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Multiple Equilibria and Limit Cycles in Evolutionary

Games with Logit Dynamics∗

Cars H. Hommes† Marius I. Ochea‡

23rd February 2011

Abstract

This note shows, by means of two simple, three-strategy games, the existence of

stable periodic orbits and of multiple, interior steady states in a smooth version of the

Best Response Dynamics, the Logit Dynamics. The main finding is that, unlike Replic-

ator Dynamics, generic Hopf bifurcation and thus, stable limit cycles, occur under the

Logit Dynamics, even for three strategy games. We also show that the Logit Dynamics

displays another bifurcation which cannot occur under the Replicator Dynamics: the

fold bifurcation, with non-monotonic creation and disappearance of steady states.
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1 Introduction

A large body of the research on evolutionary game dynamics has focused on identifying

classes of games and dynamics that ensure convergence to point-attractors such as the Nash

equilibrium (Hofbauer andWeibull (1996), Hofbauer and Sandholm (2002), Sandholm (2005)).

However, unfolding the mechanism through which non-convergent behavior may emerge is

important for economic situations as, for instance, stable cyclical patters have already been

noticed experimentally (Cason and Friedman (2003)) in game-theoretical models of price

dispersion (Burdett and Judd (1983)). Hofbauer et al. (1980) investigate the phase portraits

from three-strategy games under the replicator dynamics and conclude that only ‘simple’

behaviour - sinks, sources, centers, saddles - can occur. In general, evolutionary dynamics

in a n−strategy game define a proper n − 1 dynamical system on the n − 1 simplex. An

important result (Zeeman (1980)), is that there are no generic Hopf bifurcations, under

Replicator Dynamics, on the 2-simplex: "When n = 3 all Hopf bifurcations are degenerate"1.

In Replicator Dynamics only the "hairline" case of a continuum of cycles occurs, which are

non-generic and disappear by slightly perturbing the payoff parameters. Another possibility

in Replicator Dynamics is a so-called heteroclinic cycle consisting of saddle steady-states on

the boundary of the simplex and their connecting saddle paths. Generic stable limit cycles

do not arise in 3-strategy games under Replicator Dynamics. Although periodic and chaotic

behaviour is documented in the literature for the Replicator Dynamics, there is much less

evidence for such complicated behaviour in classes of evolutionary dynamics that may be

more appropriate for human interaction (e.g. fictitious play or best response dynamics.).

Shapley (1964) constructs an example of a non-zero sum game with a "polygon" attractor

under fictitious play2 whereas Berger and Hofbauer (2006) find stable periodic behaviour -

two limit cycles bounding an asymptotically stable annulus under the Brown-von Neumann

Nash (BNN) dynamic.

Our goal is to investigate the generic possibility of complicated dynamics (i.e. stable

limit cycles, multiple steady states) in simple, well-known, three strategies games such as

Rock-Paper-Scissors and Coordination games under a smoothed version of the Best Response

1Zeeman (1980), pp. 493.
2The Shapley attractor, under fictitious play and (perturbed) best-response dynamics, is also discussed in

Gaunersdorfer and Hofbauer (1995) and Benaim et al. (2009).
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dynamics, the Logit Dynamics. As already discussed above, Replicator Dynamics does not

give rise to a stable limit cycle but to heteroclinic cycles in 3×3 circulant RSP games (Zeeman

(1980)). We obtain an alternative proof of this classical result based on the computation of

the first Lyapunov coeffi cient in the normal form of the vector field induced by the Replicator

Dynamics, and show that all Hopf bifurcations are degenerate. Via the same technique,

generic Hopf bifurcations are shown to occur under the Logit Dynamics for 3 × 3 circulant

RSP games and, moreover, all these bifurcations are supercritical, i.e. the dynamical system

exhibits stable limit cycles. In addition to analytical results on bifurcations, we use the

advanced bifurcation software Matcont (Dhooge et al. (2003)) to provide a "computer-assisted

proof" of the existence of bifurcation curves in the parameter space. Knowledge of these

bifurcation curves provides key insight how complicated dynamics can arise in a 2-D parameter

space, of the payoff and behavioral parameters. In particular, we show that in the pure 3× 3

Coordination game, the transition to multiple equilibria may be non-monotonic as a single

parameter is increased, e.g. a bifurcation route from 1-3-5-7-5-7 equilibria.

