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Abstract. Interest in near infra-red spectroscopy of massive stars has increased dramatically
over the last decades, as it offers the possibility to analyze stars embedded in dusty star forming
regions and near the Galactic center. We present an analysis of both high resolution optical
and, separately, high resolution VLT/CRIRES near-IR spectra in the J , H, K and L-band of
nearby dwarf O-type stars. Applying a genetic fitting algorithm approach using state-of-the-art
FASTWIND non-LTE atmospheres, we present a comparison of the stellar and wind properties
as derived from these two spectral regimes. In this approach we retrieve the effective temperature
to within a sub-type and the surface gravity to within 0.2 dex, but find a discrepancy in the
mass-loss rates of 0.2 up to 1.0 dex. We find that He II 1012 nm and Brackett-α lines do not
yield consistent mass-loss estimates, the former producing much lower values than Hα, while
Brackett-α and Hα are consistent.

1. Introduction
The Gaia space mission aims at obtaining phase space information of about one billion stars
throughout our galaxy, amounting to roughly 1 percent of the Galactic stellar population [1].
Though of this grand total only a minor fraction will be of spectral type O, one may anticipate
the discovery of massive, young stellar clusters similar to the 30 Doradus cluster in the Large
Magellanic Cloud [2], each containing up to hundreds of O-type stars [3]. Their study will allow
for an unprecedented view of the recent star forming activity of the Milky Way, and provide
valuable information for the calibration of stellar population synthesis models.

Gaia spectrophotometry over the spectral range 3300–11500 Å and medium-resolution
spectroscopy in the wavelength interval 8470–8740 Å will allow for a first characterization of
the observed O stars [4], however, supplementary data is needed in order to derive robust stellar
and stellar wind properties [5]. Fortunately, the Gaia-ESO Survey will provide optical spectra
for a sub-set of about 1500 early-type stars (see Blomme, this Volume).

It will be clear that what is needed to accomplish this characterization are automated fitting
techniques to perform quantitative spectral analysis. For the near-IR, so far an automated
technique has been lacking. Clearly such a method would be most welcome as it allows to study
early-type stars located in or near dusty star forming regions or seen over large distances along
lines-of-sight through the Galactic plane, as at near-IR wavelengths the extinction caused by
this material is substantially less than in the optical.

The characterization of O-type stars on the basis of their near-IR spectra started out
with the compilation of spectral atlases [6–9] and rough classification schemes, mostly using
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a morphological approach [6, 7]. However, Hanson et al. [9] conclude that to determine
the effective temperature and surface gravity, profile fits with atmospheric model codes are
necessary, stressing that, with the lack of spectroscopic standards for these spectral types, near-
IR observations of known O- and B-type stars are needed to properly calibrate the near-IR
properties of massive stars.

The first truly near-IR quantitative spectroscopic analysis, employing state-of-the-art
FASTWIND (FW) model atmospheres [10] was performed by Repolust et al. [11]. These
authors used intermediate resolution observations of 25 known OB stars, fitting the profiles of
the seven strongest hydrogen and helium lines in the H- and K-band. Comparing their results
to optical analysis, they find good agreement of the effective temperatures Teff (to within 5%),
gravities log g (to within 0.1 dex) and mass-loss rates Ṁ (to within 0.2 dex).

Here we present new high resolution (R ∼ 50 000) data of O dwarf standards, obtained with
VLT/CRIRES [12], covering not only H and K, but also the J and L-band. For the first time,
we employ an automated fitting technique, based on genetic algorithms [13], to derive stellar
and stellar wind properties from these near-IR diagnostics, following [11] by using the non-local
thermodynamic equilibrium, line blanketed, outflowing stellar atmosphere code FW. By applying
the same analysis technique to optical spectra, we are able to assess the consistency of optical
and near-IR analysis, confirming the findings of [11] for Teff and g, but finding considerable
discrepancies in the derived mass-loss rate.

2. Observations
The sample of targets is composed of bright dwarf stars that span the range of spectral sub-types.
Although non-peculiar, non-multiple systems are preferred, the single-lined binary 15 Mon is
also included. The targets HD 93250 and HD 54662 are proved to be binaries during the course
of the project. We first briefly discuss the near-IR and optical data.

2.1. Near-IR spectra
The targets are observed with the CRyogenic high-resolution Infra-Red Echelle Spectrograph
(CRIRES) mounted on the Very Large Telescope (VLT) at the ESO Paranal observatory (Chile),
between December 2007 and February 2008. CRIRES provides observations between 1 to 5 µm
with a resolving power of up to 105. The resolving power obtained in our data is 50 000 and is
obtained with a slit width of 0.4′′. Spatial resolution and signal to noise ratio (SNR) are improved
upon by the use of adaptive optics. The targets are observed in 18 different wavelength settings,
chosen to cover important hydrogen and helium lines in the J-, H-, K- and L-band.

