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to an integrated luminosity of 0.33 fb−1. The tau candidates were identified from their

decays into electrons, muons or hadronic jets. The number of tau-pair candidates has been

compared with the prediction from the Standard Model, where the largest contribution

is expected from Bethe-Heitler processes. The total visible cross section was extracted.

Standard Model expectations agree well with the measured distributions, also at high

invariant mass of the tau pair.
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1 Introduction

The production of isolated-lepton pairs at the ep collider HERA is dominated by the two-

photon Bethe-Heitler process, γγ → l+l−, and can be accurately predicted in the Standard

Model (SM) [1]. Possible deviations of the event yield or final-state distributions from the

prediction of the SM could be a hint for new physics. The measurement of multi-lepton

production at HERA attracted some interest, especially after the observation of an excess

of events at high mass in multi-electron final states, observed by the H1 Collaboration

in the HERA I (1994–2000) data [2]. Recently, the H1 and ZEUS Collaborations have

published [3–5] a study of multi-electron and multi-muon events based on the entire statis-

tics collected at HERA. Further investigations of multi-lepton events were performed in

tau-pair production by H1 [6], based on the HERA I data.

This paper reports a study of ditau events with the ZEUS detector, with data col-

lected in the HERA II running phase (2004–2007). The taus are identified from their

decay into an electron, a muon or a hadronic jet. The hadronic channel is selected with

a technique analogous to that used in a previous ZEUS publication on single-tau produc-

tion [7], where two interesting events, with a high-transverse-energy tau candidate and

large missing transverse momentum, were observed in the HERA I data.
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2 Experimental set-up

The data were collected between 2004 and 2007 at the ep collider HERA using the ZEUS

detector. During this period HERA operated with an electron or positron1 beam with

an energy of 27.5 GeV and a proton beam with an energy of 920 GeV. The e−p data

correspond to an integrated luminosity of 179 pb−1, while the e+p collisions correspond to

155 pb−1, giving a total of 334 pb−1. The lepton beams were polarised, with roughly equal

periods for right-handed and left-handed polarisation, such that the average polarisation

was negligible.

A detailed description of the ZEUS detector can be found elsewhere [8]. A brief outline

of the components that are most relevant for this analysis is given below.

Charged particles were tracked in the central tracking detector (CTD) [9–11], which

operated in a magnetic field of 1.43T provided by a thin superconducting solenoid. The

CTD consisted of 72 cylindrical drift chamber layers, organised in nine superlayers cov-

ering the polar-angle2 region 15◦ < θ < 164◦. The CTD was complemented by a silicon

microvertex detector (MVD) [12], consisting of three active layers in the barrel and four

disks in the forward region.

The high-resolution uranium-scintillator calorimeter (CAL) [13–16] consisted of three

parts: the forward (FCAL), the barrel (BCAL) and the rear (RCAL) calorimeters. Each

part was subdivided transversely into towers and longitudinally into one electromagnetic

section (EMC) and either one (in RCAL) or two (in BCAL and FCAL) hadronic sections

(HAC). The smallest subdivision of the calorimeter was called a cell. The CAL energy res-

olutions, as measured under test-beam conditions, were σ(E)/E = 0.18/
√

E for electrons

and σ(E)/E = 0.35/
√

E for hadrons, with E in GeV.

The muon system consisted of barrel, rear (B/RMUON) [8] and forward (FMUON)

tracking detectors. The BMUON (RMUON) consisted of limited-streamer (LS) tube cham-

bers placed behind the BCAL (RCAL), inside and outside a magnetised iron yoke sur-

rounding the CAL, covering the polar-angle region 34◦ < θ < 135◦ (135◦ < θ < 171◦).

TheFMUON consisted of six trigger planes of LS tubes and four planes of drift chambers

covering the polar-angle region 5◦ < θ < 32◦.

The luminosity was measured using the Bethe-Heitler reaction ep → eγp by a lumi-

nosity detector which consisted of a lead-scintillator calorimeter [17–19] and an indepen-

dent magnetic spectrometer [20]. The fractional uncertainty on the measured luminos-

ity was 1.9%.

