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Pricing long-maturity equity and FX
derivatives with stochastic interest rates

and stochastic volatility

Alexander van Haastrecht1 2, Roger Lord 3,
Antoon Pelsser4 and David Schrager5.

First version: January 10, 2005
This version: November 30, 2008

Abstract

In this paper we extend the stochastic volatility model of Schöbel and Zhu (1999) by including
stochastic interest rates. We allow all driving model factors to be instantaneously correlated with
each other, i.e. we allow for a general correlation structure between the instantaneous interest
rates, the volatilities and the underlying stock returns. By deriving the characteristic function
of the log-asset price distribution, we are able to price European stock options efficiently and in
closed-form by Fourier inversion. Furthermore we present a Foreign Exchange generalization of
the model and show how the pricing of forward starting options can be performed. Finally, we
conclude.

Keywords: Stochastic volatility, Stochastic interest rates, Schöbel-Zhu, Hull-White, Foreign
Exchange, Equity, Forward starting options, Hybrid products.

1 Introduction

The OTC derivative markets are maturing more and more. Not only are increasingly exotic structures
created, the markets for plain vanilla derivatives are also growing. One of the recent advances in
equity derivatives and exchange rate derivatives is the development of a market for long-maturity
European options6. In this paper we develop a stochastic volatility model aimed at pricing and risk
managing long-maturity equity and exchange rate derivatives.
We extend the models by Stein and Stein (1991) and Schöbel and Zhu (1999) to allow for Hull
and White (1993) stochastic interest rates as well as correlation between the stock price process, its

1Netspar/University of Amsterdam, Dept. of Quantitative Economics, Roetersstraat 11, 1018 WB Amsterdam, The
Netherlands, e-mail: a.vanhaastrecht@uva.nl

2Delta Lloyd Insurance, Risk Management, Spaklerweg 4, PO Box 1000, 1000 BA Amsterdam
3Rabobank International, Financial Engineering, Thames Court, 1 Queenhithe, London EC4V 3RL, e-mail:

roger.lord@rabobank.com
4Netspar/University of Amsterdam, Dept. of Quantitative Economics, Roetersstraat 11, 1018 WB Amsterdam, The

Netherlands, e-mail: a.a.j.pelsser@uva.nl
5ING Life Japan, Variable Annuity Market Risk Management, e-mail: 02037 schrager@ing-life.co.jp
6The implied volatility service of MarkIT, a financial data provider, shows regular quotes on a large number of major

equity indices for option maturities up to 10-15 years.

1



stochastic volatility and interest rates. We call it the Schöbel-Zhu Hull-White (SZHW) model. Our
model enables to take into account two important factors in the pricing of long-maturity equity or
exchange rate derivatives: stochastic volatility and stochastic interest rates, whilst also taking into
account the correlation between those processes explicitly. Because it is hardly necessary to motivate
the inclusion of stochastic volatility in a derivative pricing model. The addition of interest rates as
a stochastic factor is important when considering long-maturity equity derivatives and has been the
subject of empirical investigations most notably by Bakshi et al. (2000). These authors show that
the hedging performance of delta hedging strategies of long-maturity options improves when taking
stochastic interest rates into account. Interest rate risk is not so much a factor for short maturity
options. This result is also intuitively appealing since the interest rate risk of equity derivatives,
the option’s rho, is increasing with time to maturity. The SZHW model can further be used in the
pricing and risk management of a range of exotic derivatives. One can think of equity-FX-interest
rate hybrids, long-maturity multi-equity derivatives but also rate of return guarantees in insurance
contracts, which often have a long-term nature (see Schrager and Pelsser (2004)).

Our paper can be placed in the derivative pricing literature on stochastic volatility models as it adds
to or extends work by Stein and Stein (1991), Heston (1993), Schöbel and Zhu (1999) or, since
our model can be placed in the affine class, in the more general context of Duffie et al. (2000),
Duffie et al. (2003) and van der Ploeg (2006). The SZHW model benefits greatly from the analytical
tractability typical for this class of models. Our work can also be viewed as an extension of the work
by Amin and Jarrow (1992) to stochastic volatility. In a related paper Ahlip (2008) considers an
extension of the Schöbel-Zhu model to Gaussian stochastic interest rates for pricing of exchange rate
options. Upon a closer look however the correlation structure considered by this paper is limited to
perfect correlation between the stochastic processes7. The affine stochastic volatility models fall in
the broader literature on stochastic volatility which covers both volatility modeling for the purpose
of derivative pricing as well as real world volatility modeling. Previous papers that covered both
stochastic volatility and stochastic interest rates in derivative pricing include: Scott (1997), Bakshi
et al. (1997), Amin and Ng (1993) and Andreasen (2006). The SZHW model distinguishes itself from
these models by a closed form call pricing formula and/or explicit, rather than implicit, incorporation
of the correlation between underlying and the term structure of interest rates.

Our contribution to the existing literature is fourfold:

• First, we derive the conditional characteristic function of the SZHW model in closed form and
analyse pricing vanilla equity calls and puts using transform inversion. We also derive a closed
form expression for the conditional characteristic function.

• Second, since the practical relevance of any model is limited without a numerical implementa-
tion, we extensively consider the efficient implementation of the transform inversion (see Lord
and Kahl (2007)) required to price European options. In particular we derive a theoretical result
on the limiting behaviour of the conditional characteristic function of the SZHW model which
allows us to calculate of the inversion integral much more accurately.

• Third, we consider the pricing of forward starting options.

• Fourth, we generalize the SZHW model to be able to value FX options in a framework where
both domestic and foreign interest rate processes are stochastic.

7We thank Vladimir Piterbarg for pointing out this paper to us.
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The outline for the remainder of the paper is as follows. First, we introduce the model and focus on the
analytical properties. Second, we consider the effect of stochastic interest rates and correlation on the
implied volatility term structure. Third, we consider the numerical implementation of the transform
inversion integral. Fourth, we consider the pricing of forward starting options. Fifth, we present the
extension of the model for FX options involving two interest rate processes. Finally we conclude.

2 The Schöbel-Zhu-Hull-White model

The model we will derive here is a combination of the famous Hull and White (1993) model for the
stochastic interest rates and the Schöbel and Zhu (1999) model for stochastic volatility. The model
has three key variables, which we allow to be correlated with each other: the stock price x(t), the
Hull-White interest rate process r(t) and the stochastic stock volatility which follows an Ornstein-
Uhlenbeck process cf. Schöbel and Zhu (1999). The risk-neutral asset price dynamics of the Schöbel-
Zhu-Hull-White (SZHW) read:

dx(t) = x(t)r(t)dt + x(t)ν(t)dWx(t), x(0) = x0, (1)

dr(t) =
(
θ(t) − ar(t)

)
dt + σdWr(t), r(0) = r0, (2)

dν(t) = κ
(
ψ − ν(t)

)
dt + τdWν(t), ν(0) = ν0, (3)

where a, σ, κ, ψ, τ are positive parameters which can be inferred from market data and correspond to
the mean reversion and volatility of the short rate process, and the mean reversion, long-term volatility
and volatility of the volatility process respectively. The quantity r0 and the deterministic function θ(t)
are used to match the currently observed term structure of interest rates, e.g. see Hull and White
(1993). The hidden parameter v0 > 0, corresponds to the current instantaneous volatility and hence
should be determined directly from market (e.g. just as the non-observable short interest rate), but is
in practice often (mis-)used as extra parameter for calibration. Finally, W̃(t) =

(
Wx(t),Wr(t),Wν(t)

)
denotes a Brownian motion under the risk-neutral measure Q with covariance matrix:

Var
(
W̃(t)

)
=

 1 ρxr ρxν

ρxr 1 ρrν

ρxν ρrν 1

 t (4)

We will derive the characteristic function of the log-asset price, which can be used to price all kinds
of options. We will consider general payoffs that are a function of the stock price at maturity T . Thus
we need the probability distribution of the T -forward stock price at time T . Instead of evaluating
expected discounted payoff under the risk-neutral bank account measure, we can also change the
underlying probability measure to evaluate this expectation under the T -forward probability measure
QT (e.g. see Geman et al. (1996)). This is equivalent to choosing the T -discount bond as numeraire.
Hence conditional on time t, we can evaluate the price of a European stock option (w = 1 for a call
option, w = −1 for a put option) with strike K = exp(k) as

IEQ
[
exp

[
−

∫ T

t
r(u)du

](
w(S (T ) − K)

)+∣∣∣Ft

]
= P(t,T )IEQ

T
[(

w(FT (T ) − K)
)+∣∣∣Ft

]
, (5)

where P(t,T ) denotes the price of a (pure) discount bond and FT (t) := S (t)
P(t,T ) denotes the T -forward

stock price. The above expression can be numerically evaluated by means of a Fourier inversion of
the log-asset price characteristic function.
Following Carr and Madan (1999), Lewis (2001) and Lord and Kahl (2008), we can then write the
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call option (5) with log strike k, in terms of the (T -forward) characteristic function φT of the log asset
price z(T ), i.e.