The note is organized as follows: Section 2 introduces the Logit Dynamics, while Section

3 gives a brief overview of the Hopf bifurcation theory. In Section 4 the Logit Dynamics is

implemented on Rock-Scissors-Paper and in Section 5 on a 3 × 3 pure Coordination game.

Concluding remarks are included in Section 6.

2 Logit Dynamics

The set of evolutionary dynamics roughly splits into two classes3: imitative dynamics and

pairwise comparison (belief-based or ’competent’ play). The first class is represented by the

famous Replicator Dynamic (Taylor and Jonker (1978)) that captures the basic Darwinian

tenet that strategies that fare better than average spread in the population. Formally, given

a normal form game matrix A[n × n], the fractions xi of each strategy Ei ∈ {E1, E2,...En}

evolve in the n− 1 dimensional simplex ∆n−1 = {x ∈ Rn :
n∑
i=1

xi = 1, xi ≥ 0} according to:

ẋi = xi[fi(x)−f̄(x)] = xi[(Ax)i−xAx] (1)

3See Sandholm (2008) for the microfoundations of these two classes of evolutionary dynamics as derived
from the aggregation of individual players’choices.
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where fi(x) is the payoff to strategy Ei when state of the population is x and f̄(x) = xAx is

the average payoff. From the class of belief-based dynamics we focus on a smooth approxim-

ation of the Best Reply dynamics, the Logit dynamics introduced by Fudenberg and Levine

(1998) and parameterised by the intensity of choice β (Brock and Hommes (1997)):

ẋi =
exp[βAx)i]∑
k exp[βAx)k]

− xi. (2)

When β ≈ ∞ the probability of switching to the discrete ‘best response’Ej is one while

for a very low intensity of choice (β ≈ 0) the switching rate is (almost) independent of the

actual performance of the alternative strategies (almost equal probability mass is put on each

of them). The quantal response equilibria of McKelvey and Palfrey (1995), also called ‘logit

equilibria’are fixed points of the Logit Dynamics.

3 Hopf and degenerate Hopf bifurcations

For the convenience of the general reader we briefly review the main bifurcation route towards

a stable limit cycle, the Hopf bifurcation. In a one-parameter family of continuous-time

systems, the only generic bifurcation through which a limit cycle is created or disappears

is the non-degenerate Hopf bifurcation. Assume we are given a parameter-dependent, two

dimensional system (as in, for example, Kuznetsov (1995)):

ẋ = f(x, α),x ∈ R2, α ∈ R, f smooth, (3)

with a steady state at x∗ = 0, i.e. f(0, α) = 0 and the Jacobian matrix evaluated at the

fixed point x∗ = 0 having a pair of purely imaginary, complex conjugate eigenvalues at the

bifurcation value α = 0, i.e. λ1,2 = µ(α) ± iω(α) with µ(α) < 0 for α < 0, µ(0) = 0 and

µ(α) > 0 for α > 0.

If , in addition, the following genericity4 conditions are satisfied:

4Genericity usually refer to transversality and non-degeneracy conditions. Rougly speaking, the trans-
versality condition means that complex eigenvalues cross the real line at non-zero speed. The nondegeneracy
condition implies non-zero higher-order coeffi cients in Eq. (5) below. It ensures that the singularity x∗ is typ-
ical (i.e. ‘nondegenerate’) for a class of singularities satisfying certain bifurcation conditions. See Kuznetsov
(1995) pp. 89− 98 for a complete mathematical description of the Hopf bifurcation.
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(i)
[
∂µ(α)
∂α

]
α=0
6= 0 - transversality condition

(ii) l1(0) 6= 0, where l1(0) is the first Lyapunov coeffi cient5 - nondegeneracy condition,

then the system (3) undergoes a Hopf bifurcation at α = 0. As α increases the steady

state changes stability from a stable focus into an unstable focus.

There are two types of Hopf bifurcation, depending on the sign of the first Lyapunov

coeffi cient l1(0) :

(a) If l1(0) < 0 then the Hopf bifurcation is supercritical : the stable focus x becomes

unstable for α > 0 and is surrounded by an isolated, stable closed orbit (limit cycle).