1Here and in the following, the term “electron” denotes generically both the electron (e−) and the

positron (e+), unless otherwise specified.
2The ZEUS coordinate system is a right-handed Cartesian system, with the Z axis pointing in the proton

beam direction, referred to as the “forward direction”, and the X axis pointing left towards the centre of

HERA. The polar angle, θ, is measured with respect to the proton beam direction. The coordinate origin

is at the nominal interaction point.
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3 Signal and background processes

The signal considered in this analysis is the presence of two isolated taus at high trans-

verse energy from the reaction ep → (e)τ+τ−X. The scattered electron is observed in the

calorimeter only for high virtuality of the photon at the electron vertex, Q2. The proton

either stays intact (elastic reaction, X = p) or dissociates into a resonant (quasi-elastic)

or hadronic system (inelastic). In order to suppress the dominant backgrounds from deep

inelastic scattering (DIS) neutral current (NC), ep → eX, and photoproduction, γp → X,

only events where no deposit was observed in the forward part of the calorimeter were se-

lected. The dominant signal process (≃ 71% estimated from Monte Carlo simulation after

all selection cuts) was therefore the elastic reaction ep → (e)pτ+τ−, where the final-state

proton stays intact. The quasi-elastic reaction was the second most important contribution

(≃ 27%). In this case the final-state proton dissociates into a system with small invariant

mass, escaping in the forward beam pipe. The contribution of events ep → eτ+τ−X, in

which the scattered electron was observed in the calorimeter, was determined to be only

≃ 1% after all analysis cuts.

The two tau leptons were identified from their decays into an electron, a muon or

hadrons, respectively, resulting in the final-state signatures listed in table 1. The topolo-

gies in which the two tau leptons both decayed into either electrons or muons were not

considered, due to the irreducible background of dielectron and dimuon processes. Hadronic

decays give rise to narrow and low-multiplicity jets; these characteristics allowed tau de-

cays to be distinguished from the much more abundant QCD-induced jets, as described in

section 4.3.

Monte Carlo (MC) programs were used to generate the signal and background events

in order to optimise the selection cuts and determine acceptances.

The Grape event generator [21] was used to simulate signal events. It is based on

the exact electroweak matrix elements in photon-photon (and also photon-Z0 and Z0-Z0)

collisions and internal photon or Z0 conversions at tree level. The three contributions at

the proton vertex, elastic, quasi-elastic and inelastic, were generated separately. The cross

section for tau-pair production falls steeply with the transverse energy of the tau lepton.

Dielectron events ep → (e)e+e−X were a potential background especially to the topol-

ogy (e-)e-jet and were also generated with the Grape program. Dimuon events, which

represented the main background to the (e-)e-µ and (e-)µ-jet final states, were also gener-

ated with Grape.

Due to the requirement that the events be (quasi-)elastic, the main background to

the hadronic channel consisted of diffractive dijet production. Diffractive DIS production,

which was the main background to the topologies (e-)jet-jet and (e-)e-jet, was generated

with the Rapgap [22] program. The same program was used to generate diffractive dijet

events in the photoproduction regime, both in resolved and direct photon processes, which

represented the main background to the jet-jet topology. Since the MC events did not

adequately describe the data distributions, the resolved and direct contributions were sep-

arately normalised to the data using an independent sample from that used in the analysis

(see section 4.4). Non-diffractive DIS and photoproduction events were generated with the

Djangoh [23] and Pythia [24] programs, respectively.