CT (k) = P(t,T )
1
π

∞∫
0

Re
(
e−(α+iv)kψT (v)

)
dv + R

(
FT (t),K, α(k)

)
, (6)

where the residue term R equals

R
(
F,K, α

)
:= F · 1{α≤0} − K · 1{α≤−1} −

1
2

(
F · 1{α=0} − K · 1{α=−1}

)
, (7)

with

ψT (v) :=
φT

(
v − (α + 1)i

)
(α + iv)(α + 1 + iv)

, (8)

and where φT (v) := IEQ
T
[
exp

(
iuz(T )

)∣∣∣Ft

]
denotes the T -forward characteristic function of the log asset

price. Thus for the pricing of call options in the SZHW model, it suffices to know the characteristic
function of the log-asset price process. We will derive this characteristic function in the following
subsection. Section 4 is concerned with the numerical implementation of equation (6) and present an
alternative pricing equation which transforms the integration domain to the unit interval and hence
avoids truncation errors, see also Lord and Kahl (2007).

2.1 The T -forward dynamics

For the Hull-White model we have the following analytical expression for the discount bond price:

P(t,T ) = exp
[
Ar(t,T ) − Br(t,T )r(t)

]
, (9)

where Ar(t,T ) is used to calibrate to the interest rate term structure, and with:

Br(t,T ) :=
1 − e−a(T−t)

a
. (10)

Hence the forward stock price can be expressed as

FT (t) =
S (t)

exp
[
Ar(t,T ) − Br(t,T )r(t)

] . (11)

Under the risk-neutral measure Q (where we use the money market bank account as numeraire) the
discount bond price follows the process dP(t,T ) = r(t)P(t,T )dt − σBr(t,T )P(t,T )dWr(t). Hence, by
an application of Ito’s lemma, we find the following T -forward stock price process:

dFT (t) =
(
σ2B2

r (t,T ) + ρxrν(t)σBr(t,T )
)
FT (t)dt (12)

+ν(t)FT (t)dWx(t) + σBr(t,T )FT (t)dWr(t)

By definition the forward stock price will be a martingale under the T -forward measure. This is
achieved by defining the following transformations of the Brownian motions:

dWr(t) 7→ dWT
r (t) − σBr(t,T )dt,

dWx(t) 7→ dWT
x (t) − ρxrσBr(t,T )dt,

dWν(t) 7→ dWT
ν (t) − ρrνσBr(t,T )dt. (13)

4



Hence under the T -forward measure the processes for FT (t) and ν(t) are given by

dFT (t) = ν(t)FT (t)dWT
x (t) + σBr(t,T )FT (t)dWT

r (t), (14)

dν(t) = κ
((
ψ −

ρrνστ

κ
Br(t,T )

)
− ν(t)

)
dt + τdWT

ν (t), (15)

where WT
x (t),WT

r (t),WT
ν (t) are now Brownian motions under the T -forward QT . We can simplify (14)

by switching to logarithmic coordinates and rotating the Brownian motions WT
x (t) and WT

r (t) to WT
F (t).

Defining y(t) := log
(
FT (t)

)
and an application of Ito’s lemma yields

dy(t) = −
1
2
ν2

F(t)dt + νF(t)dWT
F (t), (16)

dν(t) = κ
(
ξ(t) − ν(t)

)
dt + τdWT

ν (t) (17)

with

ν2
F(t) := ν2(t) + 2ρxrν(t)σBr(t,T ) + σ2B2

r (t,T ) (18)

ξ(t) :=
(
ψ −

ρrνστ

κ
Br(t,T )

)
. (19)

Notice that we now have reduced the system (1) of the three variables x(t), r(t) and ν(t) under the
risk-neutral measure, to the system (16) of two variables y(t) and ν(t) under the T -forward measure.
What remains is to find the characteristic function of the reduced system of variables.

Determining the characteristic function of the forward log-asset price

We will now determine the characteristic function of the reduced system (16), which we will do by
means of a partial differential approach. That is, we apply the Feynman-Kac theorem and reduce
the problem of finding the characteristic of the forward log-asset price dynamics to solving a partial
differential equation; that is, the Feynman-Kac theorem implies that the characteristic function

f (t, y, ν) = IEQ
T [

exp
(
iuy(T )

)∣∣∣Ft
]
, (20)

is given by the solution of the following partial differential equation

0 = ft −
1
2
ν2

F(t) fy + κ
(
ξ(t) − ν(t)

)
fν +

1
2
ν2

F(t) fyy (21)

+
(
ρxντν(t) + ρrντσBr(t,T )

)
fyν +

1
2
τ2 fνν,

f (T, y, ν) = exp
(
iuy(T )

)
, (22)

where the subscripts denote partial derivatives and we took into account that the covariance term
dy(t)dν(t) is equal to

dy(t)dν(t) =
(
ν(t)dWT

x (t) + σBr(t,T )dWT
r (t)

)(
τdWT

ν (t)
)

=
(
ρxντν(t) + ρrντσBr(t,T )

)
dt, (23)

and to ease the notation we dropped the explicit (t, y, ν)-dependence for f .
Due to the affine structure of the model, we can solve the defining partial differential equation (21)
subject to the boundary condition (22), which leads to the following proposition.
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Proposition 2.1 The characteristic function of T-forward log-asset price of the SZHW model is given
by the following closed-form solution:

f (t, y, ν) = exp
[
A(u, t,T ) + B(u, t,T )y(t) + C(u, t,T )ν(t) +

1
2

D(u, t,T )ν2(t)
]
, (24)

where:

A(u, t,T ) = −
1
2

u
(
i + u

)
V(t,T )

+

T∫
t

[(
κψ + ρrν(iu − 1)τσBr(s,T )

)
C(s) +

1
2
τ2

(
C2(s) + D(s)

)]
ds (25)

B(u, t,T ) = iu, (26)

C(u, t,T ) = −u
(
i + u

) ((γ3 − γ4e−2γ(T−t)) − (
γ5e−a(T−t) − γ6e−(2γ+a)(T−t)) − γ7e−γ(T−t)

)
γ1 + γ2e−2γ(T−t) , (27)

D(u, t,T ) = −u
(
i + u

) 1 − e−2γ(T−t)

γ1 + γ2e−2γ(T−t) , (28)

with:

γ =

√
(κ − ρxντiu)2 + τ2u

(
i + u

)
, γ1 = γ + (κ − ρxντiu), (29)

γ2 = γ − (κ − ρxντiu), γ3 =
ρxrσγ1 + κaψ + ρrνστ(iu − 1)

aγ
,

γ4 =
ρxrσγ2 − κaψ − ρrνστ(iu − 1)

aγ
, γ5 =

ρxrσγ1 + ρrνστ(iu − 1)
a(γ − a)

,

γ6 =
ρxrσγ2 − ρrνστ(iu − 1)

a(γ + a)
, γ7 = (γ3 − γ4) − (γ5 − γ6),

and:

V(t,T ) =
σ2

a2

(
(T − t) +

2
a

e−a(T−t) −
1

2a
e−2a(T−t) −

3
2a

)
. (30)

Proof The model we are considering is not an affine model in y(t) and ν(t), but it is if we enlarge the
state space to include ν2(t):

dy(t) = −
1
2
ν2

F(t)dt + νF(t)dWT
F (t) (31)

dν(t) = κ
(
ξ(t) − ν(t)

)
dt + τdWT

ν (t) (32)

dν2(t) = 2ν(t)dν(t) + τ2dt = 2κ
(τ2

2κ
+ ξ(t)ν(t) − ν2(t)

)
dt + 2τν(t)dWT

ν (t) (33)