(b)If l1(0) > 0 then the Hopf bifurcation is subcritical : for α < 0 the basin of attraction

of the stable focus x∗ is surrounded by an unstable cycle which shrinks and disappears as α

crosses the critical value α = 0 while the system diverges quickly from a neighbourhood of

x∗. In case (a) the stable cycle is created immediately after α reaches the critical value and

thus the Hopf bifurcation is called supercritical, while in case (b) the unstable cycle already

exists before the critical value, i.e. a subcritical Hopf bifurcation. The supercritical Hopf is

also known as a soft or non-catastrophic bifurcation because , even when the system becomes

unstable, it still lingers within a small neighbourhood of the equilibrium bounded by the limit

cycle, while the subcritical case is a sharp/catastrophic bifurcation as the system moves far

away from the unstable equilibrium. If the first Lyapunov coeffi cient l1(0) = 0 then there

is a degeneracy in the third order terms of the normal form and we have a degenerate Hopf

bifurcation which may display richer behavior: e.g. a continuum of cycles, a limit cycle

bifurcating into two or more cycles, or the coexistence of stable and unstable cycles.

For the planar case, the first Lyapunov coeffi cient l1(0) can be computed without explicitly

deriving the normal form, from the Taylor coeffi cients of a transformed version of the original

vector field. The computation of l1(0) for higher dimensional systems makes use of the Center

Manifold Theorem by which the orbit structure of the original system near (x∗, α), is fully

determined by its restriction to the two-dimensional center manifold6. On the center manifold

5This is the coeffi cient of the third order term in the normal form of the Hopf bifurcation (Eq. (5) below).
6The center manifold is the invariant manifold spanned by the eigenvectors corresponding to the eigenvalues

with zero real part (Kuznetsov (1995) pp. 157).
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(3) takes the form (Wiggins (2003)):

ẋ =

 ẋ

ẏ

 =

 Reλ(α) − Imλ(α)

Imλ(α) Reλ(α)


 x

y

+

 f 1(x, y, α)

f 2(x, y, α)

 (4)

where λ(α) is an eigenvalue of the linearized vector field around the steady state and the

nonlinear functions f 1(x, y, α), f 2(x, y, α) of order O(|x|2) are derived from the original vector

field. At the Hopf bifurcation point α, λ1,2 = ±iω and the first Lyapunov coeffi cient is

(Wiggins (2003)):

l1(α)=
1

16
[f 1xxx+f

1
xyy+f

2
xxy+f

2
yyy]+

1

16ω
[f 1xy(f

1
xx+f

1
yy)− f

2
xy(f

2
xx+f

2
yy)− f

1
xxf

2
xx+f

1
yyf

2
yy] (5)

4 Rock-Scissors-Paper Games

The Rock-Paper-Scissors class of games (or games of cyclical dominance) formalize strategic

interactions where each strategy Ei is an unique best response to strategy Ei+1 for i = 1, 2

and E3 is a best response to E1:

A =



E1 E2 E3

E1 0 δ −ε

E2 −ε 0 δ

E3 δ −ε 0


; δ, ε ≥ 0 (6)

4.1 Circulant RSP Game and Replicator Dynamics

Letting x(t) = (x(t), y(t), z(t)) denote the population state at time instance t define a point

from the 2-dimensional simplex, the replicator equation (1) with the game matrix (6) induce

on the 2-simplex the vector field:


ẋ

ẏ

ż

 =


x[yδ − zε− (x (yδ − zε) + y (−xε+ zδ) + z (xδ − yε))]

y[−xε+ zδ − (x (yδ − zε) + y (−xε+ zδ) + z (xδ − yε))]

z[xδ − yε− (x (yδ − zε) + y (−xε+ zδ) + z (xδ − yε))]

 (7)
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Hofbauer and Sigmund (2003) use the Poincare-Bendixson theorem together with the

Dulac criterion to prove that limit cycles cannot occur in games with three strategies under

the replicator dynamics. As an illustration of the Hopf bifurcation method, we present the

following alternative proof of Zeeman (1980) non-genericity result:

Proposition 1 All Hopf bifurcations are degenerate in the circulant Rock-Scissor-Paper game

under Replicator Dynamics.

Proof. Substituting z = 1−x−y into (7) yields a 2-dim system on the simplex of the form

(4) with f 1(x, y) = −xδ+2xyδ+x2δ and f 2(x, y) = yδ−2xyδ−y. For these quadratic f 1 and

f 2 it follows immediately from (5) that the first Lyapunov coeffi cient is l1(εHopf = δHopf ) = 0

implying a first degeneracy in the third order terms from the Taylor expansion of the normal

form. The detected bifurcation is a degenerate Hopf bifurcation7.

