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ABSTRACT

The current many-core architectures are generally evaluated
by a detailed emulation with a cycle-accurate simulation of
the execution time. However this detailed simulation of the
architecture makes the evaluation of large programs very
slow. Since the focus in many-core architecture is shifting
from the performance of the individual core to the overall
behavior of chip, high-level simulations are becoming neces-
sary, which evaluate the same architecture at less detailed
level and allow the designer to make quick and reasonably
accurate design decisions. We have developed a high-level
simulator for the design space exploration of the Microgrid,
which is a many-core architecture comprised of many fine-
grained multi-threaded cores. This simulator allows us to
investigate mapping and scheduling strategies of families
(i.e. groups of threads) in developing an operating environ-
ment for the Microgrid. The previous method to evaluate
the workload counted in basic blocks was inaccurate. The
key problem is that with many concurrent threads the la-
tency of certain instructions are hidden because of the multi-
threaded nature of the core. This paper presents a technique
to manage the execution time of different types of instruc-
tions with thread concurrency. We believe to achieve high
accuracy in evaluating programs in the high-level simulator.

Categories and Subject Descriptors
D.2.8 [Performance of Systems]: Performance estima-
tion— Performance measures

General Terms
Experimentation, Estimation, Performance

Keywords

Performance estimation, Automatic annotation

1. INTRODUCTION

The design of computer architecture is a time consuming
process and therefore simulators are developed in the over-
all design process of the computer and its operating environ-
ment. These simulators are used for the evaluation of the
computer architecture and appear in different formats and
at different levels of detail. Different evaluation tools have
different complexity, execution time and accuracy.

Typically processors are emulated using a detailed simula-
tion which models all the features, such as instruction issue
mechanisms, caches at all levels, load and store queues and
branches. Although these simulators are very accurate, they
are orders of magnitude slower than the real processors. The
evaluation of architectures with these simulators requires the
execution of a set of benchmarks, which can consist of bil-
lions of dynamically executed instructions, can take a long
time, not to consider multiple executions of the benchmark.
Moreover, simulations of architectures at the early stage of
development with such a level of detail is not always desir-
able because of the considerable time and efforts to develop
them. High-level simulation enables quick and reasonably
accurate design decisions in the early stages of computer
design. It complements detailed but slower architectural
simulations, reducing total design time and cost.

This problem is further exacerbated in many-core architec-
tures as software components can be space-shared in many
different ways. In fact the greater the number of cores, the
greater the combinatorial explosion in the number of config-
urations that need to be simulated in order to find the best
solution [6].

To overcome the many drawbacks of detailed simulation of
a processor, where detailed simulation is not only unneces-
sary but very much time consuming, high-level simulation
techniques have been introduced to evaluate a processor at
different abstraction levels. High-level simulations enable
designers an early design space exploration with relatively
little effort and time to develop a new tool. These types
of simulations are commonly used in embedded systems to
model performance and power. Some of the high-level sim-
ulation techniques are used by, Meyer et al. [12], Paul et
al. [17] and Pimentel et al. [18]. The current trend of many-
core systems makes high-level simulations more desirable,
because the focus is shifting from the performance of the in-
dividual core to the overall behavior of the chip, where cre-
ation, communication and synchronization of concurrency



plays an important role. Some of the high-level simulation
techniques in the general purpose processors are used by
Eeckhout et al. [3] and Smith et al. [15].

It is very difficult to maintain accuracy in high-level simula-
tions in conventional processor architectures where instruc-
tion execution time may vary depending on the instruction
type and the state of the processor. For example in a many-
core processor, a memory instruction may take as little as a
single cycle if the data is located in L1 cache, or thousands
of cycles if the request has to go off chip and there is con-
tention from the many cores for the memory channel. This
problem is further exacerbated in a multi-threaded proces-
sor design, where multiple threads may be able to hide the
latency of some of these long latency instructions, so that
a 1000-cycle latency on a memory request may appear to
execute in a single cycle.