We can find the characteristic function of the T -forward log price by solving the partial differential
equation (21) for joint distribution f (t, y, ν) with corresponding boundary condition (22); substituting
the partial derivatives of the functional form (24) into (21) provides us four ordinary differential equa-
tions containing the functions A(t), B(t), C(t) and D(t). Solving this system yields the above solution,
see appendix A. �

We note that the strip of regularity of the SZHW characteristic function is the same as that of the
Schöbel and Zhu (1999) model, for which we refer the reader to Lord and Kahl (2007).
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3 Impact of stochastic interest rates and correlation

To gain some insights into the impact of the correlated stochastic rates and corresponding parameter
sensitivities we will look at the at-the-money implied volatility structure which we compute for dif-
ferent parameter settings. Besides comparing different parameter settings of the SZHW model, we
also make a comparison with the classical Schöbel and Zhu (1999) model to determine the impact of
stochastic rates in general. The behaviour of the ’non-interest rate’ parameters are similar to other
stochastic volatility models like Heston (1993) and Schöbel and Zhu (1999), that is the volatility of
the volatility lift the wings of the volatility smile, the correlation between the stock process and the
volatility process can incorporate a skew, and the short and long-term vol determine the level of the
implied volatility structure. The impact of stochastic rates and the corresponding correlation can be
found in the graphs below.
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Figure 1: Impact of ρxr on at-the-money implied volatilities. The graph corresponds to the (de-
generate) Black-Scholes-Hull-White case with parameter values r(t) = 0.05, a = 0.05, σ = 0.01,
v(0) = ψ = 0.20, ρxv = 0.0 and constant volatility process.

First notice from the above graphs that the stochastic interest rates can create an upward (or initially
downward) sloping term structure of volatility, even in case the volatility process is constant, see
figure 1. If we compare the case with zero correlation between the equity and interest rate drivers with
the ordinary process with deterministic rates, we see that the stochastic rates make the term structure
upward sloping. This effect becomes more apparent for maturities larger than five years; while for
one years the effect of uncorrelated stochastic rates is below a basis point, the effect on a five year
option is already 11 basis points which increases to 264 basis points for a thirty year option. These
model effects correspond with a general feature of the interest rate market: the market’s view on the
uncertainty of long-maturity bonds is often much higher than that of shorter bond, hence reflecting
the increasing impact of stochastic interest rates for long-maturity equity options. Moreover we can
see that for higher positive values of linear correlation coefficient between equity and the interest rate
component, the impact of stochastic rates are even more apparent.
The effect of the correlation coefficient between the drivers of the rate and volatility process is similar,
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though its impact on the implied volatility structure is less severe, see figure 2 below.
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Figure 2: Impact of ρxν on at-the-money implied volatilities. The graph corresponds to the parameter
values r(t) = 0.05, a = 0.05, σ = 0.01, v(0) = ψ = 0.20, ρxr = 0.0 and with volatility process with a
mean reversion coefficient of κ = 0.5 and volatility of volatility τ = 0.2.

Note hereby that the increasing term structure in the above figure is mainly caused by the Schöbel-Zhu
volatility process. In comparison to the Schöbel and Zhu (1999) model, we can see that the stochastic
interest rates increase the slope of the term structure. More importantly, the implied volatilities do not
die out, but remain upward sloping, which behaviour often corresponds with implied volatility quotes
in long-maturity equity (e.g. see MarkIT) or FX (e.g. see Andreasen (2006)) options. However for
strong negative correlation values this might be the other way around. In contrast to the first picture,
we see somewhat smaller effects: for example the increasing effect of stochastic rates is even larger
than that of the dampening effect of negative correlation of 30% between the rate and volatility drivers.
Again we see that the effects of stochastic rates become more apparent for longer maturities.
Hence from the graphs we see that the stochastic rates can have a significant impact on the backbone
of the implied volatility structure and that these effects become more apparent for larger maturities
and larger absolute values of the correlation coefficients. Hereby the effect of correlation coefficient
between equity and interest rates seems to be the most determinant factor. One can then use these
degrees of freedom in several ways: either one jointly calibrates these parameter to implied volatility
surfaces (or some other options), or one can first calibrate these and then use the other parameters to
calibrate the remainder of the model. In our opinion this choice has to depend on the exotic product
that has to priced: if the correlations are of larger impact on a exotic product (e.g. on a hybrid equity-
interest rate product) than on short-dated vanilla calls, it might then be preferable to use a historical
estimate for the correlation coefficient at the cost of a slightly worse calibration result. In any case
the advantage of the SZHW model is that one is free to choose the correlation coefficients instead of
blindly setting them to zero.
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3.1 Relationship with the Heston model

It was already noted by Heston Heston (1993) in this famous 1993-paper, that an Ornstein-Uhlenbeck
process for the volatility is closely related to a square-root process for the variance process. If the
volatility follows an Ornstein-Uhlenbeck process as in (1):

dν(t) = κ
(
ψ − ν(t)

)
dt + τdWν(t),

then Ito’s lemma shows that the variance process ν2(t) follows the process

dν2(t) = 2κ
(τ2

2κ
+ ψν(t) − ν2(t)

)
dt + 2τν(t)dWν(t). (34)

Since the variance process of the Heston model has the following dynamics

dν2
H(t) = κH

(
ψH − ν

2
H(t)

)
dt + τHνH(t)dWν(t), (35)

one can easily establish a relationship between the Heston and Schöbel-Zhu model; in the case the
long-term mean of the volatility process of (1) ψ = 0, Schöbel-Zhu model equals the Heston model
in which κH = 2κ, τH = 2τ and ψH = τ2

2κ . The overlap of the models is restricted to this very special
case.

4 Calculating the inverse Fourier transform

In Lord and Kahl (2007) the practical calculation of the inverse Fourier transform (6) is discussed in
great detail

CT (k) = P(t,T )
1
π

∞∫
0

Re
(
e−

(
α+iv

)
kψT (v)

)
dv + R

(
FT (t),K, α(k)

)
. (36)

They recommend that

• Any truncation error is avoided by appropriately transforming the range of integration to a finite
interval.

• An adaptive integration algorithm is used, hereby allowing the discretization error to be of a
prescribed maximum size.

• The damping parameter α is chosen such that the integrand is minimized in v = 0, which
typically leads to much more accurate prices for options which have long maturities and/or are
away from the at-the-money level.

By changing variables from v to g(v), which maps [0,∞) 7→ [0, 1], the pricing equation (36) becomes

CT (k) = P(t,T )
1
π

1∫
0

Re
(
e−

(
α+ig(v)

)
kψT

(
g(v)

)
· g
′

(v)
)
dv + R

(
FT (t),K, α(k)

)
. (37)

However one carefully has to choose the transformation function g such that the integrand remains
finite over the range of integration, as it is in (36). To find such a transformation, we analyse the
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limiting behaviour of the characteristic function. In particular, suppose that the characteristic function
of the SZHW model for large values of u behaves as

φT (u) ∝ exp
(
φr(u) + iφi(u)

)
, (38)

with both φr(u) and φi(u) functions on the real line. The integrand in (36) will then have the following
asymptotics

Re
(
e−i(u−iα)k φT

(
u − (α + 1)i

)
(α + iu)(α + i + iu)

)
∝

e−αk+ψr
(
u−(α+1)i

)
u2 · cos

(
ku − ψi

(
u − (α + 1)i

))
. (39)

In the remainder we will determine ψr, which will tell us which transformation function is suitable to
use. Lord and Kahl (2007) already supply a number of intermediary results for the Schöbel and Zhu
(1999) model, but as the notation we use here is slightly different, we will briefly restate these results.
For large values of u, only γ,γ1 and γ2 in (29) are O(u), whereas γ3 to γ6 tend to a constant, and γ7 is
actually O

(1
u
)
. The limits we require here are

lim
u→∞

γ(u)
u

= τ
√

1 − ρxν =: γ(∞), (40)

lim
u→∞

γ1(u)
u

= γ(∞) − iρxντ =: γ1(∞), (41)

lim
u→∞

γ3(u) = σ
ρxrγ(∞) + iτ

(
ρrν − ρxrρxν

)
aγ(∞)

=: γ3(∞), (42)

lim
u→∞

γ5(u) = σ
ρxrγ(∞) + iτ

(
ρrν − ρxrρxν

)
aγ(∞)

=: γ5(∞). (43)

We find that the limiting behaviour for C(u, t,T ) in (27) follows from

lim
u→∞

C(u, t,T )
u

= −
γ3(∞) − γ5(∞)e−a(T−t)

γ1(∞)
= −

iρrν + ρxr
( √

1 − ρ2
xν − iρxν

)
τ
(
1 − ρ2

xν − iρxν
√

1 − ρ2
xν

) στ Br(t,T )

≡ C(∞)
σ

τ
Br(t,T ). (44)

From the above result,the limiting behaviour of D(u, t,T ) in (28) for large values of u follows as

lim
u→∞

D(u, t,T )
u

= −
1

γ1(∞)
. (45)

Finally, we need to analyse A(t) = A(u, t,T ) in (25). Its defining ODE (102) can be found in appendix
A, i.e.