Although, in general, the orbital structure at a degenerate Hopf bifurcation may be ex-

tremely complicated, for our particular vector field induced by the Replicator Dynamics it can

be shown by Lyapunov function techniques (Hofbauer and Sigmund (2003), Zeeman (1980))

that a continuum of cycles is born exactly at the critical parameter value.

4.2 Circulant RSP Game and Logit Dynamics

The Logit evolutionary dynamics (2) applied to the circulant normal form game (6) leads to:


ẋ

ẏ

ż

 =


exp(β(yδ−zε))

exp(β(yδ−zε))+exp(β(−xε+zδ))+exp(β(xδ−yε)) − x
exp(β(−xε+zδ))

exp(β(yδ−zε))+exp(β(−xε+zδ))+exp(β(xδ−yε)) − y
exp(β(xδ−yε))

exp(β(yδ−zε))+exp(β(−xε+zδ))+exp(β(xδ−yε)) − z

 (8)

By substituting z = 1− x− y into (8) we can reduce to a 2-D system

exp(β(yδ−ε(−x−y+1)))
exp(β(xδ−yε))+exp(β(−xε+δ(−x−y+1)))+exp(β(yδ−ε(−x−y+1))) − x = 0

exp(β(−xε+δ(−x−y+1)))
exp(β(xδ−yε))+exp(β(−xε+δ(−x−y+1)))+exp(β(yδ−ε(−x−y+1))) − y = 0

(9)

7Since all 3rd and higher-order terms are zero, the Hopf bifurcation has, in fact, an "infinite number of
degeneracies" with all higher order Lyapunov coeffi cients li(εHopf = δHopf ) = 0, i ≥ 2. This explains why, for
the Replicator Dynamics, a continuum of cycles exists after the Hopf bifurcation.

7



We are now able to state the main result:

Proposition 2 The Logit Dynamics (8) on the circulant, bad (i.e. δ < ε) Rock-Scissors-

Paper game exhibits a generic Hopf bifurcation and, therefore, has limit cycle. Moreover, all

Hopf bifurcations are supercritical, i.e. the limit cycle is born stable. The critical values for

which the Hopf bifurcation arises are given by βHopf = 6
ε−δ for 0 < δ < ε.

Proof. The 2− dim simplex barycentrum [x = 1/3, y = 1/3, z = 1/3] remains a solution

of (9) irrespective of the value of β. The Jacobian of (9) evaluated at this steady state is: 1
3
βε− 1 1

3
βδ + 1

3
βε

−1
3
βδ − 1

3
βε −1

3
βδ − 1

 , with eigenvalues: λ1,2 = 1
6
β(ε− δ)− 1± i1

2

√
1
3
(βδ + βε).The

Hopf bifurcation (necessary) condition Re(λ1,2) = 0 leads to:

βHopf =
6

ε− δ .(0 < δ < ε) (10)

Notice that for the zero-sum RSP game (ε = δ) - unlike Replicator Dynamics which exhibited

a degenerate Hopf at ε = δ - the barycentrum is always asymptotically stable (Reλ1,2 = −1)

under Logit Dynamics. For ε < δ, i.e. the "good" RSP game, the interior steady state

is always locally stable under Logit Dynamics. Condition (10) gives the necessary first-

order condition for Hopf bifurcation to occur; in order to show that the Hopf bifurcation is

non-degenerate we have to compute the first Lyapunov coeffi cient l1(β
Hopf , ε, δ) according

to (5) and check whether it is non-zero. For this, we first use equations (4) to obtain the

nonlinear functions:

f1(x, y) = y
√

3
ε+ δ

ε− δ − x+
exp

(
6(yδ−ε(−x−y+1))

−δ+ε

)
exp

(
6(xδ−yε)
−δ+ε

)
+ exp

(
6(−xε+δ(−x−y+1))

−δ+ε

)
+ exp

(
6(yδ−ε(−x−y+1))

−δ+ε

)
f2(x, y) = −x

√
3
ε+ δ

ε− δ − y +
exp

(
6(−xε+δ(−x−y+1))