This paper presents a technique for classifying and identi-
fying different instruction types based on their latency and
aggregating them into a signature that can then be used
together with the dynamic state of the processor to more
accurately estimate the processor’s load. This technique is
applied to the SVP many core Microgrid [8], which uses a
multithreaded processor with data-flow synchronization and
is able to tolerate latencies of up to 1000 cycles in a typical
configuration. As long as we can track the number of ac-
tive threads in the high-level simulation, the signature of a
basic block can be used to improve the estimated execution
time of that block. It should be noted that although this
technique is applied to the multi-threaded processor in this
paper, the technique can be also applied to modeling other
processors with different mechanisms that tolerate the la-
tency of instructions.

The rest of the paper is organized as follow. Section 2
gives some background to the microthreaded architecture
and the high-level simulator of the same architecture. It also
presents the problems in the previous approach to high-level
simulation, which motivates us to present a new technique in
Section 3. We present some results in Section 4 to show the
importance of collecting signatures in a many-core, multi-
threaded processor. We give some related work in Section 5
and conclude in Section 6

2. MOTIVATION AND BACKGROUND

The Microgrid is a general many-core architecture developed
at the University of Amsterdam which implements hardware
multithreading using data flow scheduling and a concurrency
management protocol in hardware to create and synchronize
threads within and across cores on chip [8]. The suggested
concurrent programming model for this chip is based on fork-
join constructs where each created thread can define further
concurrency hierarchically. This model is called SVP and is
also applicable to current multicore architectures [21].

In our work, we focus on a specific implementation of the Mi-
crogrid architecture where each core contains a single-issue,
in-order RISC pipeline with an ISA similar to DEC/Alpha,
and all cores are connected to a on-chip shared memory net-
work [9, 2]. Each core implements the SVP actions in its
instruction set and is able to support hundreds of threads
and their contexts, called microthreads and tens of fami-
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Figure 1: High-level simulation of the mi-
crothreaded architecture

lies (i.e. groups of microthreads) simultaneously. In the
rest of the paper a thread means microthread, and a core
means microthreaded core unless stated otherwise. To pro-
gram this implementation, we use a system-level language
called SL which integrates the SVP concurrency constructs
as language primitives. In the rest of this paper, we use the
shorthand SVP program to designate programs written in
any language that supports the SVP protocol.

The high-level simulator of SVP many-core systems [13] is
developed to make quick and reasonably accurate design de-
cisions in the evaluation of microthreaded architecture using
multiple runs of benchmarks which can consist of billion of
instructions executions. It also allows us to investigate map-
ping strategies of families to different cores in developing an
operating environment for the Microgrid.

The high-level simulator provides us a simple way to model
the microthreaded cores in large-scale system, avoiding all
the details of executing instruction streams of a thread and
focus more on mapping, scheduling and communication of



threads and families. It is not a replacement of the cycle-
accurate simulator of the Microgrid, which emulates the mi-
crothreaded architecture with a detailed simulation of the
execution time of individual components, rather it is a tool
which is added for the evaluation of benchmarks for the same
architecture but at a different level of abstraction, which is
significantly faster at simulating the execution of SVP pro-
grams.

Figure 1 shows the high-level simulator of microthreaded ar-
chitecture. The architecture model simulates the Microgrid
where cores are used only to execute the workload of an
instruction stream with no detailed simulation of pipeline,
instruction issue mechanism or load and store queues. One
of the cores is designated as the allocation server, which al-
locates core(s) when requested by the application model. In
the middle we have mapping function which decides the al-
location of families to cores and their scheduling. The appli-
cation model is represented in the form of an SVP program.
Compared to the cycle-accurate simulator where threads can
interleave at every cycle showing a fine-grained interleaving
of threads, the high-level simulator evaluates threads based
on some time step showing a discrete event simulation of
the workload of threads. Time step is computed to have the
longest possible step in the execution time between synchro-
nizing events over all executing threads and is explained in
[13].