∂A(u, t,T )
∂t

= −
[
κξ(t) + iuρrντσBr(t,T )

]
C(u, t,T ) +

1
2

u
(
i + u

)
σ2B2

r (t,T )

−
1
2
τ2(C2(u, t,T ) + D(u, t,T )

)
. (46)

The first derivative of A(u, t,T ) behaves as O(u2) for large values of u, as can be seen from

lim
u→∞

1
u2

∂A(u, t,T )
∂t

=
1
2

(
1 −C2(∞) − 2iρrνC(∞)

)
σ2B2

r (t,T ) (47)
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Finally, together with the boundary condition A(u,T,T ) = 0, we have

lim
u→∞

A(u, t,T )
u2 = −

T∫
t

lim
u→∞

1
u2

∂A(u, s,T )
∂s

ds = −
1
2

V(t,T ) ·
(
1 −C2(∞) − 2iρrνC(∞)

)
≡ −A(∞), (48)

where V(t,T ) denotes the integrated bond variance, i.e. as defined in (30). One can show that
Re

(
A(∞)

)
≥ 0 as V(t,T ) ≥ 0 and:

Re
(
C2(∞) + 2iρrνC(∞)

)
=
ρ2

xr − 2ρrνρxrρxν + ρ2
rν(4ρ

2
xν − 3)

1 − ρ2
xν

≤ 1. (49)

This follows by maximizing the right-hand side with respect to the constraint that the three correlations
constitute a positive semi-definite correlation matrix. For example, the maximum is achieved when
ρxr = − 1

2

√
3 , ρxν = −1

2 and ρrν = 0.
The above analysis determines φr as

φr
(
u − (α + 1)i

)
= −Re

(
A(∞)

)
· u2. (50)

One can conclude that the tail behaviour of the characteristic function of the SZHW model is quite
different from that of the Schöbel and Zhu (1999) model; whereas the decay in the Schöbel-Zhu
model is only exponential, the decay here resembles that of a Gaussian characteristic function, caused
by the addition of a Gaussian short rate process. Clearly, if σ (the volatility of the short rate) is zero,
A(∞) = 0 and the decay of the characteristic function becomes exponential once again. As the tail
behaviour of the characteristic function is of the same from as that of the Black and Scholes (1973)
characteristic function, an appropriate transformation function is, as in Lord and Kahl (2007),

g(u) = −
ln u
√

A(∞)
, (51)

which can be used in the pricing equation (37).

5 Forward starting options

Due to the popularity of forward starting options such as cliquets, the pricing of forward starting
options recently attracted the attention of both practitioners and academics (e.g. see Lucić (2003),
Hong (2004), Kruse and Nögel (2005) and Brigo and Mercurio (2006)). In this section we will show
how one can price forward starting options within the SZHW framework; following Hong (2004), we
consider the (forward) log return of the asset price x:

z(Ti−1,Ti) := log
( x(Ti)

x(Ti−1)

)
. (52)

Since
log x(t) = y(t) + log P(t,Ti), (53)

we can express (52) also in terms of the Ti-forward log-asset price y(t), i.e.

z(Ti−1,Ti) = y(Ti) − y(Ti−1) − log P(Ti−1,Ti). (54)
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We are then interested in the following forward starting call option with strike K = exp(k) on the
return x(Ti)

x(Ti−1) ,

CTi−1,Ti(k) = IEQ
[
exp

[
−

∫ Ti

t
r(u)du

]( x(Ti)
x(Ti−1)

− K
)+∣∣∣Ft

]
= P(t,Ti)IEQ

T
[(

FTi
Ti−1,Ti

(Ti) − K
)+∣∣∣Ft

]
, (55)

where
FTi

Ti−1,Ti
(Ti) := exp

[
z(Ti−1,Ti)

]
denotes the forward return between Ti−1 and Ti under the Ti-forward measure. Note that the above
expression is nothing more than some call option under the T -forward measure. Therefore, as noted
by Hong (2004), the pricing of forward starting options can be reduced to finding the characteristic
function of the log forward return under the T -forward measure; by replacing the log-asset price by
the forward log-return one can directly apply the pricing equation (6) or (37), i.e. by replacing the
corresponding characteristic function by ψTi−1,Ti(v): the characteristic function (under the Ti-forward
measure) of the forward log-return between Ti−1 and Ti. What remains to be done for the pricing of
forward starting options is the derivation of this forward characteristic function, which we will deal
with in the following subsection.

5.1 Forward characteristic function

We will now derive the forward characteristic function of the forward log return zTi
Ti−1,Ti

= y(Ti) −
y(Ti−1) − log P(Ti−1) in the SZHW model. In the derivation we will use the now following corollary.

Corollary 5.1 Let Z be a standard normal distributed random variable, furthermore let p and q be
two positive constants. Then the moment-generating function, provided that uq < 1, of Y := pZ +

q
2 Z2

is given by

φY (u, p, q) := IE exp(uY) =

exp
(

p2u2

2−2uq

)
√

1 − uq
, (56)

Proof Either by completing the square and using properties of the non-central chi-squared distribution
or by direct integration of an exponential affine form against the normal distribution, e.g. see Johnson
et al. (1994) or Glasserman (2003). �

Before we can apply the above corollary we first need to rewrite the characteristic function of the
log-return y(Ti)−y(Ti−1) in the form of the above corollary. To simplify the notation we write B := iu,
A(Ti−1 := A(u,Ti−1,Ti), C(Ti−1) := C(u,Ti−1,Ti) and D(Ti−1) := D(u,Ti−1,Ti). By using the tower
law for conditional expectations and the (conditional) characteristic function of the SZHW model one
can then obtain

φTi−1,Ti(u) = IEQ
T
{
exp

(
iu

[
y(Ti) − y(Ti−1) − log P(Ti−1,Ti)

])∣∣∣∣Ft

}
(57)

= IEQ
T
{
IEQ

T
[
exp

(
iu

[
y(Ti) − y(Ti−1) − log P(Ti−1,Ti)

])∣∣∣∣FTi−1

]∣∣∣∣Ft

}
= exp

[
A(Ti−1) − iuAr(Ti−1,Ti)

]
·

IEQ
T
{
exp

[
iuBr(Ti−1,Ti)r(Ti−1) + C(Ti−1)ν(Ti−1) +

1
2

D(Ti−1)ν2(Ti−1)
]∣∣∣∣Ft

}
.
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Since the pair
(
r(Ti−1), ν(Ti−1)

)
, conditional on its standard time-t filtration, follows a joint Gaussian

distribution with means µr, µν (see (64), (66)) and variances σ2
r , σ

2
ν (see (65), (67)), we can write

the sum of dependent normal variates r(Ti−1), ν(Ti−1) in terms of two independent standard normal
distributions Z1 and Z2 (e.g. by a Cholesky decomposition):

iubr(Ti−1) + cν(Ti−1) +
1
2

dν2(Ti−1) d
= iub

(
µr + σr

[
ρrν(t,Ti−1)Z1 +

√
1 − ρ2

rν(t,Ti−1) Z2
])

+c
(
µν + σνZ1

)
+

1
2

d
(
µν + σνZ1

)2 (58)

= iubµr + cµν +
1
2

dµ2
ν + iubσr

√
1 − ρ2

rν(t,Ti−1) Z2

+
[
cσν + dµνσν + iubρrν(t,Ti−1)σr

]
Z1 +

1
2

dσ2
νZ

2
1 ,

where the correlation ρrν(t,Ti−1) between r(Ti−1) and ν(Ti−1) over the interval [t,Ti−1] is given by

ρrν(t,Ti−1) =
ρrνστ

σrσν(a + κ)

[
1 − e−(a+κ)(Ti−1−t)

]
. (59)

Hence using the independence of Z1 and Z2 and equation (58) to (57), one can find the following
expression for the forward characteristic function