−δ+ε

)
exp

(
6(xδ−yε)
−δ+ε

)
+ exp

(
6(−xε+δ(−x−y+1))

−δ+ε

)
+ exp

(
6(yδ−ε(−x−y+1))

−δ+ε

)
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Next, using Eq. (10) and first Lyapunov coeffi cient formula (5) we obtain:

l1(β
Hopf , ε, δ) =

[
1728δε− 4320δ2 − 4320ε2 − 4320δε+ 1728δ2 + 1728ε2

19δ2 − 38δε+ 19ε2 − 16δε+ 8δ2 + 8ε2

]
=
−2592δε− 2592δ2 − 2592ε2

27δ2 − 54δε+ 27ε2
= −96(δε+ δ2 + ε2)

(ε− δ)2 < 0, for ε>δ>0.

Computer simulations of this route to a stable cycle are shown in Fig. 1. As β increases

from 10 to 35 (i.e. the noise level is decreasing) the interior stable steady state looses stability

via a supercritical Hopf bifurcation and a small, stable limit cycle emerges around the unstable

steady state8. Unlike Replicator Dynamics, stable cyclic behavior does occur under the Logit

dynamics even for three-strategy games.

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

x

y

(a) Stable focus,
β = 10.

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

x

y

(b) Generic Hopf,
β = 30.

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

x

y

(c) Limit cycle,
β = 35.

Figure 1: Rock-Scissors-Paper and Logit Dynamics for fixed game ε = 1, δ = 0.8 and different
values of the behavioral parameter β. Qualitative changes in the phase portraits: a stable
interior fixed point (Panel (a)) loses stability at β = 30 i, via a supercritical Hopf bifurcation
(Panel (b)); if β is pushed up even further, a stable limit cycle is born (Panel (c)).

Figure 2 depicts the curve of Hopf bifurcations as defined by the first order condition (10)

in the (β, ε− δ) parameter space. As we cross this Hopf curve from below the stable interior

fixed point loses stability and a stable periodic attractor surrounds it. The picture summarizes

the possible types of dynamical behavior for the "good" and the "bad" Rock-Paper-Scissors

game. For ε < δ (i.e. "good" RSP game) the interior, fully mixed steady state is always

locally9 stable under Logit Dynamics, similar to the behavior of Replicator Dynamics on this

8Similar limit cycles can be detected in the payoff parameter space if the intensity of choice is kept constant
and the game parameter δ is allowed to change (Ochea (2010)).

9Numerical simulations suggest that for ε < δ the steady state is even globally stable.
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class of RSP games. For ε > δ (i.e. "bad" RSP game) the behavior depends on how sensitive

players are to differences in fitness, and, unlike Replicator Dynamics, Logit displays richer

dynamics: when the intensity of choice increases beyond a critical threshold a stable limit

cycle arises after a Hopf bifurcation.

­6 ­4 ­2 0 2 4 6 8 10
0

2

4

6

8

10

ε­ δ

β

stable
limit cyclestable

steady state

stable
steady state

H

H

Figure 2: Rock-Scissors-Paper and Logit Dynamics: Supercritical Hopf curve in (β, ε − δ)
parameter space, analytically computed.

5 Coordination Game

Using topological arguments, Zeeman (1980) shows that three-strategies games have at most

one interior, isolated fixed point under Replicator Dynamics10. This implies that a fold11

bifurcation in which two isolated fixed points collide and disappear when some parameter

is varied, cannot occur in the interior of the simplex. In this section we show - by means

of the classical coordination game - that multiple, isolated, interior steady-states may exist

under Logit Dynamics and show that the fold catastrophe occurs when we alter the intensity

of choice β. We use advanced numerical tools (Dhooge et al. (2003)) for detecting all the

fold catastrophe bifurcation curves in the parameter space. Earlier simulations with the

Mathematica package Dynamo12 suggest the occurrence of multiple, interior logit equilibria

in the pure 3× 3 coordination. What we provide here is a "computer-assisted" proof for the

existence of fold bifurcations and unveil the exact sequence of fold bifurcations through which

such multiplicity arises. Knowledge of these bifurcation curves leads to a novel finding that,