– 3 –
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Topology e-µ e-e-µ e-jet e-e-jet µ-jet e-µ-jet jet-jet e-jet-jet

Electrons Ne = 1 Ne = 2 Ne = 1 Ne = 2 Ne = 0 Ne = 1 Ne = 0 Ne = 1

Muons Nµ = 1 Nµ = 0 Nµ = 1 Nµ = 0

Tau jets Njet = 0 Njet = 1 Njet = 2

Ntrk Ntrk = 2 2 ≤ Ntrk ≤ 3 2 ≤ Ntrk ≤ 7

(E − PZ) < 45 GeV < 60 GeV < 45 GeV < 60 GeV < 45 GeV < 60 GeV < 45 GeV < 60 GeV

Charge cuts

Qe 6= Qµ Qe 6= Qjet Qjet,1 6= Qjet,2 ,

Qjet = ±1 Qjet = ±1

Qe 6= Qbeam Qe 6= Qbeam

(if θe > 1.0) (if θe > 1.0)

Table 1. Definition and selection criteria for each event topology for tau-pair production. The symbols Ne and Nµ refer to the number of selected

electrons and muons in the event, Njet indicates the number of tau-candidate jets. The selection criteria and other variables are defined in the text.
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The generated events were passed through the Geant 3.21-based [25] ZEUS detector-

and trigger-simulation programs. They were reconstructed and analysed using the same

program chain as the data.

4 Event selection

The events were selected online by the ZEUS three-level trigger system [8, 26], using a com-

bination of several trigger chains which required typically either the presence of hadronic

jets, an electron or a muon in the final state. The trigger requirements were looser than the

offline selection. The offline selection proceeded in two steps [27]. A preselection required

low track multiplicity and no energy around the beam-pipe hole in the forward region of

the detector, as expected for (quasi-)elastic ditau production. A second step required the

presence of at least two objects among electrons, muons or jets, identified as the tau decays,

and classified the events in the categories listed in table 1. This selection is described in

more detail below.

4.1 Preselection

The following offline criteria were imposed at preselection level:

• the number of good tracks in the event, Ntrk, was required to be at least 2 and at

most 7, as expected for the ditau topologies studied. A good track was defined to

pass through at least 3 CTD superlayers, to have hits in the MVD or in the innermost

CTD superlayer and to have a transverse momentum greater than 150 MeV;

• the Z coordinate of the interaction vertex, reconstructed using tracks, was restricted

to |ZVTX| < 40 cm in order to reject the background due to non-ep interactions;

• the energy EIR
FCAL, reconstructed from the sum of the energy deposits in the CAL

cells in the first inner ring around the forward beam-pipe hole, was restricted to be

less than 1GeV in order to select (quasi-)elastic events;

• the E−PZ of the final state, reconstructed from the sum of the total and longitudinal

energy deposits of the cells in the calorimeter, was required to be less than 60 GeV.

For events with a muon, the (E −PZ) of the CAL deposit associated with the muon

was replaced by that of the muon track. For fully contained events, E−PZ is twice the

electron-beam energy and peaks at 55 GeV. This requirement rejected ep interactions

overlapping with background events.

Other selection criteria were applied to reject residual non-ep interactions, mainly

beam-gas events and cosmic rays. It was verified that the loss of signal events due to these

cuts was negligible.

4.2 Identification of electrons and muons

An algorithm which combined information from the energy deposits in the calorimeter with

tracks [28] was used to identify possible electron candidates. The electron four-momenta

– 5 –
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were reconstructed from the CAL. The electron candidates were required to have a trans-

verse energy pe
T > 2 GeV, to be in the polar-angle range 17◦ < θe < 160◦ and to have a

good track matched to the calorimeter deposit. The matched track was required to have an

extrapolated distance of closest approach to the calorimeter deposit of less than 8 cm. The

electron candidate was required to be isolated such that the total energy not associated

with the electron in an η-φ cone of radius 0.8 centred on the electron direction, where φ is

the azimuthal angle and η is the pseudorapidity, was less than 2 GeV. This requirement

was complemented by the requirement that no track, other than the matching track, was

contained in an η-φ cone of radius 1 centred on the electron direction. Further fiducial

cuts [27] were applied in the RCAL to guarantee that the experimental acceptance was

well understood. The charge of the track matched to the electron, Qe, was also used to

discriminate the signal from the background. The track charge information was used only

if its significance Strk = |Q/r|/σ(Q/r) was greater than 1.5, where r denotes the radius of

the track helix and σ is the uncertainty.