In the high-level simulator [13] we reduced the execution
time of benchmarks to some hours compared to days re-
quired using the cycle-accurate simulator for the same ar-
chitecture. The main focus of the initial implementation
of the high-level simulator was performance improvements.
The next step is to improve the accuracy of the high-level
simulator compared to the cycle-accurate simulation. To
quote Eeckhout “highly accuracy performance estimates are
illusory anyway, given the knowable level of design details”
[3], high-level simulations in general are less accurate. In this
paper we are presenting a technique which will improve the
accuracy of the high-level simulations to allow the designers
to evaluate an architecture.

The high-level simulation of the Microgrid is based on the
idea of discrete event simulations [14] and it uses a perfor-
mance estimation of basic blocks to take discrete time steps
in the simulation time. One of the performance estimation
techniques is annotating the control flow graph (CFG) [1]
in the source program with information useful to derive a
cycle-accurate performance model. We used this annotation
of CFG in the high-level simulation of the Microgrid but
we divide the basic block into two parts: a) The part of
the basic block which consists of instructions that do com-
putation and are called non-SVP instructions. b) The part
of the basic block, which does not do any computation but
takes care of concurrency management and are called SVP
instructions (e.g. create, sync, read and write from shared
channel). The concurrency management statements are sent
as an event along with its workload to perform these oper-
ations in the high-level simulator, we are more interested in
estimating the performance of that part of the basic block
which consist of only computation. In the rest of the pa-
per we uses the term ”basic block” to refer to the non-SVP
instructions.

¥

label_start: /* some code */ label end:
Num_instrs = &&label_end - && label start

Whie<=10)

v
iflcondttion)
[abel start: [abel start
[* some code */ [* some code */
[abel_end: [abel_end:
Num_instrs = &&label_end - && label start; Num_instrs = &&label_end - && label_start;

i++; Num_instrs = xx

[abel_start:

[* some code */

[abel_end:

Num instrs = &&Iabe|+end - &G label start,

Figure 2: Performance estimation of a basic block
by measuring the distance between the beginning
and ending of the basic block

In the original implementation of high-level simulator, we
place a label at the beginning and end of the basic block
to compute the number of instructions between them when
the program is compiled. Because we are using a RISC in-
struction set, we assume that every instruction will take one
cycle. This means that the number of instructions we have
in a basic block is actually its workload to perform the com-
putation. But the high-level simulator runs on the host ma-
chine (i.e. x86) and we compute a calibration factor of the
SVP program by executing it on the cycle-accurate simula-
tor whose ISA (i.e. DEC/Alpha) is different and multiply
that factor to the workload in the basic block. Figure 2
shows a CFG of an SVP program between two SVP instruc-
tions. It shows how labels are placed at the beginning and
end of the basic block and how the number of instructions
are counted from these labels. Although there might be mul-
tiple threads which are executing the same code, and their
execution is interleaved, this instruction counting provides
the workload of a basic block per thread. This technique
has a few drawbacks:

e It counts instructions of basic blocks on the host ma-
chine (x86) and assign them workload to be processed
on the high-level simulator which is simulating mi-
crothreaded architecture (DEC/Alpha).

e For complex and dynamic code we can not predict a
calibration factor until execute the same trace on the
cycle-accurate simulator.

e The calibration factor is used to statically estimate
the average number of cycles to execute an instruc-
tion, which is inaccurate because the number of cycles



depends on the type of instruction and number of ac-
tive threads. A long latency instruction (e.g. floating
point) may take few cycles to complete with few con-
current threads, but with many concurrent threads the
execution time can be reduced to single cycle (¢f Sec-
tion 1).

e Input programs have to be annotated manually. It
is difficult to find basic blocks in a program without
building an abstract syntax tree, which we want to
avoid. Because we want the high-level simulator to
focus more on the mapping of threads rather than an-
alyzing programs. This approach works for a small
program but considering large benchmarks this is not
practical.

e [t is difficult to count instructions executed inside con-
ditionals.