φTi−1,Ti(u) = exp
[
A(Ti−1) + iu

(
Br(Ti−1,Ti)µr − Ar(Ti−1,Ti)

)
+ C(Ti−1)µν +

1
2

D(Ti−1)µ2
ν

]
IEQ

T
{
exp

[
iuBr(Ti−1,Ti)σr

√
1 − ρ2

rν(t,Ti−1) Z2
]∣∣∣∣Ft

}
·IEQ

T
{
exp

([
C(Ti−1)σν + D(Ti−1)µνσν + iuBr(Ti−1,Ti)ρrν(t,Ti−1)σr

]
Z1

+
1
2

D(Ti−1)σ2
νZ

2
1

)∣∣∣∣Ft

}
. (60)

Hence we come to the following proposition

Proposition 5.2 Conditional on the current time t, the characteristic function of the forward log
return z(Ti−1,Ti) under the Ti-forward measure is given by the following closed-form solution:

φTi−1,Ti(u) = exp
[
A(Ti−1) + iu

[
Br(Ti−1,Ti)µr − Ar(Ti−1,Ti)

]
+ C(Ti−1)µν +

1
2

D(Ti−1)µ2
ν

]
·φZ2

(
iuBr(Ti−1,Ti)σr

√
1 − ρ2

rν(t,Ti−1)
)
φY

(
1, P(Ti−1),Q(Ti−1)

)
(61)

with

P(Ti−1) = C(Ti−1)σν + D(Ti−1)µνσν + iuρrν(t,Ti−1)Br(Ti−1,Ti)σr,

Q(Ti−1) = D(Ti−1)σ2
ν,

φZ2(y) = exp
(y2

2

)
,

and where φY
(
1, P(Ti−1),Q(Ti−1)

)
, provided that Q(Ti−1) < 1, is given by corollary 5.1.
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Proof The result follows directly by evaluating the expectations from expression (60) for the
moment-generating function of the standard Gaussian distribution Z2 evaluated in the point
iuBr(Ti−1,Ti)σr

√
1 − ρ2

rν(t,Ti−1) , while the second expectation is the moment generating function
of the random variable Y = P(Ti−1)Z1 +

Q(Ti−1)
2 Z2

1 evaluated in the unit point, for which (provided that
Q(Ti−1) < 1) an analytical expression is given by corollary 5.1. �

What yet remains, is to determine (conditional on the time-t) the Ti-forward mean and variance of the
Ornstein-Uhlenbeck processes r(Ti−1) and ν(Ti−1). Before we do this, we briefly address the strip of
regularity and decay of the characteristic function.

The strip of regularity of (61) is once again determined by C(Ti−1), see Andersen and Piterbarg (2007)
for a detailed analysis in case of the Heston model, and Lord and Kahl (2007) for the SZ model. The
difference with the SZ and SZHW models is the additional condition that Q(Ti−1) < 1, which is
imposed by corollary 5.1.
The decay of the characteristic function is slightly different than our analysis for the SZHW model.
We will briefly mention how to derive the exact behaviour, though we do not provide all details for

reasons of brevity. For large values of u, the characteristic function will behave like exp
(
−C1u2

)
√

1+C2u2
, where

C1 and C2 are constants. Both A(Ti − 1), φZ2 and φY contribute to the exponential term, whereas only
the latter contributes to the square root term.

5.2 Moments of the Hull-White short interest rate

To determine the moments of the Hull-White short interest rate under the Ti-forward measure, for
a certain time Ti−1 ≤ Ti and conditional on the filtration at time t, one can consider the following
transformation of variables (see e.g. Pelsser (2000) or Brigo and Mercurio (2006))

r(Ti−1) = α(Ti−1) + β(Ti−1), (62)

with β a driftless Ornstein-Uhlenbeck process and where

α(Ti−1) = e−aTi−1
(
r(t) +

Ti−1∫
t

eauθ(s)du
)
,

which, in case one wants to fit the initial term structure of interest rates evolves into

α(Ti−1) = f (t,Ti−1) +
σ2

2a2

(
1 − e−aTi−1

)2
.

A solution for β(Ti−1)
∣∣∣∣β(t) under the Ti-forward measure is given by

β(Ti−1) = β(t)e−a(Ti−1−t) − MTi(t,Ti−1) + σ

∫ Ti−1

t
e−a(Ti−1−u)dWTi

r (u),

where

MTi(t,Ti−1) =
σ2

a2

(
1 − e−a(Ti−1−t)

)
−
σ2

2a2

(
e−a(Ti−Ti−1) − e−a(Ti+Ti−1−2t)

)
. (63)
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Hence, from Ito’s isometry, we immediately have that r(Ti−1), under the Ti-forward measure (condi-
tional on time t), is normally distributed with mean µr and variance σ2

r given by

µr = β(t)e−a(Ti−1−t) − MTi(t,Ti−1) + α(Ti−1), (64)

σ2
r =

σ2

2a

(
1 − e−2a(Ti−1−t)

)
, (65)

which can hence be used in proposition 5.2.

5.3 Moments of the Schöbel-Zhu volatility process

To determine the first two moments of the Schöbel-Zhu volatility process, under the Ti-forward mea-
sure, for a certain time Ti−1 ≤ Ti and conditional on the filtration at time t, one can integrate the
dynamics of (15) to obtain

ν(Ti−1) = ν(t)e−κ(Ti−1−t) +

Ti−1∫
t

κξ(u)e−κ(Ti−1−u)du +

Ti−1∫
t

τe−κ(Ti−1−u)dWT
ν (u),

where ξ(u) := ψ−
ρrνστ

aκ
(
1−ea(Ti−u)). Therefore, from Ito’s isometry, we have that the mean µν is given

by integral over the first two terms of (5.3), while the variance σ2
ν is given by the integrated square of

the integrand of the random term. Hence under the Ti-forward measure, we have the following for the
mean and standard deviation of ν:

µν = ν(t)e−κ(Ti−1−t) +
(
ψ −

ρrνστ

aκ

)(
1 − e−κ(Ti−1−t)

)
−
ρrνστ

a(κ + a)

(
e−a(Ti−t)−κ(Ti−1−t) − e−a(Ti−Ti−1)

)
, (66)

σ2
ν =

τ2

2κ

(
1 − e−2κ(Ti−1−t)

)
, (67)

which can hence be used in proposition 5.2.

6 Schöbel-Zhu-Hull-White Foreign Exchange model

In this section we present the Schöbel-Zhu-Hull-White Foreign Exchange (SZHW-FX) model. That
is, we introduce a domestic and a foreign exchange currency, which are modeled by Hull-White
processes. We model the exchange rate process by geometric motion where we let the volatility follow
an Ornstein-Uhlenbeck process. Moreover we allow all factors to be correlated with each other.
Notation is as follows: we let x(t) denote the Foreign Exchange (FX) rate, with volatility ν, between
the domestic currency r1 and the foreign currency r2. The risk-neutral FX dynamics of the Schöbel-
Zhu-Hull-White (SZHW) then read:

dx(t) = x(t)
(
r1(t) − r2(t)

)
dt + x(t)ν(t)dWx(t), x(0) = x0, (68)

dr1(t) =
(
θ1(t) − a1r1(t)

)
dt + σ1dWr1(t), r1(0) = r1

0, (69)

dr2(t) =
(
θ2(t) − a2r2(t) − ρr2νν(t)σ2

)
dt + σ2dWr2(t), r2(0) = r2

0, (70)

dν(t) = κ
(
ψ − ν(t)

)
dt + τdWν(t), ν(0) = ν0, (71)
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where ai, σi, κ, ψ, τ are positive parameters. Hence the domestic and the (shifted) foreign interest
rate markets are modeled by Hull-White models and the exchange rate is modeled by a Schöbel-Zhu
stochastic volatility model. W̃(t) =

(
Wx(t),Wr1 ,Wr2(t),Wν(t)

)
denotes a Brownian motion under the

risk-neutral measure Q with a positive covariance matrix:

Var
(
W̃(t)

)
=


1 ρxr1 ρxr2 ρxν

ρxr1 1 ρr1r2 ρr1ν

ρxr2 ρr1r2 1 ρr2ν

ρxν ρr1ν ρr2ν 1

 t (72)

We will now show that the above model dynamics yield a closed-form expression for the price of an
European FX-option with strike K and maturity T . Hence we consider:

IEQ
[ (w(x(T ) − K)

)+
N1(T )

∣∣∣Ft

]
, (73)

where w = ±1 for a call/put option and with

N1(T ) = exp
[∫ T

t
r(u)du

]
(74)

denotes the bank-account in the domestic economy. We can also represent the expectation (75) in the
domestic T -forward measure QT associated with a domestic zero-coupon bond option P1(t,T ) which
matures at time T , hence we obtain

IEQ
[ (w(x(T ) − K)

)+
N1(T )

∣∣∣Ft

]
= P1(t,T )IEQ

T
[(

w(FFXT (T ) − K)
)+∣∣∣Ft

]
, (75)

where
FFXT (t) =

x(t)P2(t,T )
P1(t,T )

(76)

denotes the forward FX-rate under the domestic T -forward measure.