The muons were required to be reconstructed in the rear or barrel muon chambers and

to be matched to a good track and to a calorimeter deposit. The muon transverse momen-

tum and direction were reconstructed from the matched track. Each muon candidate was

required to have a transverse momentum pµ
T > 2 GeV and to lie in the angular region 34◦ <

θµ < 157◦. The muon was required to be isolated such that only the matching track was

contained in an η-φ cone of radius 1 centred on the muon direction. If a second muon can-

didate, reconstructed with looser criteria, was found in the event, this event was rejected.

4.3 Identification of hadronic tau decays

The jets deriving from the hadronic tau decay were reconstructed from the CAL cells using

the kT cluster algorithm [29] in the longitudinally invariant inclusive mode [30], assuming

massless objects, and were corrected for energy loss due to the dead material in front of the

CAL. The jets were required to have a transverse energy Ejet
T > 5 GeV and pseudorapidity

|ηjet| < 2. At least one good track associated with the jet was required in an η-φ cone of

radius 1 around the jet axis. The fraction fEMC of the jet energy in the electromagnetic

section of the calorimeter was required to satisfy fEMC < min(0.95, 2 · R90% + 0.7), where

R90% is the radius of the η-φ cone centred on the jet axis that contains 90% of the jet

energy. These two cuts rejected electrons faking hadronic tau decays. Further fiducial

cuts [27] were applied on the jet direction in order to exclude regions of the CAL where

the jet energy was not precisely measured.

Jets originating from hadronic tau decays are characterised by their low mass, low

multiplicity (mostly either one or three tracks) and pencil-like shape. In contrast, QCD-

induced hadronic jets are typically broader and have higher multiplicity. These properties

were exploited to discriminate tau jets from QCD jets using a multi-variate discrimination

technique [31] which was used in a previous publication [7]. The jet shape was charac-

terised by six variables. Five of these variables were the same as those used in previous

analyses [7, 32]: the first and the second moment of the radial extension of the jet-energy

deposition (Rmean and Rrms, respectively); the first moment of the energy deposition in

the direction along the jet axis (Lmean); the number of subjets within the jet resolved with

– 6 –
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a resolution criterion ycut [33] of 5 · 10−4 (Nsubj); and the mass of the jet calculated from

the CAL cells associated with the jet (Mjet). The sixth variable, which was used for this

analysis, was the sum of the distances in the η-φ plane between the jet axis and the tracks

associated with the jet, Rtrk =
∑Ntrk

i

√

(∆η2
i + ∆φ2

i ).

The six variables were combined in a discriminant D given, for each point in the phase

space ~x(− log(Rmean),− log(Rrms),− log(1 − Lmean), Nsubj,Mjet, log(Rtrk)), by:

D(~x) =
ρsig(~x)

ρsig(~x) + ρbkg(~x)
,

where ρsig and ρbkg are the density functions of the signal and the background, respec-

tively. The densities were calculated from a method based on range searching [31] and

were determined from a sample of single-tau MC events for the signal and Djangoh DIS

NC events for the background. For any given jet with phase-space coordinate ~x, the signal

and the background densities were evaluated from the number of corresponding simulated

signal and background jets in a 6-dimensional box of fixed size centred around ~x.

Figure 1 shows the six discriminant variables for the data, compared to those of the sum

of the MC expectations, where all cuts described in this section, except the discriminant

cut, were applied. The MC agrees well with the data, both in shape and in normalisation.

The discriminant variable is shown in figure 2 for each jet in each decay channel. As

expected, the ditau signal MC dominates at large values of D, while the background from

the other processes populates the lower values of D. In order to select the hadronic tau

decays, a cut on the discriminant greater than 0.8 was applied on each tau-candidate jet.