Because of the multi-threaded nature of the core [2] instruc-
tion throughput is one cycle per instruction for all operations
provided the sufficient number of active threads. However
with a single thread the throughput is limited by the in-
struction latency. This motivates us to use signatures which
is actually the instruction mix of a basic block and allow us
to adapt the instruction throughput according to the num-
ber of concurrent threads at any time during the execution
in the high-level simulator. Signatures are derived from [7]
in the design space exploration of embedded systems.

This technique overcomes the drawbacks of the previous ap-
proach as follows:

e Signatures consist of the instruction set of microthreaded

architecture (i.e. DEC/Alpha) and then evaluated by
the high-level simulator which simulates the same ar-
chitecture.

e We do not need any calibration factor.

e Signatures allow us to hide latency of long latency in-
structions when more threads are active.

e Input programs are automatically annotated with sig-
natures of basic blocks. We are not building the ab-
stract syntax tree; rather, we are using some string
manipulation techniques.

e Instructions executed inside conditionals are counted.

3. AUTOMATED PROGRAM ANALYSIS

In the high-level simulation framework we have developed a
tool, which is called the basic block analyzer to automati-
cally analyze SVP programs and to generate signatures for
all the basic blocks. The process of collecting signatures
and annotating programs with signatures is shown in Fig-
ure 3. In the figure the part of a program between two
SVP instructions is shown which consist of few basic blocks
whose execution time is determined at run time. The source
program is forwarded to the basic block analyzer which per-
forms multiple iterations, analyzes the generated assembly
code and adds the signatures of basic block to the source
program. Some steps involved in the basic block analysis
process are explained below.
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Figure 3: Basic block analyzer for SVP programs

sl_def (fibo_compute, void, sl_shparm (INT, prev),
sl_shparm (INT, prev2), sl_glparm (INTx, fibo))

sl_index (i);

__asm__ volatile ("NORMALLABELS8:");
INT n = sl_getp(prev) + sl_getp(prev2);

__asm__ volatile ("NORMALLABELJY:"”) ;
sl_setp (prev2, sl_getp(prev));

__asm__ volatile ("NORMAL_LABEL_10:”) ;
sl_setp (prev, n);

__asm__ volatile ("NORMAL_LABEL_11: ") ;
sl_getp (fibo)[i] = n;

__asm__ volatile ("NORMAL_LABEL._12:”7) ;

}
sl_enddef

Listing 1: SVP program annotated with labels.
(Only part of the program is shown for illustration)

NORMAL LABEL S8 :

.set nomacro

addq $d1,$d0, $11

.set macro
NORMAL_LABEL.9:

mov $d0, $s1
NORMAL_LABEL_10:

mov $11, $s0
NORMAL_LABEL_11:

.set nomacro

s8addq $10,%g0, $10

stq $11,0(S$10)

.set macro
NORMAL_LABEL_12:

Listing 2: Assembly instructions of the mi-
crothreaded architecture for the Fibonacci program



3.1 Input program structure

Although it is possible to change the structure of the source
program by building the abstract syntax tree and use the
grammar of the language to transform it into the desired
format, because of the development time and the complex-
ity, we want the input programs to be in a format which is
acceptable to the basic block analyzer i.e. every basic block
in an SVP program is separated with braces and on separate
line.

3.2 Input program annotation

The basic block analyzer places labels for every non-SVP
instructions to identify when to create signatures in the as-
sembly code. We consider an example program to calculate
Fibonacci numbers in SVP. The program with labels for ev-
ery non-SVP instruction is shown in Listing 1.