The Hull-White model yields analytical expressions for the above prices of the zero-coupon discount
bonds, i.e.

Pi(t,T ) = exp
[
Ai(t,T ) − Bi(t,T )ri(t)

]
with: Bi(t,T ) :=

1 − e−ai(T−t)

ai
, (77)

where Ai(t,T ) is affine function. Hence we can express the forward FX-rate as

FFXT (t) =
x(t) exp

[
A2(t,T ) − B2(t,T )r2(t)

]
exp

[
A1(t,T ) − B1(t,T )r1(t)

] . (78)

Note that under their own risk-neutral measures (where we the money market bank account of their
own currency is used as numeraire) the discount bond prices follows the processes

dPi(t,T )
Pi(t,T )

= ri(t)dt − σiBi(t,T )dWri(t), (79)
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hence, by an application of Ito’s lemma, we find the following dynamics for the T -forward stock price
process

dFFXT (t)
FFXT (t)

=
(
σ2

1B2
1(t,T ) + ρxr1ν(t)σ1B1(t,T ) − ρr1r2σ2B2(t,T )σ1B1(t,T )

)
dt

+ν(t)dWx(t) + σ1B1(t,T )dWr1(t) − σ2B2(t,T )dWr2(t). (80)

By definition the forward FX-rate is a martingale process under the domestic T -forward measure.
This is achieved by defining the following transformations of the Brownian motion(s):

dWr1(t) 7→ dWT
r1

(t) − σ1B1(t,T )dt,

dWr2(t) 7→ dWT
r2

(t) − ρr1r2σ1B1(t,T )dt,

dWx(t) 7→ dWT
x (t) − ρxr1σ1B1(t,T )dt,

dWν(t) 7→ dWT
ν (t) − ρr1νσ1B1(t,T )dt.

Hence under the domestic T -forward measure the forward FX-rate and the associated volatility pro-
cess are given by

dFFXT (t)
FFXT (t)

= ν(t)dWT
x (t) + σ1B1(t,T )dWT

r1
− σ2B2(t,T )dWT

r2
(t) (81)

dν(t) = κ
(
ψ −

ρr1νσ1τ

κ
B1(t,T ) − ν(t)

)
dt + τdWT

ν (t). (82)

We can simplify (81) by switching to logarithmic coordinates and rotating the Brownian motions
WT

x (t),WT
r1

(t) and WT
r2

(t) to WT
F (t). Defining y(t) := log

(
FFXT (t)

)
and an application of Ito’s lemma

yields

dy(t) = −
1
2
ν2

F(t)dt + νF(t)dWT
F (t) (83)

dν(t) = κ
(
ξ(t) − ν(t)

)
dt + τdWT

ν (t), (84)

with:

ν2
F(t) := ν2(t) + σ2

1B2
1(t,T ) + σ2

2B2
2(t,T ) + 2ρxr1ν(t)σ1B1(t,T )

−2ρxr2ν(t)σ2B2(t,T ) − 2ρr1r2σ1B1(t,T )σ2B2(t,T ) (85)

ξ(t) := ψ −
ρr1νσ1τ

κ
B1(t,T ). (86)

Notice that we have now reduced the system (68) of the variables x(t), r1(t), r2(t), ν(t) under the do-
mestic risk-neutral measure, to the system (83) of variables y(t) and ν(t) under the domestic T -forward
measure. What now remains is to determine the characteristic function of this reduced system.

Determining the characteristic function of the forward log-FX rate

We will now determine the characteristic function of the forward FX rate. Since this calculation
goes in a similar spirit as the calculation of the ordinary characteristic function of the Schöbel-Zhu-
Hull-White model of section 2, we restrict ourselves to the most important steps. Again we apply
the Feynman-Kac theorem and reduce the search for the characteristic function of the forward-FX
rate dynamics to solving a partial differential equation. That is, we try to determine the Kolmogorov
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backward partial differential equation of the joint probability function f = f (t, y, ν). To this end we
need to take into account the following covariance term

dy(t)dν(t) =
(
ν(t)dWT

x (t) + σ1B1(t,T )dWT
r1

(t) − σ2B2(t,T )dWT
r1

(t)
)(
τdWT

ν (t)
)

=
(
ρxντν(t) + ρr1ντσ1B1(t,T ) − ρr2ντσ2B2(t,T )

)
dt. (87)

Hence using (83) and (87), the Feynman-Kac theorem then implies that the solution of the following
PDE

0 = ft −
1
2
ν2

F(t) fy + κ
(
ξ(t) − ν(t)

)
fν +

1
2
ν2

F(t) fyy

+
(
ρxντν(t) + ρr1ντσ1B1(t,T ) − ρr2ντσ2B2(t,T )

)
fyν +

1
2
τ2 fνν, (88)

subject to the terminal boundary condition f (T, y, ν) = exp
(
iuy(T )

)
, equals the characteristic function

of the forward FX-rate dynamics. Solving the above system hence leads to the following proposition.

Proposition 6.1 The characteristic function of domestic T-forward log SZHW-FX-rate is given by the
following closed-form solution:

f (t, y, ν) = exp
[
A(t) + B(t)y(t) + C(t)ν(t) +

1
2

D(t)ν2(t)
]
, (89)

where:

A(u, t,T ) =
1
2
(
B2 − B

)
VFX(t,T ) (90)

+

T∫
t

[(
κψ + ρr1ν(iu − 1)τσ1B1(s,T ) − ρr2νiuτσ2B2(s,T )

)
C(s) +

1
2
τ2

(
C2(s) + D(s)

)]
ds,

B = iu, (91)

C(u, t,T ) = −u
(
i + u

) ((γ3 − γ4e−2γ(T−t)) − (
γ5e−a1(T−t) − γ6e−(2γ+a1)(T−t)) − γ7e−γ(T−t)

)
γ1 + γ2e−2γ(T−t) (92)

+u
(
i + u

) ((γ8 − γ9e−2γ(T−t)) − (
γ10e−a2(T−t) − γ11e−(2γ+a2)(T−t)) − γ12e−γ(T−t)

)
γ1 + γ2e−2γ(T−t) ,

D(u, t,T ) = −u
(
i + u

) 1 − e−2γ(T−t)

γ1 + γ2e−2γ(T−t) (93)

with:

γ =

√
(κ − ρxντB)2 − τ2(B2 − B) , (94)

γ1 = γ + (κ − ρxντB), γ2 = γ − (κ − ρxντB),

γ3 =
ρxr1σ1γ1 + κa1ψ + ρr1νσ1τ(iu − 1)

a1γ
, γ4 =

ρxr1σ1γ2 − κa1ψ − ρr1νσ1τ(iu − 1)
a1γ

,

γ5 =
ρxr1σ1γ1 + ρr1νσ1τ(iu − 1)

a1(γ − a1)
, γ6 =

ρxr1σ1γ2 − ρr1νσ1τ(iu − 1)
a1(γ + a1)

,

γ8 =
ρxr2σ2γ1 + ρr2νσ2τB

a2γ
, γ9 =

ρxr2σ2γ2 − ρr2νσ2τB
a2γ

,

γ10 =
ρxr2σ2γ1 + ρr2νσ2τB

a2(γ − a2)
, γ11 =

ρxr2σ2γ2 − ρr2νσ2τB
a2(γ + a2)

,

γ7 = (γ3 − γ4) − (γ5 − γ6), γ12 = (γ8 − γ9) − (γ10 − γ11)
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and:

VFX(t,T ) :=
σ2

1

a2
1

(
(T − t) +

2
a1

e−a1(T−t) −
1

2a1
e−2a1(T−t) −

3
2a1

)
(95)

+
σ2

2

a2
2

(
(T − t) +

2
a2

e−a2(T−t) −
1

2a2
e−2a2(T−t) −

3
2a2

)
−2ρr1r2

σ1σ2

a1a2

(
(T − t) +

e−a1(T−t) − 1
a1

+
e−a2(T−t) − 1

a2
−

e−(a1+a2)(T−t) − 1
a1 + a2

)
.