All the CRIRES observations are stacked, flat-fielded, corrected for dark, bias and detector
linearity and wavelength calibrated using the ESO CRIRES pipeline [14]. A weighted map is
used to optimize the extraction of the 1-D spectrum from the observation. Data suffering from
the odd-even effect [15], as well as ghosts and bad pixels, are removed. Observations of telluric
standards are used to divide out the atmospheric absorption lines in the spectra. In some cases,
normalization of the spectra is done by fitting a second order polynomial to the continuum. The
resulting SNR is mostly between 100 and 130, and as low as 50 in the worst cases.

2.2. Optical spectra
The optical spectra observed with either the Ultraviolet & Visual Echelle Spectrograph (UVES)
[16] or the Fiber-fed Extended Range Optical Spectrograph (FEROS) [17], provide high quality
spectra covering most of the optical range. The data are reduced using the UVES pipeline [18]
or an improved version of the FEROS pipeline [19]. Both the FEROS and UVES spectra have
a typical SNR of ∼300.
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3. Spectral fitting
The analyses are performed by fitting FW line-profiles to the observations, using a Genetic
Algorithm (GA) to find the best-fit stellar and wind parameters. This method has been readily
established in the optical [13]. In this section we shortly discuss the stellar atmosphere code
and describe our automated fitting method. We also introduce the important diagnostics and
shortly elaborate on how Stark broadening was treated.

3.1. Fastwind
The stellar atmosphere code FW is optimized to swiftly calculate high quality models of early-
type stars with effective temperatures of over 8500 K1. Constructing a model takes only ∼15
minutes, allowing us to compute a large number of models within a reasonable amount of time,
making it ideal for automated fitting methods. To reduce computational time, appropriate
physical approximations are used for processes where high accuracy is not needed [10].

3.2. Fitting method
In a GA based approach, thousands of FW models are calculated per analysis by means of
parallel computing. The GA first constructs a number of models, the first generation, of which
the free parameters are randomly chosen in the explored parameter space. The fitness (F ) of
these models is then calculated from the reduced chi square of the fits to the observed line-
profiles. The parameters, or ‘genes’, that belong to the best models are used as input for the
next generation, making small changes to their values to allow for convergence. Mutation (i.e.
the process of changing the parameters by large amounts) ensures that the full extent of the
parameter space is investigated. As opposed to Mokiem et al. [13] we use equal weights for all
evaluated line profiles in the analyses.

The free parameters in this approach are the effective temperature (Teff), surface gravity (g),
mass-loss rate (Ṁ), the helium abundance (nHe/nH), micro-turbulence velocity (ξµ), projected
rotational velocity (vrot sin i) and β, an empirical measure of the rate of acceleration of the flow
as defined by a β-type velocity law.
B- and V -band photometry are taken from the SIMBAD Astronomical Database. We adopt

the standard total to selective extinction value RV = 3.1, except for HD 93250 where we use
RV = 3.5 [20]. Distances and absolute V -band magnitude MV are listed in Table 1. Per model
the effective temperature and MV are used to derive the radius. From the radius and the surface
gravity the mass and the surface escape velocity are derived. The terminal velocity of the flow
is assumed to be v∞ = 2.6 vesc [21]. Since, in this approach, we are unable to derive β for the
dwarfs, we have set it equal to 0.8 in line with theoretical expectation [22]. We have assumed a
solar metallicity [23]. No clumping has been included in the FW models.

3.3. Diagnostics
Fifteen and 18 hydrogen and helium profiles have been fitted in the optical and near-IR,
respectively. As an example, Fig. 1 displays the CRIRES spectrum of 15 Mon together with its
best-fit model. For constraining the effective temperature the GA mostly relies on the ratios of
neutral and once ionized helium lines. In the near-IR the analysis mostly relies on He II 1691 nm,
He I 1700 nm and He I 1031 nm. In the optical, temperature constraints are mainly provided by
the He I λ4471 and He II λ4541. The gravity is constrained by the shapes of the hydrogen profiles
that are not strongly affected by mass-loss: Paschen-δ and γ and Brackett-10, 11 and 12 in the
near-IR and Balmer series lines in the optical. Strong diagnostic lines for the mass-loss rate are,
in the near-IR, He II 1012 nm, Brackett-α and γ and, in the optical, Hα and He II λ4686.

1 The code assumes that hydrogen remains fairly ionized and is not intended for stellar atmospheres that are
sufficiently ‘cool’ for molecules to form and/or convection to set in.
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Table 1. Properties of the program stars. The intrinsic color (B − V )0 is taken from Martins
et al. [24]. Column 6 lists the references for the adopted distance.