4.4 Final selection

After the preselection cuts, the possible decay products of each tau were searched for and

the final state was classified in the eight exclusive topologies listed in table 1, in which

each tau of the pair could decay into an electron, a muon, or a hadronic jet. For high Q2,

the scattered electron could also be observed in the CAL, giving an additional electron

in the topology. For lower Q2, the scattered electron escaped down the beam pipe in the

electron-beam direction. In this case, the quantity E − PZ is typically much less than

55 GeV and a cut, E − PZ < 45 GeV, was applied to reduce the DIS NC background.

The following additional cuts, also listed in table 1, were applied in each case:

• in the (e-)e-µ topology, exactly one muon, (two) one electron(s) and no additional

tracks were required in the final state. In the e-µ topology, the electron charge, Qe,

was required to be opposite to that of the muon track, Qµ. In addition, in order to

reduce the main background due to dimuon production at high Q2, where one of the

muons was outside the acceptance of the detector, the electron was required to have

charge opposite to that of the electron beam, Qbeam, if θe > 1.0 and Strk > 1.5;

• in the (e-)e-jet channel, (two) one electron(s) were required in the event together with

exactly one tau-candidate jet. In the e-jet channel, the cuts on the electron were the

same as in the e-µ channel, in order to reject the dominant background due to DIS

– 7 –
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Figure 1. Distributions of the variables used for the tau-jet discriminant, for the data (dots) and the

sum of the MC expectations (solid line), after all selection criteria except for the discriminant cut.

The variables are defined in the text. The data are shown with the statistical uncertainty (vertical

error bars). The contribution of the ditau signal as predicted by Grape is shown separately (hatched

histogram). The background due to photoproduction interactions is normalised with the procedure

described in the text. The other MC expectations are normalised to the luminosity of the data.
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Figure 2. Tau-jet discriminant values for the three decay topologies (a) (e-)e-jet, (b) (e-)µ-jet

and (c) (e-)jet-jet for the events after all selection criteria, except the discriminant cut. For the

(e-)jet-jet channel, (d) shows the discriminant distribution for the jet with lower D value, after the

requirement D > 0.8 for the jet with higher D. Other details as in the caption to figure 1.

NC events ep → eX. In addition, the charge Qjet =
∑

i Qi,trk was reconstructed

for the jet, summing the charges Qi,trk of all tracks, with significance Strk > 1.5,

associated with the jet. If all tracks satisfied the Strk criterion, the jet charge was

required to be Qjet = ±1 and to be opposite to that of the electron candidate, as

expected in the production of a tau pair;

• in the (e-)µ-jet topology, exactly (one electron) one muon and one tau-candidate jet

were required to be present;

• for the (e-)jet-jet topology, exactly two candidate jets, and in the high-Q2 topology

an additional electron, were required. The jet-jet channel was dominated by the

diffractive photoproduction dijet background and, in order to suppress it, the charge
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Figure 3. Distributions of the selected events compared with the predictions from the Standard

Model (SM). The plots show: (a) the variable E − PZ , (b) the transverse momentum, pe
T
, of the

electrons, (c) the transverse momentum, pµ

T
, of the muons and (d) the transverse energy of each

jet, Ejet

T
. The shaded bands show the systematic uncertainty on the SM expectation. Other details

as in the caption to figure 1.

Qjet was required to be ±1 with the two jets having opposite charges. The Strk

requirement was the same as in the e-jet channel.

In total, 25 events were selected. Figure 3 shows the E−PZ distribution for the events

and the distributions of the transverse momentum of the electron, muon and jet candidates,

compared to the sum of the signal and background expectations.

All MC background expectations were normalised to the data luminosity, except the

resolved and direct photoproduction contributions, both diffractive and non-diffractive.

These four contributions were fitted to the data using two variables [27], which helped to

distinguish the different processes: xobs
γ , which is an estimator of the fraction of photon’s
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momentum taking part in the hard interaction; and xobs
IP , an estimator of the fraction of

longitudinal momentum transferred from the proton in diffractive events. The four nor-

malisation factors were determined in two steps and for this purpose an independent data

sample was used, which required the presence of two jets, E−PZ < 40 GeV and 8≤Ntrk≤17.