Proof See appendix B. �

The strip of regularity and the decay of the characteristic function can be determined analogous to the
SZHW model. The function C(u, t,T ) once again determines the strip of regularity, whereas A(u, t,T )
ensures the characteristic function decays like exp

(
−C(u, t,T )u2), where the exact constant follows

from a similar analysis to that in section 4.

7 Conclusion

We have introduced the SZHW model which allows us to price equity and exchange rate derivatives
whilst considering both stochastic volatility and stochastic interest rates. It must be noted that our
model can cover Poisson type jumps with a trivial extension. The SZHW model falls in the affine
class of models which benefits from convenient analytical properties. This enabled us to derive an an-
alytical formula for the conditional characteristic function. Furthermore we extensively consider the
numerical implementation of the call price formula which allows for fast and accurate call valuation
and calibration of the model to market prices of options. We also derive pricing formulas for forward
starting options, which allows for a calibration of the model to forward smiles.
The SZHW model will be especially useful in the pricing and risk management of long-maturity
derivatives. For such options it is especially important to consider the risk of the underlying in con-
junction with the ”funding risk” of the option. Given empirical data on option prices our model can be
used to examine the pricing and especially hedging performance of stochastic volatility models while
correcting for interest rate risk. An empirical study on the relative performance of the SZHW model
versus other stochastic volatility models, as well as the relative benefit of the modeling of stochastic
interest rates (covered earlier by Bakshi et al. (1997)), is beyond the scope of this paper, and is left for
future research.
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A Deriving the log asset price characteristic function

In this appendix we will show that the partial differential equation (21)

ft + κ
(
ξ(t) − ν(t)

)
fν +

1
2
ν2

F(t)
(
fyy − fy

)
+

(
ρxντν(t) + ρrντσBr(t,T )

)
fyν +

1
2
τ2 fνν = 0, (96)

subject to the terminal boundary condition

f (T, y, ν) = ψ(y, ν) := exp
(
iuy(T )

)
,

has a solution given by (24) - (28).

To lighten the notation, we from here on omit the explicit dependence on u and T in the A, B,C,D
terms and hence write A(t) instead of A(u, t,T ) for these terms. Using the ansatz

f (t, y, ν) = exp
[
A(t) + B(t)y(t) + C(t)ν(t) +

1
2

D(t)ν2(t)
]
, (97)

we find the following partial derivatives for f = f (t, y, ν):

ft = f ·
(
A
′

(t) + B
′

(t)y(t) + C
′

(t)ν(t) +
1
2

D
′

(t)ν2(t)
)
, fy = f B(t),

fν = f ·
(
C(t) + D(t)ν(t)

)
, fyy = f B2(t), fyν = f B(t)

(
C(t) + D(t)ν(t)

)
fνν = f ·

(
C(t) + D(t)ν2(t)

)
= f ·

(
C2(t) + D(t) + 2C(t)D(t)ν(t) + D2(t)ν2(t)

)
Substituting these partial derivatives into the partial differential equation (96) then gives(

A
′

(t) + B
′

(t)y(t) + C′(t)ν(t) +
1
2

D
′

(t)ν2(t)
)

+ κ
(
ξ(t) − ν(t)

)(
C(t) + D(t)ν(t)

)
+

1
2

(
ν2(t) + 2ρxrν(t)σBr(t,T ) + σ2B2

r (t,T )
)(

B2(t) − B(t)
)

+
(
ρxντν(t) + ρrντσBr(t,T )

)
B(t)

(
C(t) + D(t)ν(t))

+
1
2
τ2(C2(t) + D(t) + 2C(t)D(t)ν(t) + D2(t)ν2(t)

)
= 0. (98)

Collecting terms for y(t),ν(t), and 1
2ν

2(t) then yields the following four ordinary differential equations
for the functions A(t), . . . ,D(t):

0 = B
′

(t) ⇒ B(t) := B, (99)

0 = D
′

(t) − 2
(
κ − ρxντB

)
D(t) + τ2D2(t) + (B2 − B), (100)

0 = C
′

(t) +
(
ρxντB − κ + τ2D

)
C(t) + ρxrσBr(t,T )

(
B2 − B

)
(101)

+
(
κξ(t) + ρrντσBr(t,T )B

)
D(t),

0 = A
′

(t) +
(
κξ(t) + ρrντσBr(t,T )B

)
C(t)

+
1
2
σ2B2

r (t,T )
(
B2 − B

)
+

1
2
τ2(C2(t) + D(t)

)
. (102)

As already noted in equation (99), it immediately that follows B(t) = B equals a constant since its
derivative is zero. Subject to the boundary condition (A) we then find

B = iu. (103)
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The second equation (100) yields a Riccati equation with constant coefficients with boundary condi-
tion D(T ) = 0:

D
′

(t) = −(B2 − B) + 2(κ − ρxντB)D(t) − τ2D2(t)

=: q0 + q1D(t) + q2D2(t)

Making the substitution D(t) =
−v
′
(t)

q2v(t) transforms the Riccati equation into the following second order
linear differential equation with constant coefficients:

v
′′

(t) − q1v
′

(t) + q0q2v(t) = 0, (104)

which solution is given by

v(t) = γ1 exp
[
λ+(T − t)

]
+ γ2 exp

[
λ−(T − t)

]
,

λ± = −
q1

2
±

√
q2

1 − 4q0q2

Hence defining γ =

√
q2

1 − 4q0q2 we find:

D(t) =
−v

′

(t)
q2v(t)

= −
1
τ2

γ1γ2eγ(T−t) − γ1γ2e−γ(T−t)

γ1eγ(T−t) + γ2e−γ(T−t)

= (B2 − B)
eγ(T−t) − e−γ(T−t)

γ1eγ(T−t) + γ2e−γ(T−t) = −u
(
i + u

) 1 − e−2γ(T−t)

γ1 + γ2e−2γ(T−t) (105)

with: γ =

√
(κ − ρxντB)2 − τ2(B2 − B) , (106)

γ1 = γ +
1
2

q1 = γ + (κ − ρxντB), (107)

γ2 = γ −
1
2

q1 = γ − (κ − ρxντB). (108)

Here the constants γ1 and γ2 in equation (106) are determined from the identity (γ + 1
2 q1)(γ − 1

2 q1) =

−(B2 − B)τ2 and the boundary condition D(T ) = 0.

The third equation (101) looks pretty daunting, but is merely a first order linear ordinary differential
equation of the form C

′

(t) + g(t)C(t) + h(t) = 0, with corresponding boundary condition C(T ) = 0.
Hence using (19) we can represent a solution for C(t) as:

C(t) =

T∫
t

h(s) exp
[∫ s

t
g(w)dw

]
ds, (109)

with: g(w) = −(κ − ρxντB) + τ2D(w), (110)

h(s) = ρxrσBr(s,T )
(
B2 − B) +

(
κξ(s) + ρrντσBr(s,T )B

)
D(s)

= ρxrσBr(s,T )
(
B2 − B) +

(
κψ + ρrν(B − 1)τσBr(s,T )

)
D(s). (111)

We first consider the integral over g: dividing equation (100) by D(t), rearranging terms and integrat-
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ing we find the surprisingly simple solution:∫
g(w)dw =

∫
−(κ − ρxντB) + τ2D(w)dw

=

∫
(κ − ρxντB) −

(B2 − B)
D(w)

−
D
′

(w)
D(w)

dw

= log
(
γ1eγ(T−t) + γ2e−γ(T−t)

)
+ C, (112)

where C denotes the integration constant. Hence taking the exponent and filling in the required inte-
gration boundaries yields

exp
[ s∫

t

g(w)dw
]

=
γ1eγ(T−s) + γ2e−γ(T−s)

γ1eγ(T−t) + γ2e−γ(T−t) , (113)

and after a straightforward calculation we get for C(t)

C(t) =
1

γ1eγ(T−t) + γ2e−γ(T−t)

T∫
t

h(s)
(
γ1eγ(T−s) + γ2e−γ(T−s)

)
ds

=
(
B2 − B

) ((γ3eγ(T−t) − γ4e−γ(T−t)) − (
γ5e(γ−a)(T−t) − γ6e−(γ+a)(T−t)) − γ7

)
γ1eγ(T−t) + γ2e−γ(T−t)

= −u
(
i + u

) ((γ3 − γ4e−2γ(T−t)) − (
γ5e−a(T−t) − γ6e−(2γ+a)(T−t)) − γ7e−γ(T−t)

)
γ1 + γ2e−2γ(T−t) , (114)

with γ, γ1, . . . , γ7 as defined in (29).