10See Theorem 3 pp. 478 in Zeeman (1980).
11In a continuous-time dynamical system a fold bifurcation occurs when the Jacobian matrix evaluated at

the critical equilibrium has a zero eigenvalue. Technically, other higher-order non-degeneracy conditions must
hold, as well. See Kuznetsov (1995) pp. 81− 84 for a complete treatment of the fold bifurcation.
12See the Logit movie at http://www.ssc.wisc.edu/~whs/dynamo/gallery/logitmovie.html for a fixed, pure

Coordination game with Logit Dynamics with β ∈ [0.1, 1000].
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depending on the payoff parameter ε, the transition from 1 to 7 steady states for increasing

values of the intensity of choice may be non-monotonic. We consider the simplest version of

a symmetric 3× 313 pure coordination game, given by the following payoff matrix:

A =


1− ε 0 0

0 1 0

0 0 1 + ε

 , 0 < ε < 1. (11)

Logit Dynamics for the payoff matrix A of the Coordination game (11) generates the fol-

lowing vector field on the simplex of frequencies (x, y, z) of strategies E1, E2, E3, respectively:


ẋ

ẏ

ż

 =


exp((1−ε)βx)

exp((1−ε)βx)+exp(βy)+exp((1+ε)βz) − x
exp(βy)

exp((1−ε)βx)+exp(βy)+exp((1+ε)βz) − y
exp((1+ε)βz)

exp((1−ε)βx)+exp(βy)+exp((1+ε)βz) − z

 (12)

5.1 Bifurcations

We choose first a relatively large payoff perturbation ε = 0.1. Unlike Replicator, the Logit

Dynamics displays multiple, interior isolated steady states created via a fold bifurcation. In

a 3-strategy pure Coordination game, three interior stable steady states emerge through a

sequence of two saddle-node bifurcations, as illustrated in Fig. 3. For small values of β the

unique, interior stable steady state is close to the simplex barycentrum (1/3, 1/3, 1/3). As β

increases this steady state travels in the direction of the Pareto-superior equilibrium (0, 0, 1).

A first fold bifurcation occurs at β = 2.77 (see Fig. 3a) and two new fixed points are created,

one stable and one unstable. If we increase β even further (β ≈ 3.26) a second fold bifurcation

takes place and two additional equilibria emerge, one stable and one unstable. Finally, two

new fixed points arise at β = 4.31 via a saddle-source bifurcation14. Three stable steady

states co-exist for large values of the intensity of choice β. Note that the three stable steady

states coincide with the ‘logit equilibria’of McKelvey and Palfrey (1995) that converge to

13The 2 × 2 pure coordination game also exhibits multiple, interior logit equilibria, but we restrict to the
3× 3 case in order to contrast our Logit Dynamics results with Zeeman (1980) Replicator Dynamics analysis,
on the same class of games.
14A saddle-source bifurcation is a fold bifurcation where two unstable steady states are created: one saddle

fixed point (i.e. at least one eigenvalue with positive real part) and one source (i.e. both eigenvalues have
positive real part).
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the pure strategy Nash equilibria when β →∞.
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Figure 3: Coordination Game and Logit Dynamics. Panel (a): curves of equilibria along
with codimension I singularities, fold catastrophe (LP) points. Panel (b): curves of fold
bifurcations along with detected codimension II singularities -cusp (CP) points - traced in
the (ε, β) parameter space. Curves of equilibria (c) and of fold bifurcations (d) for small
ε = 0.005.

Fig. 3b plots curves of fold bifurcations in the (β, ε) parameter space. The points labelled

CP are codimension II15 bifurcations and are important, because they act as "organizing

centers" of the complete bifurcation diagram with co-dimension I bifurcation curves. The

cusp points (CP) in Fig. 3b are endpoints of the saddle-node bifurcation curves along which

multiple, interior steady states are created in the Coordination Game under the smoothed

best response dynamics. When a fold bifurcation curve is crossed from below two additional

equilibria are created: one stable and one unstable after a saddle-node bifurcation and two

unstable steady states after a saddle-source bifurcation. If choice is virtually random (β ≈ 0)

there is an unique steady state while if β increases, the number of steady states increases

15The codimension of a bifurcation defines the number of parameters that needs to be varied in order for
the bifurcation to occur generically (Kuznetsov (1995)).
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from 1 to 3, then from 3 to 5 and, finally, from 5 to 7. For small values of ε the bifurcation

scenario is more complicated. For ε = 0.005, Panel (c) in Fig. 3 shows a sequence of 5

saddle-node(source) β−bifurcations, while Panel (d) depicts a blow-up of the relevant, small

ε region in the (ε, β) space of Fig. 3b . Notice that, as β increases, the number of steady

states changes non-monotonically from 1 − 3 − 5 − 7 − 5 − 7. These results illustrate the

importance of the numerical detection of co-dimension I bifurcation curves together with the

co-dimension II cusp bifurcation points in 2-D parameter space to fully understand how the

transition to multiple steady states jointly depends on payoff and behavioral parameters.