The relative normalisation of the diffractive and non-diffractive MC contributions was de-

termined first from a fit to the data of the xobs
IP distribution for xobs

γ < 0.5. The four MC

components were then fitted to the data xobs
γ variable. The resulting normalisation factors

were around 2, with an uncertainty of 25% and 15% for the diffractive and non-diffractive

processes, respectively.

As shown in figure 3, the MC gives a good description of the data, both in shape and

normalisation. The diffractive DIS dijet process is the main background in the e-jet-jet

channel, while the diffractive photoproduction dijet process is the main background in the

jet-jet channel. The dimuon production process is the main background to the topologies

with a muon in the final state. In the e-jet topology, both the dielectron and the DIS

diffractive processes contribute to the background.

4.5 Systematic uncertainties

The following sources of systematic uncertainties were considered (the resulting uncertainty

on the total cross section is given in parentheses):

• the electron energy scale was changed by its uncertainty of 2% (+0.2
−1.5%);

• the hadronic jet energy scale was varied by its uncertainty of 3% (+26
−7 %);

• the normalisation of the direct and resolved photoproduction background contri-

butions, diffractive and non-diffractive, gave one of the main contributions to the

uncertainty of the MC background expectation. The diffractive and non-diffractive

normalisation factors were changed by their uncertainty of 25% and 15%, respectively

(±11%);

• the total muon acceptance, including the trigger, the reconstruction and the muon

identification efficiencies, is known to about 7% [4] (±4%);

• the cut on the track charge significance, Strk, was varied by ±0.5 (−12
−7 %);

• the cut on the energy in the inner ring of the FCAL was varied (+6
−12%);

• in the (e)-µ-jet channel, in order to account for the observed discrepancy in the dis-

criminant distribution (see figure 2b), the Bethe-Heitler background was increased

by 80% (−6%);

• the effect of potential differences between data and MC in the single-track effi-

ciency [34], e.g., from secondary interactions in the detector material, was evaluated

(+5%);

• the overall normalisation uncertainty associated with the luminosity measurement

was added (±1.9%);
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ZEUS ditau events HERA II data (L=0.33 fb−1)

Topology (e-)e-µ (e-)e-jet (e-)µ-jet (e-)jet-jet Total

Data 4 7 4 10 25

Total MC 3.6+1.3
−0.3 8.8+1.8

−0.8 8.0+2.2
−1.2 14.4+2.2

−3.5 34.8+3.9
−3.8

τ+τ− MC 3.0+0.3
−0.2 5.3+0.3

−0.2 5.9+0.5
−0.5 9.0+0.4

−0.3 23.2+0.7
−0.7

Table 2. The observed and predicted ditau-event yields for the sum of the topologies and for

each channel separately. The total MC expectations include the sum due to ditau production, DIS

neutral current interactions, photoproduction events and dielectron/dimuon pair production. The

experimental systematic uncertainties are quoted on the MC expectations.

• the statistical uncertainty of the few MC events that survive the cuts was added to

the statistical uncertainty in the cross section.

A further check was performed on the tau-jet discriminant value. The ρbkg density used

to determine D was calculated using as background the following different MC samples:

the diffractive DIS dijet MC, the diffractive photoproduction dijet sample and the inclusive

DIS NC Monte Carlo events. All samples gave very consistent values of the signal efficiency

and background rejection, giving confidence in the method.

The total systematic uncertainty was obtained by adding the above contributions in

quadrature, separately for the positive and negative deviations.

5 Results

The total selected number of ditau candidates, Ndata, is 25, of which 13 were selected in

e+p and 12 in e−p collision data, consistent with the respective integrated luminosities.

The total MC expectation was 34.8+3.9
−3.8 events, including an expected background, Nbkg, of

11.6± 3.9 events (table 2). The expected purity of the sample, evaluated from the Grape

ditau and the background MC, was 67%. The number of selected events in each channel

is shown in table 2. One of the events in the jet-jet channel is shown in figure 4.