Finally, by solving equation (102), we find the following expression for A(t):

A(t) =

T∫
t

1
2
(
B2 − B

)
σ2B2

r (s,T )ds

+

T∫
t

[(
κξ(t) + ρrντσBr(s,T )B

)
C(s) +

1
2
τ2

(
C2(s) + D(s)

)]
ds

= −
1
2

u
(
i + u

)
V(t,T )

+

T∫
t

[(
κψ + ρrν(iu − 1)τσBr(s,T )

)
C(s) +

1
2
τ2

(
C2(s) + D(s)

)]
ds (115)

where V(t,T ) can be found by simple integration and is given by

V(t,T ) =
σ2

a2

(
(T − t) +

2
a

e−a(T−t) −
1
2a

e−2a(T−t) −
3
2a

)
(116)

It is possible to write a closed-form expression for the remaining integral in (115). As the ordinary
differential equation for D(s) is exactly the same as in the Heston (1993) or Schöbel and Zhu (1999)
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model, it will involve a complex logarithm and should therefore be evaluated as outlined in Lord and
Kahl (2008) in order to avoid any discontinuities. The main problem however lies in the integrals over
C(s) and C2(s), which will involve the Gaussian hypergeometric 2F1(a, b, c; z). The most efficient
way to evaluate this hypergeometric function (according to Numerical Recipes, Press and Flannery
(1992)) is to integrate the defining differential equation. Since all of the terms involved in D(u)
are also required in C(u), numerical integration of the second part of (115) seems to be the most
efficient method for evaluating A(t). Hereby we conveniently avoid any issues regarding complex
discontinuities altogether.
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B Deriving the log FX-rate characteristic function

In this appendix we will prove that the partial differential equation (88), i.e.

0 = ft + κ
(
ξ(t) − ν(t)

)
fν +

1
2
ν2

F(t)
(
fyy − fy

)
+
(
ρxντν(t) + ρr1ντσ1B1(t,T ) − ρr2ντσ2B2(t,T )

)
fyν +

1
2
τ2 fνν, (117)

subject to the terminal boundary condition f (T, y, σ) = exp
(
iuy(T )

)
has a solution given by (89)-(94);

we follow the same approach as in section (A), that is we use the ansatz (89), find the corresponding
partial derivatives and substitute these in the PDE (117).

Expanding ν2
F(t) according to (85) and collecting the terms for y(t), ν(t) and 1

2ν
2(t) yields the following

system of ordinary differential equations for the functions A(t), . . . ,D(t):

0 = B
′

(t) ⇒ B(t) := B, (118)

0 = D
′

(t) − 2
(
κ − ρxντB

)
D(t) + τ2D2(t) + (B2 − B), (119)

0 = C
′

(t) +
(
ρxντB − κ + τ2D

)
C(t) +

(
ρxr1σ1B1(t,T ) − ρxr2σ2B2(t,T )

)(
B2 − B

)
+
(
κξ(t) +

(
ρr1ντσ1B1(t,T ) − ρr2ντσ2B2(t,T )

)
B
)
D(t), (120)

0 = A
′

(t) +
(
κξ(t) + ρr1ντσ1B1(t,T )B − ρr2ντσ2B2(t,T )B

)
C(t)

+
(1
2
σ2

1B2
1(t,T ) +

1
2
σ2

2B2
2(t,T ) − ρr1r2σ1B1(t,T )σ2B2(t,T )

)(
B2 − B

)
+

1
2
τ2(C2(t) + D(t)

)
(121)

Hence we end up with an analogue system of ordinary differential equations as in section (A): the
first two differential equations (118) and (119) for B and D(t) are equivalent to (99) and (100) whose
solutions are given in the equations (103) and (105)-(108). The third equation (120) for C(t) looks
pretty daunting, but is again merely a first order linear differential equation of the form C′(t)+g(t)C(t)+
h(t) = 0, with associated boundary condition C(T ) = 0. Hence expanding ξ(t) according to (86), we
can represent a solution for C(t) as:

C(t) =

T∫
t

h(s) exp
[∫ s

t
g(w)dw

]
ds, (122)

with: g(w) = −(κ − ρxντB) + τ2D(w), (123)

h(s) =
(
ρxr1σ1B1(s,T ) − ρxr2σ2B2(s,T )

)(
B2 − B)

+
(
κξ(s) +

(
ρr1ντσ1B1(s,T ) − ρr2ντσ2B2(s,T )

)
B
)
D(s)

= ρxr1σ1B1(s,T )
(
B2 − B) +

(
κψ + ρr1ν(B − 1)τσ1B1(s,T )

)
D(s)

−ρxr2σ2B2(s,T )
(
B2 − B

)
−

(
ρr2νBτσ2B2(s,T )

)
D(s). (124)

Now notice that the integral over g is equivalent to (112), hence its solution is given by equation (113),
i.e.

exp
[ s∫

t

g(w)dw
]

=
γ1eγ(T−s) + γ2e−γ(T−s)

γ1eγ(T−t) + γ2e−γ(T−t) , (125)
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with γ, γ1 and γ2 defined in (94). Substituting this expression into (122) we find (after a long but
straightforward calculation) for C(t):

C(t) =
(
B2 − B

) ((γ3eγ(T−t) − γ4e−γ(T−t)) − (
γ5e(γ−a1)(T−t) − γ6e−(γ+a1)(T−t)) − γ7

)
γ1eγ(T−t) + γ2e−γ(T−t)

−
(
B2 − B

) ((γ8eγ(T−t) − γ9e−γ(T−t)) − (
γ10e(γ−a2)(T−t) − γ11e−(γ+a2)(T−t)) − γ12

)
γ1eγ(T−t) + γ2e−γ(T−t)

= −u
(
i + u

) ((γ3 − γ4e−2γ(T−t)) − (
γ5e−a1(T−t) − γ6e−(2γ+a1)(T−t)) − γ7e−γ(T−t)

)
γ1 + γ2e−2γ(T−t) (126)

+u
(
i + u

) ((γ8 − γ9e−2γ(T−t)) − (
γ10e−a2(T−t) − γ11e−(2γ+a2)(T−t)) − γ12e−γ(T−t)

)
γ1 + γ2e−2γ(T−t) ,

with γ, γ1, . . . , γ12 as defined in (94).

Finally, by solving equation (121), we find the following expression for A(t):

A(t) =
T∫
t

1
2
(
B2 − B

)(
σ2

1B2
1(s,T ) + σ2

2B2
2(s,T ) − 2ρr1r2σ1B1(s,T )σ2B2(s,T )

)
ds

+

T∫
t

[
κ
(
ξ(s) + ρr1νBτσ1B1(t,T ) − ρr2νBτσ2B2(t,T ))

)
C(s) +

1
2
τ2

(
C2(s) + D(s)

)]
ds

=
1
2
(
B2 − B

)
VFX(t,T ) (127)

+

T∫
t

[(
κψ + ρr1ν(iu − 1)τσ1B1(s,T ) − ρr2νiuτσ2B2(s,T )

)
C(s) +

1
2
τ2

(
C2(s) + D(s)

)]
ds,

where VFX(t,T ) can found by simple integration and is given by:

VFX(t,T ) :=
σ2

1

a2
1

(
(T − t) +

2
a1

e−a1(T−t) −
1

2a1
e−2a1(T−t) −

3
2a1

)
+
σ2

2

a2
2

(
(T − t) +

2
a2

e−a2(T−t) −
1

2a2
e−2a2(T−t) −

3
2a2

)
(128)

−2ρr1r2

σ1σ2

a1a2

(
(T − t) +

e−a1(T−t) − 1
a1

+
e−a2(T−t) − 1

a2
−

e−(a1+a2)(T−t) − 1
a1 + a2

)
.

Analogue to (115), integrating over the C(s) and C2(s) terms in (127) seems to be the most efficient
method to evaluate A(t).
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