3.3 Compilation to assembly

The annotated input program is compiled to generate as-
sembly code for the microthreaded architecture using SVP
compiler. An example assembly code is shown in Listing 2
which contains the same labels from the input program. We
start counting instruction and keep adding them to signa-
ture until we encounter the next label, at which point we
add the signature to the source program and create a new
signature.

sl_def (fibo_compute, void, sl_shparm (INT, prev),
sl_shparm (INT, prev2), sl_glparm (INTx, fibo))

sl_index (i);
signature [0] = 0; signature[l] = 0; signature[2] = 0;
__asm__ volatile ("NORMALLABELS:"”);

INT n = sl_getp(prev) + sl_getp(prev2);
signature [0] = 1; signature[l] = 0; signature[2] = 0;
__asm__ volatile ("NORMALLABEL9:");

sl_setp (prev2, sl_getp(prev));
signature [0] = 1; signature[l] = 0; signature[2] = 0;
__asm__ volatile ("NORMAL_LABEL_10:”) ;

sl_setp (prev, n);
signature [0] = 1; signature[l] = 0; signature[2] = 0;
__asm__ volatile ("NORMAL_LABEL_11:") ;

sl_getp (fibo)[i] = n;
signature [0] = 1; signature[l] = 0; signature[2] = 0;
__asm__ volatile ("NORMAL_LABEL_12:"7) ;

}

sl_enddef

Listing 3: SVP program annotated with labels and
signatures

3.4 Count assembly instructions

Every time the assembly code of a thread is analyzed an
instance of the signature is created, which is a vector of
three elements representing single latency instructions, fixed
latency instructions and variable latency instructions at in-
dexes 0, 1 and 2 respectively. The categorization of assembly
instructions of the microthreaded architecture into abstract
instruction set (AIS) is shown in Table 1.

AIS_SINGLE_LATENCY are those instructions, which take
one cycle to complete. AIS_FIXED_LATENCY instructions
take a fixed number of cycles to complete, however these
cycles can be overlapped with other instructions when there
are enough concurrent threads and therefore the cycles can

Abstract
Instruction Set

| Index | Mnemonic Cycles

0 ATS_ SINGLE_
LATENCY

BEvery instruction except in T
the two categories below
and SVP instructions
ADD[F,G,S,T]
SUBIF,G,S,T]
MUL[F,G,S,T]
DIV[F,G,S,T]
SQRT[F,G,S,T]
MUL[L,V,Q]
DIV[L,V,Q]
UMULH
BEQ, BGE, BGT, BLBC,
BLBS, BLE, BLT, BNE,
BR, BSR, JMP, JSR, RET
MB, FETCH, EXCB,
TRAPB, WMB
LD[BU, WU, L*, QF, S, T,
G, F]

1 AIS_ FIXED_
LATENCY

o
o mwww

oW ww

2 AIS_ VARIABLE_
LATENCY

<71000

Table 1: Categorization of instruction set of the Mi-
crogrid

be reduced to one cycle. AIS_VARIABLE_LATENCY can
take many cycles depending on the access from different level
of cache or off-chip memory. Also in this case the cycles
to complete can be reduced to few or one cycle by their
execution with other instructions.

The basic block analyzer counts the instruction mix between
two labels, and places them into the signature vector. Be-
fore counting the instructions from the next label, it places
signature back in the original program where the current
label has appeared, and starts creating new signature from
the next label. After all labels are visited and their sig-
natures are collected, the input program has signatures for
all the non-SVP instructions. An example code is shown in
Listing 3.