Figure 5 shows the visible invariant mass, Mvisible
ττ , calculated from the two tau candi-

dates, and the scalar sum of the visible transverse momenta of the two tau candidates in the

event,
∑

pvisible
T,ττ . No event with a visible mass Mvisible

ττ greater than 50 GeV was observed:

the highest visible-mass candidate, found in the e-µ topology, had Mvisible
ττ = 49 GeV.

The MC predictions describe the data well and no excess is observed in the high-mass or

high-
∑

pvisible
T,ττ region. Only one of the 25 data events had three objects, corresponding

to an event with the scattered electron candidate in the detector, belonging to the e-e-jet

topology.

The total cross section for ditau production was calculated for the kinematic region

defined by p
τ1,2

T > 5 GeV and 17◦ < θτ1,2 < 160◦, where pτ
T and θτ refer to the transverse mo-

mentum and polar angle, respectively, of the tau lepton. The cross section was calculated as

σkin
ττ =

(Ndata − Nbkg)

A · L ,

– 12 –
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XY View ZR View

Figure 4. Event display of a data event selected in the jet-jet channel. One jet has one charged

track, the other jet has three charged tracks. The two jets have Ejet1

T
= 7.8 GeV and Ejet2

T
= 6.9

GeV and the visible mass is Mvisible
ττ

= 15.6 GeV.

where L is the integrated luminosity of the data sample. The acceptance A was evaluated

from the Grape ditau generator to be 1.23%. The total cross section was found to be

σkin
ττ = 3.3 ± 1.3(stat.)+1.0

−0.7(syst.) pb,

where the first uncertainty represents the statistical error and the second the systematic

uncertainty. The cross-section value is in reasonable agreement with the SM expectation

of σSM
ττ = 5.67 ± 0.16 pb, as evaluated from the Grape MC generator.

6 Conclusions

Events with two tau candidates with high transverse momentum have been selected by the

ZEUS experiment in the HERA II data and compared with the predictions of the Standard

Model. The tau leptons were identified through their decays into electrons, muons or jets,

with transverse momentum greater than 2 GeV (for an e or a µ) or 5 GeV (for a jet). The

jet coming from the hadronic tau decay was identified with a multi-variate discrimination

technique employed to separate the signal from the QCD background. The selected events

were dominated by the Bethe-Heitler γγ → τ+τ− process and the final-state topologies

(e-)jet-jet, (e-)e-jet, (e-)e-µ and (e-)µ-jet were considered. In total, 25 events were selected,

compared to a MC expectation of 34.8+3.9
−3.8 events, including 11.6 ± 3.9 events of expected

background. The distribution of events shows good agreement with the Standard Model

expectation, also at high values of the visible transverse momentum and visible invariant
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Figure 5. Distributions of the events after all selection cuts as a function of (a) the visible invariant

mass of the tau pair, Mvisible
ττ

, and (b) the scalar sum of the transverse momenta of the two tau

candidates,
∑

pvisible
T ,ττ

. The selected e-e-jet event has two entries in the plots, one for each electron-

jet combination. The data (dots) are compared with the predictions of the sum of the Monte Carlo

expectations and to the ditau MC only. The shaded bands show the systematic uncertainty on the

SM expectation.

mass of the tau pair. Therefore, no evidence of physics beyond the Standard Model is found

for tau-pair production. The total cross section, in the kinematic region p
τ1,2

T > 5 GeV and

17◦ < θτ1,2 < 160◦, was measured to be σkin
ττ = 3.3 ± 1.3(stat.)+1.0

−0.7(syst.) pb.
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A. Hüttmann,15 G. Iacobucci,3 Z.A. Ibrahim,10 Y. Iga,41 R. Ingbir,44

M. Ishitsuka,45 H.-P. Jakob,5 F. Januschek,15 M. Jimenez,29 T.W. Jones,51
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