Object V (B − V )obs (B − V )0 Distance Ref. MV

HD 93250 8.25 +0.16 −0.28 2.5 kpc [25] −5.3a

HD 46150 6.75 +0.12 −0.28 1.45 kpc [26] −5.3
HD 54662 6.68 −0.02 −0.27 1.3 kpc [27] −4.7a

15 Mon 4.64 −0.24 −0.27 0.66 kpc [26] −4.6
HD 73882 7.27 +0.31 −0.27 1.15 kpc [28] −4.8

a Magnitudes are corrected for the presence of an unresolved companion (Sects. 4.1 and 4.3).

3.4. Stark broadening
Atmosphere codes depend on atomic data, for which accurate values are not always available. Of
particular consequence for the near-IR spectral range is the absence of Stark broadening profiles.
Stark broadening describes the constant perturbation of energy levels by the external electric
fields of ions, electrons and atomic dipoles, resulting in broadening of the profiles. For hydrogen
lines, even at low electron densities, the effect is of the same order of Doppler broadening [29]
and thus needs to be taken into account. However, calculating the resultant broadening is
computationally expensive and not yet carried out for many transitions. In the current version
of FW, profiles that describe this broadening are included for most of the useful hydrogen and
helium transitions in the optical but are mostly lacking for the near-IR transitions. For the
hydrogenic transitions, we have approximated the effects of Stark broadening using Griem’s
approximation [29]. For most neutral helium transitions the Stark broadening is approximated
using tabulated values for a Lorentz and Doppler profile.

4. Results
In this section we discuss the results of the GA analyses for every target. We briefly mention
those lines that are not completely reproduced in the analysis. These discrepancies may arise due
to the possible binarity of the targets, blends with transitions which we do not consider (such as
the N III λ4200 transition that may be present in the He I λ4200 profile [13]) or missing physics
in the atmosphere model (such as clumping, which may explain the difficulties in modelling,
for example, the core of Brackett-γ [11]). Table 2 summarizes the results and Fig. 2 shows a
comparison between effective temperatures, surface gravities and mass-loss rates obtained in the
near-IR and the optical analyses.

4.1. HD 93250
HD 93250 has been selected because it is the brightest early O-type dwarf in the near-IR. Still,
the target is not bright enough in the L-band and we therefore have no observation of the
Brackett-α profile. Recent interferometric observations [30] confirm earlier indications of the
target being a binary [31, 32]. The K-band luminosity ratio suggests a mass ratio close to unity
and thus two very similar spectral components. Since the binary is not spatially resolved in our
observations, we correct our photometry so that the GA adopts an appropriate radius for the
FW models.

Both the near-IR and optical analysis reproduce the observations well with the exception of
Brackett-γ and the effective temperature sensitive He Iλ4471 and He IIλ4541 lines. The error
estimates on the effective temperature are large because of the near absence of neutral helium
lines. Recently, HD 93250 (supposedly an O3 V star) has been re-classified as an O4 III star [33].
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Figure 1. The spectra of 15 Mon over-plotted with the best fitting FW model in red. The
green horizontal bars indicate the fitted spectral regions.

The surface gravity we obtain from the optical analysis is in better agreement with a giant [34].
The error-bars of the near-IR analysis allow for both luminosity classes.

4.2. HD 46150
HD 46150 is a mid-O star. Except for Brackett-10, Brackett-γ and Pfund-γ the near-IR analysis
reproduces the observations to within the SNR. The optical analysis shows a very clean fit,
except perhaps for the He II λ6683 profile. In the near-IR the temperature is not constrained.
This is because the important He I 1700 nm line could not be retrieved from the near-IR data.
As a consequence there is only a faint neutral Helium line to provide the temperature constraint.

4.3. HD 54662
HD 54662 is a long period binary with P = 557.8 days and a likely flux ratio of Fsec ∼ 0.51 Fprim

[35]. We use this flux ratio to correct the absolute visual magnitude for the companion.
All the synthetic profiles of the near-IR analysis agree to within the SNR of the observations,

except for He II 1012 nm which is too weak. Nonetheless, the synthetic profiles of Brackett-
γ, He II 2189 nm and Pfund-γ show structures that do not appear to be present in the
observations. The optical analysis shows a number of synthetic profiles that neither agree with
the observations. In general, the synthetic profiles are broader than the observed ones. The
Balmer-ε line strength is slightly too large, while He I λ4541 and He II λ4686 are underestimated.
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Table 2. Overview of the results from the optical and near-IR analyses. The spectral sub-type
(Column 3) is obtained from the effective temperature using the calibration of Martins et al.
[34].