3.5 Remove labels and combine signatures in

the same basic block

We can remove the labels from the input program, because
they are not used any more. We can have a basic block,
which might consist of multiple signatures. These signatures
can be combined, because they generate an event to the
high-level simulator to send information of the basic block.
Sending an event blocks the execution of the application
model until registered in the architecture model, therefore
it is more efficient if we combine multiple signatures in the
same basic block into one signature which results into one
event.

sl_def (fibo_compute, void,
sl_shparm (INT, prev2),

sl_shparm (INT,
sl_glparm (INTx,

prev),
fibo))

sl_index (i);

INT n sl_getp (prev) + sl_getp (prev2);
sl_setp (prev2, sl_getp(prev));

sl_setp (prev, n);

sl_getp (fibo)[i] = n;

Signature (4,0,0);

}
sl_enddef

Listing 4: SVP program with signature events

3.6 Loops

Loops are special cases, where basic blocks inside the loop
execute multiple times and is determined at run time. We



Applications | Instructions | Instructions | Error (%)
executed in | (non-SVP)
the cycle- executed in
accurate the
simulator high-level
simulator
FFT 316220 305947 3,24
GOL 22461 20049 10,73
Mandelbrot 44456 42545 4,30
MergeSort 5498191 3988288 27,46
Smooth 703782 670404 4,7
Livermore 62928 511051 16.98
(Kernel-23)

Table 2: Comparison of instructions executed in the
high-level simulator to instructions executed in the
cycle-accurate simulator

do not combine signatures of the whole loop, rather collect
signatures for all basic blocks inside the loop. When the
loop actually executes, these events are send to the high
level simulator which keeps combining signatures until the
loop terminates and then simulates their workload.

3.7 Make signature events

Signatures are collected to provide the workload of basic
blocks to the high-level simulator which receives everything
from the SVP program as an event. We convert the signa-
ture vector to signature event, which is basically a function
call to the interface of the high-level simulator to provide
some information. An SVP program with signature events
is shown in Listing 4 and it is in the original format with
the addition of information of basic blocks.

4. RESULTS

4.1 Accuracy of basic block analyzer

The basic block analyzer collects signatures for basic blocks
in any SVP program. To validate the instruction counting
by the basic block analyzer we compare the total signatures,
which are actually the number of instructions counted in an
SVP program with the number of instructions executed in
the cycle-accurate simulator. Table 2 shows the results of
some benchmarks executed on both simulators. Basic block
analyzer only counts instructions for the non-SVP instruc-
tions, and cycle-accurate simulator shows the total instruc-
tions executed which includes both SVP and non-SVP in-
struction, therefore we have some error in the basic block
counting. Moreover, basic block analyzer does not annotate
library functions calls e.g. in case of merge sort the error
is very high, because of calling some library functions. This
motivates us to consider either annotating library functions
with signatures or implement them as abstract components
in the high-level simulator in the future work.

4.2 Importance of Signatures
4.2.1 Merge Sort

This experiment shows the multi-threaded nature of a core
which allows us to hide latency of instructions. We are using
only one core because we are interested in the accuracy of
the load calculation for a single core considering the number
of threads executing. Figure 4 shows the execution of Merge
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Figure 4: Merge sort executed on single core with
different window sizes

sort in the cycle-accurate simulator using one core with dif-
ferent number of concurrent threads. With only one thread
the performance is worst, but as the number of concurrent
threads increases the microthreaded architecture hides la-
tency for long latency instructions and therefore the perfor-
mance increases. This paper presents the technique to col-
lect signatures which can be used to adapt the throughput
of the program based on the number of concurrent threads
at any time of the execution of the program in the high-level
simulator.

4.2.2  Uniform signatures

This experiment shows how different classes of instructions
execute in the microthreaded architecture. Table 3 shows
input parameters of this experiment. We create three differ-
ent families of 100 threads each with instructions of only one
class and execute them with window size 1 to 20. Window
size is a value configurable at run-time for each family of
threads, which defines the number of logical threads. These
get mapped by the hardware onto hardware threads, whose
count does not change. Family_single consists of only sin-
gle latency instructions, Family_fixed consists of only fixed
latency instructions and Family_unbounded consists of only
variable latency instructions.

