening strategies (for two categories) would yield

pn ¼ pacoustic þ pcategoricalDABðxnÞ ð7Þ

where pacoustic is the probability of listening purely acousti-
cally times the probability of detecting a 0.9 erb acoustic
difference, pcategorical is the probability of listening purely
categorically, and xn is the erb value in the center of the
nth stimulus pair. The six parameters of the model in Eq.
(7), i.e., pacoustic, pcategorical, lA, rA, lB, and rB, can be com-
puted just as easily as the four parameters in Eq. (4).

4. Discussion

Previous research has argued that discrimination tasks
with a large number of different non-repeating stimuli form
a more “naturalistic” environment for measuring categori-
cal perception than tasks with a small number of repeating
stimuli (Rogers and Davis, 2009). When this finding is
applied to a single phonetic continuum, the need arises
for a method of analysis suitable for continuous discrimi-
nation data; devising such a method was our aim in this
study. We introduced a maximum-likelihood method that
is appropriate for “continuous” (i.e. densely sampled) dis-
crimination data, analogously to the way in which another
maximum-likelihood method, namely the usual method of
finding the optimal values of the parameters in a logistic
regression, is appropriate for continuous identification data
(Nearey, 1990). Our method thereby contributes to the
validity of any claims about categorical perception made
on the basis of continuous data. We illustrated how the
method works on continuous discrimination data of three
real listeners.



Table 1
Development of log-likelihood as a function of the number of modeled
distribution peaks. Bold = statistically significant improvement.

Model Listener 1 Listener 2 Listener 3

No peaks �180.187 �162.835 �159.663

One peak �177.210 �134.135 �146.360

Improvement +2.977 +28.700 +13.303

p 0.11 2.1�10�12 7.1�10�6

Two peaks �175.242 �132.199 �135.903

improvement +1.968 +1.936 +10.457

p 0.27 0.28 0.00011

Three peaks �174.798 �131.987 �135.671
improvement +0.444 +0.212 +0.232
p 0.83 0.94 0.93
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The present method fits the obtained discrimination
function with several models that assume different numbers
of discrimination peaks. Given that a peak in the discrim-
ination function corresponds to a category boundary
(Liberman et al., 1957), this method determines a plausible
(or at least minimum) number of categories along the stim-
ulus continuum. The method also determines the locations
and crispnesses of the boundaries. Of course one cannot
divide the 62 listeners into three groups solely on the basis
of the p values in Table 1 (one cannot prove that a listener
does not have more peaks). Such a division may require
adding latent variables to the model.

The method presented here is quite general. While we
used it here for a case with dense sampling along the audi-
tory continuum, it could have been used with any of the
cases reported in the previous literature, which typically
samples the continuum sparsely into 7 to 15 values. While
we used the method here with even sampling, it applies
equally well to other unskewed kinds of sampling such as
random sampling. And while the method was applied here
to an AX task, it can be applied with the same ease to an
ABX task, a 4IAX task, or to any other task in which the
participant has to choose from two response options, espe-
cially if an underlying decision mechanism, like the one pre-
sented here at the end of Section 3.5, can be formulated.
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