5.2 Welfare Analysis

The numerical computation of the basins of attraction for different equilibria reveals inter-

esting properties of the Logit dynamics from a social welfare perspective. We construct a

measure of long-run aggregate welfare as the payoff at the stable steady state weighted by the

size of the corresponding basin of attraction. Whereas for β →∞ the basins of attraction are

similar in size as in the Replicator Dynamics, for moderate levels of rationality the population

manages to coordinate close to the Pareto optimal Nash equilibria16.

Fig. 4 illustrates how the long-run average welfare depends on the parameter β for different

levels of the payoff difference ε. Long run average welfare increases with the payoff difference

ε but evolves non-monotonically with respect to the behavioural parameter β (Fig. 4ab).

Long-run average welfare increases as the fully mixed equilibrium moves towards the Pareto

optimal (0, 0, 1) vertex, attains a maximum just before the first fold bifurcation occurs at

βLP1 = 2.77 and then decreases. As our measure of average welfare is constructed as payoffs

at steady state weighted by the corresponding sizes of basins of attraction, there are two effects

driving the welfare peak before βLP1 is hit. First, the steady state payoff is higher the closer

the steady state is to the Pareto optimal equilibrium. Second, there is a ‘basin of attraction’

effect: before the first fold bifurcation threshold β = βLP1 is reached the entire simplex is

attracted by the unique steady state lying close to the optimal equilibrium. Intuitively, the

noisy choices in the low-beta regime help players escape the path-dependency built into the

16see Ochea (2010) for details on the computation of the basins of attraction areas for both Replicator and
Logit Dynamics and varying payoff and intensity of choice parameters.

13



game and coordinate close to the Pareto-optimal equilibrium. In the limiting case β → ∞,

the stable fixed points of the Logit Dynamics (i.e. the logit equilibria) coincide with the

pure strategy Nash equilibria of the underlying game which, for this Coordination Game, are

exactly the stable nodes of the Replicator Dynamics. Thus the analysis (stable fixed points,

basins’of attraction sizes) of the ’unbounded’rationality case is identical to the one pertaining

to the Replicator Dynamics in Coordination game.
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Figure 4: Coordination Game and Logit Dynamics-Long-run average welfare plots as function
of payoff perturbation parameter ε and the intensity of choice β. As ε increases the long-run
average welfare increases. The long-run average welfare is non-monotonic as a function of the
intensity of choice β, with the maximum arising just before the first fold bifurcation.

6 Conclusions

The first goal of this note was to prove that, even for ‘simple’three-strategy games, peri-

odic attractors do occur under a rationalistic way of modelling evolution in games, the Lo-

git dynamics. Identifying stable cyclic behaviour translates into proving that generic, non-

degenerate Hopf bifurcations arise in these Logit evolutionary systems. By means of normal

form computations, we demonstrated that a non-degenerate Hopf can not occur for Replic-

ator Dynamics, when the number of strategies is three for games like Rock-Scissors-Paper.

However, in Logit dynamics, even for the three strategy case, stable cycles are created, via

a generic, non-degenerate, supercritical Hopf bifurcation. Secondly, multiple, interior steady

states exist in a 3× 3 Coordination game, under the Logit Dynamics and this multiplicity of

equilibria is created through a sequence of fold bifurcations. Using the numerically detected

bifurcation curves we showed that, as the sensitivity to payoff asymmetry β increases, the
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transition from 1 to 7 logit equilibria may be non-monotonic. Finally, a measure of aggregate

welfare reaches a maximum for intermediate β−values, just before the first fold bifurcation

occurs, when most of the population coordinates close to the Pareto-superior equilibrium.

An interesting topic for future research would be to run laboratory experiments with human

subjects to find out which class of evolutionary selection dynamics - either an imitation-based

Replicator or the more involved, belief-based Logit process- is more relevant for players’actual

learning behavior.
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