The execution of these three types of families in the cycle-
accurate simulator is shown in Figure 5.

e The performance of Family single remains the same
irrespective of the number of concurrent threads, be-
cause single latency instructions takes one cycle to
complete. With the window size of one, a new thread
is created only when the entry for the already created
thread is cleaned up and this overhead affect the per-
formance.

e Family fized is performing badly when there is only
one thread active, but as the number of threads in-
creases its performance increases by hiding latency un-
til it reaches the point where these instructions take
only one cycle to complete.

e Family_variable is the worst in performance with exe-



Signature [AIS_SINGLE, Number| Window
AIS_FIXED, AIS_VARIABLE] of size
threads
Family_single = [9,0,0] 100 1-20
Family_fixed = [0,9,0] 100 1-20
Family_variable = [0,0,9] 100 1-20

Table 3: Three families are created, where every
family executes instructions of only one AIS
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Figure 5: Simulated time of three families each con-
sisting of only one type of instruction

cuting single thread because of accessing off-chip mem-
ory. But as the number of concurrent threads in-
creases, the performance increases. The latency of
variable latency instructions depends on different fac-
tors (e.g. access of memory from different levels of
cache or off-chip memory) and therefore in some cases
the latency can be tolerated to a single cycle. This
experiment motivates us to investigate the behavior
of different variable latency instructions on the mi-
crothreaded architecture and try to implement similar
behavior in the high-level simulator in the future work.

5. RELATED WORK

The high-level performance estimation is an important fac-
tor in the fast embedded system design cycle. However, it
is not trivial to get such an estimate without detailed im-
plementation. In [1] performance estimation is used in both
source-based and object-based to annotate the code with
timing and other execution related information e.g. mem-
ory accesses and compare their execution with the cycle-
based processor models. In [5], a source-based estimation
technique is presented using the idea of Virtual instructions
which are very similar to our abstract instruction set, but
are directly generated by a compiler framework. Software
performance is then calculated based on the accumulation
of the performance estimates of these virtual instructions. In
[3], a performance modeling approach is used for statistical
simulation of the micro-architecture. Their simulation esti-
mates the performance of programs with more details such
as pipeline and cache behavior, while we address system-
level modeling at higher level of abstraction.

The work presented in this paper is derived from the sig-
natures used in the design space exploration of embedded
systems by Pimentel et al. [7] to estimate the performance
of processes using Kahn Process Network model of computa-
tion. Low level instructions are categorized into an abstract
instruction set to estimate the performance of a process and
enable the processes to execute at any architecture model.
They generate instruction traces of the process and then us-
ing signatures to determine the performance while we use
signatures at the time when the program is actually execut-
ing. We categorize low level instructions into an abstract
instruction set to collect signatures which contains infor-
mation of the microthreaded architecture and enable the
high-level simulator to simulate the same instruction set on
any machine. Moreover the signatures we collected does not
give any information about performance until it is actually
executed. Because performance depends on signature and
number of concurrent threads.

In fact a lot of work is already done in the performance es-
timation area [20, 11, 4, 10, 16, 19]. The main difference
between others and our work is that we do not have estima-
tion of the basic block before it is actually executed because
of the latency hiding. We collect signatures of basic blocks,
and estimate the performance at the time of execution which
depends on the type of instruction and the number of con-
current threads at that time, because of the multi-threaded
nature of the core to hide latency in case of long latency
instructions.

6. CONCLUSION

We have shown that the basic block analyzer counts the
number of instructions in most cases with a high level of
accuracy. Only in the case of code with library functions,
which are not currently considered in this process reduces
the accuracy. We also demonstrated the impact on per-
formance of the number of concurrent threads using syn-
thetic benchmarks. We showed that the three classes of
instructions we identify have different execution character-
istics based on the number of threads executing. This paper
therefore introduced the techniques and motivation for dy-
namic signature-based modeling of processors at a high level
where the processor is able to tolerate the latency of instruc-
tions. We are currently using this technique to build a more
accurate high-level simulation of the Microgrid.
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