Object Spect. Spect. Teff log g log Ṁ nHe/nH vrot sin i
region type [K] [cm s−2] [M�yr−1] [km s−1]

HD 93250
IR O3 V 43900+...

−1900 3.84+0.11
−0.10 −6.75+0.35

−... 0.07+0.04
−... 134+52

−46

optical O3 V 44200+1050
−1150 3.69+0.05

−0.05 −5.75+0.05
−0.05 0.07+0.01

−0.01 138+10
−10

HD 46150
IR O4 V 42450+...

−... 3.70+0.18
−... −6.90+0.50

−... 0.06+0.04
−... 152+46

−40

optical O5 V 41500+600
−550 3.84+0.06

−0.05 −5.95+0.05
−0.05 0.07+0.01

−0.01 120+10
−10

HD 54662
IR O6 V 38850+2800

−1850 3.94+0.33
−0.23 −6.65+0.25

−0.65 0.07+0.07
−... 76+50

−16

optical O7 V 37300+1100
−300 3.73+0.12

−0.05 −6.45+0.10
−0.30 0.08+0.02

−0.02 126+14
−16

15 Mon
IR O6 V 38000+300

−600 3.92+0.05
−0.05 −6.95+0.30

−0.05 0.09+0.02
−0.03 78+20

−18

optical O6 V 38350+300
−500 3.94+0.05

−0.05 −6.25+0.05
−0.05 0.07+0.01

−0.01 80+10
−10

HD 73882
IR O7 V 36750+...

−... 3.32+0.22
−0.26 −6.20+0.15

−0.35 0.06+0.20
−... 222+146

−108

optical O8.5 V 33750+1600
−300 3.43+0.14

−0.05 −6.55+0.20
−0.20 0.09+0.02

−0.03 202+10
−16

The helium blend He II λ6683 does not show the correct shape and the synthetic neutral helium
lines do not show equally sharp line-centers as the observations. These discrepancies may be
explained by the binarity of the target.

4.4. 15 Mon
15 Mon is both an astrometric and a spectroscopic, long-period (P ∼ 25 yr) binary with a
separation of about two arc-seconds [36]. In the acquisition images of CRIRES, the companion
is positioned just outside the slit. We are uncertain whether we have observed a composite
spectrum in the optical.

The optical and near-IR analysis reproduce the observed spectra very well, see Fig. 1. Minor
discrepancies are found in the optical, where the line-centers are slightly too weak in the synthetic
spectra. In the near-IR, where the SNR is lower, all the synthetic profiles are within the noise,
except for He I 4040 nm and the cores of Brackett-γ and Pfund-γ.

4.5. HD 73882
HD 73882 is the ionizing star of the H II region RCW 27 [28]. The absolute visual magnitude
that is derived from the photometry and distance is too luminous for an O8.5 dwarf and is better
suited for an O6.5 V, or, if we have underestimated the extinction, a late O-type giant. Cardelli
et al. [37] find that HD 73882 is a highly reddened star with a RV of 3.39.

The SNR in the near-IR is significantly lower than for our other targets. The best model
retrieved in the near-IR analysis is a poor fit, both in terms of fitness and a by eye evaluation.
The analysis in the optical has difficulties converging and also yields a poor fit in terms of fitness.
A plausible explanation for these difficulties might be that we have used an erroneous absolute
visual magnitude due to our assumption Rv = 3.1. This will be investigated in the near future.
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Figure 2. Comparison of the best fit parameters (Teff , log g, Ṁ) obtained for the near-IR and
optical. Error-bars indicate the estimated errors, while left/right arrows indicate upper/lower
limits.

5. Discussion & Conclusion
We have presented first results of detailed spectral fitting of hydrogen and helium profiles in the
J , H, K and L-band of known, bright, O-type dwarfs. A comparison with our optical analysis
shows agreement in effective temperature to within a sub-type2. The surface gravity agrees to
within 0.2 dex. For the mass-loss rates we find a discrepancy of 0.2 up to 1.0 dex. We find
that, for the investigated spectral types, the He II 1012 nm transition is more sensitive to the
mass-loss rate than Brackett-α. The mass-loss rate derived from Brackett-α is actually in good
agreement with the optical results (recall that we have no L-band observation of HD 93250).
However, much lower mass-loss rates are found when using the He II 1012 nm profile. We are
currently investigating whether differential clumping properties in the line forming regions may
explain this inconsistency.

We plan to extend our analysis to giant and supergiants to fully cover the O star parameter
range. This will allow us to further explore the discrepancy in the retrieved mass-loss rates.
We conclude that the first GA based automated fitting comparison between optical and near-IR
spectroscopic analysis of dwarf O stars yields very promising results, especially for the effective
temperature and surface gravity.
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